La Génétique de L’Hypertension: Rôle Des Gènes CYP3A5 et ABCB1 Dans Le Contrôle de la Tension Artérielle
Abstract
Introduction
Le gène ABCB1
Le gène CYP3A5
Les gènes CYP3A5 et ABCB1 interagissent pour leur effet sur la tension artérielle
Conclusions
Conflicts of Interest
References
- Lopez, A.D.; Mathers, C.D.; Ezzati, M.; Jamison, D.T.; Murray, C.J. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006, 367, 1747–1757. [Google Scholar] [CrossRef]
- Wolf-Maier, K.; Cooper, R.S.; Banegas, J.R.; Giampaoli, S.; Hense, H.W.; Joffres, M.; et al. Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. JAMA 2003, 289, 2363–2369. [Google Scholar] [CrossRef]
- Firmann, M.; Mayor, V.; Marques-Vidal, P.M.; Bochud, M.; Pecoud, A.; Paccaud, F.; et al. The CoLaus study: a populationbased study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc Disord 2008, 8, 6. [Google Scholar] [CrossRef]
- Brown, M.J. Hypertension and ethnic group. BMJ 2006, 332, 833–836. [Google Scholar] [CrossRef]
- Bovet, P.; Shamlaye, C.; Gabriel, A.; Riesen, W.; Paccaud, F. Prevalence of cardiovascular risk factors in a middle-income country and estimated cost of a treatment strategy. BMC Public Health 2006, 6, 9. [Google Scholar] [CrossRef]
- Kannel, W.B.; Wolf, P.A.; Verter, J.; McNamara, P.M. Epidemiologic assessment of the role of blood pressure in stroke: the Framingham Study. 1970 [classical article] [see comments]. JAMA 1996, 276, 1269–1278. [Google Scholar] [CrossRef]
- van der Hoogen, P.C.; Feskens, E.J.; Nagelkerke, N.J.; Menotti, A.; Nissinen, A.; Kromhout, D. The relation between blood pressure and mortality due to coronary heart disease among men in different parts of the world. Seven Countries Study Research Group. N Engl J Med 2000, 342, 1–8. [Google Scholar] [CrossRef]
- Flack, J.M.; Neaton, J.; Grimm, R.J.; Shih, J.; Cutler, J.; Ensrud, K.; et al. Blood pressure and mortality among men with prior myocardial infarction. Multiple Risk Factor Intervention Trial Research Group. Circulation 1995, 92, 2437–2445. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.; Larson, M.G.; Vasan, R.S.; Kannel, W.B.; Ho, K.K.L. Theprogression from hypertension to congestive heart failure. JAMA 1996, 275, 1557–1562. [Google Scholar] [CrossRef] [PubMed]
- Klag, M.J.; Whelton, P.K.; Randall, B.L.; Neaton, J.D.; Brancati, F.L.; Ford, C.E.; et al. Blood pressure and end-stage renal disease in men. N Engl J Med 1996, 334, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Tozawa, M.; Iseki, K.; Iseki, C.; Kinjo, K.; Ikemiya, Y.; Takishita, S. Blood pressure predicts risk of developing end-stage renal disease in men and women. Hypertension 2003, 41, 1341–1345. [Google Scholar] [CrossRef]
- Lowe, L.P.; Greenland, P.; Ruth, K.J.; Dyer, A.R.; Stamler, R.; Stamler, J. Impact of major cardiovascular disease risk factors, particularly in combination, on 22-year mortality in women and men. Arch Intern Med 1998, 158, 2007–2014. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.L.; Gunn, P.W.; Kaelber, D.C. Underdiagnosis of hypertension in children and adolescents. JAMA 2007, 298, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Din-Dzietham, R.; Liu, Y.; Bielo, M.V.; Shamsa, F. High bloodpressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation 2007, 116, 1488–1496. [Google Scholar] [CrossRef]
- Rotimi, C.N.; Cooper, R.S.; Cao, G.; Ogunbiyi, O.; Ladipo, M.; Owoaje, E.; et al. Maximum-likelihood generalized heritability estimate for blood pressure in Nigerian family. Hypertension 1999, 33, 874–878. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abney, C.; McPeeks, M.S.; Ober, C. Broad and narrow heritabilities of quantitative traits in a founder population. Am J Hum Genet 2001, 68, 1302–1307. [Google Scholar] [CrossRef]
- Harrap, S.B.; Stebbing, M.; Hopper, J.L.; Hoang, H.N.; Giles, G.G. Familial patterns of covariation for cardiovascular risk factors in adults. The Victorian Family Heart Study. Am J Epidemiol 2000, 152, 704–715. [Google Scholar] [CrossRef]
- Kotchen, T.A.; Kotchen, J.M.; Grim, C.E.; George, V.; Kaldunski, M.L.; Cowley, A.W.J.; et al. Genetic determinants of hypertension. Identification of candidate phenotypes. Hypertension 2000, 36, 7–13. [Google Scholar] [CrossRef]
- Levy, D.; DeStefano, A.L.; Larson, M.G.; O‘Donnell, C.J.; Lifton, R.P.; Gavras, H.; et al. Evidence for a gene influencing blood pressure on chromosome 17.Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension 2000, 36, 477–483. [Google Scholar] [CrossRef]
- Adeyemo, A.A.; Omotade, O.O.; Rotimi, C.N.; Luke, A.H.; Tayo, B.O.; Cooper, R.S. Heritability of blood pressure in Nigerian families. J Hypertens 2002, 20, 859–863. [Google Scholar] [CrossRef]
- Gu, C.; Borecki, I.B.; Gagnon, J.; Bouchard, C.; Leon, A.S.; Skinner, J.S.; et al. Familial resemblance for resting blood pressure with particular reference to racial differences: preliminary analyses from the HERITAGE Family Study. Hum Biol 1998, 70, 77–90. [Google Scholar] [PubMed]
- Bochud, M.; Bovet, P.; Elston, R.C.; Paccaud, F.; Falconnet, C.; Shamlaye, C.; et al. High heritability of ambulatory blood pressure in families of East African descent. Hypertension 2005, 45, 445–450. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Neal, B.; MacMahon, S.; Chapman, N. Effects of ACE inhibitors, calcium antagonists, and other blood-pressurelowering drugs: results of prospectively designed overviews of randomised trials. Blood Pressure Lowering Treatment Trialists’ Collaboration. Lancet 2000, 356, 1955–1964. [Google Scholar][Green Version]
- Dickerson, J.E.; Hingorani, A.D.; Ashby, M.J.; Palmer, C.R.; Brown, M.J. Optimisation of antihypertensive treatment by crossover rotation of four major classes. Lancet 1999, 353, 2008–2013. [Google Scholar] [CrossRef] [PubMed]
- Carretero, O.A.; Oparil, S. Essential hypertension. Part I: definition and etiology. Circulation 2000, 101, 329–335. [Google Scholar] [CrossRef]
- Harrap, S.B. Where are all the blood-pressure genes? Lancet 2003, 361, 2149–2151. [Google Scholar] [CrossRef]
- Moore, J.H.; Williams, S.M. New strategies for identifyinggene-gene interactions in hypertension. Ann Med 2002, 34, 88–95. [Google Scholar] [CrossRef]
- Monti, J.; Plehm, R.; Schulz, H.; Ganten, D.; Kreutz, R.; Hubner, N. Interaction between blood pressure quantitative trait loci in rats in which trait variation at chromosome 1 is conditional upon a specific allele at chromosome 10. Hum Mol Genet 2003, 12, 435–439. [Google Scholar] [CrossRef]
- Sugiyama, F.; Churchill, G.A.; Higgins, D.C.; Johns, C.; Makaritsis, K.P.; Gavras, H.; et al. Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics 2001, 71, 70–77. [Google Scholar] [CrossRef]
- Dutil, J.; Eliopoulos, V.; Tremblay, J.; Hamet, P.; Charron, S.; Deng, A.Y. Multiple Quantitative Trait Loci for Blood Pressure Interacting Epistatically and Additively on Dahl Rat Chromosome 2. Hypertension 2005, 45, 557–564. [Google Scholar] [CrossRef]
- Palijan, A.; Lambert, R.; Dutil, J.; Sivo, Z.; Deng, A.Y. Comprehensive Congenic Coverage Revealing Multiple Blood Pressure Quantitative Trait Loci on Dahl Rat Chromosome 10. Hypertension 2003, 42, 515–522. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kardia, S.L. Context-dependent genetic effects in hypertension. Curr Hypertens Rep 2000, 2, 32–38. [Google Scholar] [CrossRef]
- De Wardener, H.E.; McGregor, G.A. The natriuretic hormoneand essential hypertension. Lancet 1982, 1, 1450–1454. [Google Scholar] [CrossRef] [PubMed]
- Lifton, R.P. Molecular genetics of human blood pressure variation. [Review] [33 refs]. Science 1996, 272, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Meneton, P. Comparative roles of the renal apical sodiumtransport systems in blood pressure control. J Am Soc Nephrol 2000, 11, S135–S139. [Google Scholar] [CrossRef]
- Bianchi, G.; Ferrari, P.; Staessen, J.A. Adducin polymorphism: detection and impact on hypertension and related disorders. Hypertension 2005, 45, 331–340. [Google Scholar] [CrossRef]
- Tikhonoff, V.; Kuznetsova, T.; Stolarz, K.; Bianchi, G.; Casiglia, E.; Kawecka-Jaszcz, K.; et al. beta-Adducin polymorphisms, blood pressure, and sodium excretion in three European populations. Am J Hypertens 2003, 16, 840–846. [Google Scholar] [CrossRef]
- Hunt, S.C.; Cook, N.R.C.; Oberman, A.; Cutler, J.A.; Hennekens, C.H.; Allender, P.S.; et al. Angiotensinogen Genotype, Sodium Reduction, Weight Loss, and Prevention of Hypertension Trials of Hypertension Prevention, Phase II. Hypertension 1998, 32, 393–401. [Google Scholar] [CrossRef]
- Hunt, S.C.; Geleijnse, J.M.; Wu, L.L.; Witteman, J.C.; Williams, R.R.; Grobbee, D.E. Enhanced Blood Pressure Response to Mild Sodium Reduction in Subjects With the 235T Variant of the Angiotensinogen Gene. Am J Hypertens 1999, 12, 460–466. [Google Scholar] [CrossRef]
- Bochud, M.; Eap, C.B.; Elston, R.C.; Bovet, P.; Maillard, M.; Schild, L.; et al. Association of CYP3A5 genotypes with blood pressure and renal function in African families. J Hypertens 2006, 24, 923–929. [Google Scholar] [CrossRef][Green Version]
- Eap, C.B.; Bochud, M.; Elston, R.C.; Bovet, P.; Maillard, M.; Nussberger, J.; et al. The CYP3A5 and ABCB1 genes encoding drug- and hormone-metabolizing and transporting proteins influence blood pressure and response to treatment, and their effect is modified by salt. Hypertension 2007, 49, 1007–1014. [Google Scholar] [CrossRef]
- Kurzawski, M.; Pawlik, A.; Gornik, W.; Drozdzik, M. Frequencyof common MDR1 gene variants in a Polish population. Pharmacol Rep 2006, 58, 35–40. [Google Scholar]
- Ameyaw, M.M.; Regateiro, F.; Li, T.; Liu, X.; Tariq, M.; Mobarek, A.; et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001, 11, 217–221. [Google Scholar] [CrossRef]
- Wang, D.; Johnson, A.D.; Papp, A.C.; Kroetz, D.L.; Sadee, W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 2005, 15, 693–704. [Google Scholar] [CrossRef]
- Kimchi-Sarfaty, C.; Oh, J.M.; Kim, I.W.; Sauna, Z.E.; Calcagno, A.M.; Ambudkar, S.V.; et al. A «silent» polymorphism in the MDR1 gene changes substrate specificity. Science 2007, 315, 525–528. [Google Scholar] [CrossRef]
- Siegsmund, M.; Brinkmann, U.; Schaffeler, E.; Weirich, G.; Schwab, M.; Eichelbaum, M.; et al. Association of the P-Glycoprotein Transporter MDR1C3435T Polymorphism with the Susceptibility to Renal Epithelial Tumors. J Am Soc Nephrol 2002, 13, 1847–1854. [Google Scholar] [CrossRef]
- Hoffmeyer, S.; Burk, O.; von Richter, O.; Arnold, H.P.; Brockmoller, J.; Johne, A.; et al. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Nat Acad Sci USA 2000, 97, 3473–3478. [Google Scholar] [CrossRef]
- Owen, A.; Chandler, B.; Bray, P.G.; Ward, S.A.; Hart, C.A.; Back, D.J.; et al. Functional Correlation of P-Glycoprotein Expression and Genotype with Expression of the Human Immunodeficiency Virus Type 1 Coreceptor CXCR4. J Virol 2004, 78, 12022–12029. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fellay, J.; Marzolini, C.; Meaden, E.R.; Back, D.J.; Buclin, T.; Chave, J.P.; et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002, 359, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Hauser, I.A.; Koziolek, M.; Hopfer, U.; Thevenod, F. Therapeuticconcentrations of cyclosporine A, but not FK506, increase Pglycoprotein expression in endothelial and renal tubule cells. Kidney Int 1998, 54, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Cellular localization of the multidrugresistance gene product P-glycoprotein in normal human tissues. Proc Nat Acad Sci USA 1987, 84, 7735–7738. [Google Scholar] [CrossRef] [PubMed]
- Ernest, S.; Rajaraman, S.; Megyesi, J.; Bello-Reuss, E.N. Expression of MDR1 (multidrug resistance) gene and its protein in normal human kidney. Nephron 1997, 77, 284–289. [Google Scholar] [CrossRef]
- Sugawara, I.; Hamada, H.; Nakahama, M.; Okamoto, S.; Tsuruo, T.; Mori, S. Further characterization of the human adrenalderived P-glycoprotein recognized by monoclonal antibody MRK 16 reacting with only human P-glycoprotein. Jpn J Cancer Res 1989, 80, 1199–1205. [Google Scholar] [CrossRef]
- Uhr, M.; Holsboer, F.; Muller, M.B. Penetration of endogenoussteroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol 2002, 14, 753–759. [Google Scholar] [CrossRef]
- Ueda, K.; Okamura, N.; Hirai, M.; Tanigawara, Y.; Saeki, T.; Kioka, N.; et al. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 1992, 267, 24248–24252. [Google Scholar] [CrossRef] [PubMed]
- Bello-Reuss, E.; Ernest, S.; Holland, O.B.; Hellmich, M.R. Role ofmultidrug resistance P-glycoprotein in the secretion of aldosterone by human adrenal NCI-H295 cells. Am J Physiol Cell Physiol 2000, 278, C1256–C1265. [Google Scholar] [CrossRef] [PubMed]
- Parker, R.B.; Yates, C.R.; Laizure, S.C.; Weber, K.T. P-glycoproteinmodulates aldosterone plasma disposition and tissue uptake. J Cardiovasc Pharmacol 2006, 47, 55–59. [Google Scholar] [CrossRef]
- Huang, B.S.; Wang, H.; Leenen, F.H.H. Chronic central infusionof aldosterone leads to sympathetic hyperreactivity and hypertension in Dahl S but not Dahl R rats. Am J Physiol Heart Circ Physiol 2005, 288, H517–H524. [Google Scholar] [CrossRef]
- Huang, B.S.; Cheung, W.J.; Wang, H.; Tan, J.; White, R.A.; Leenen, F.H. Activation of brain renin-angiotensin-aldosterone system by central sodium in Wistar rats. Am J Physiol Heart Circ Physiol 2006, 291, H1109–H1117. [Google Scholar] [CrossRef]
- Widder, J.D.; Guzik, T.J.; Mueller, C.F.; Clempus, R.E.; Schmidt, H.H.; Dikalov, S.I.; et al. Role of the multidrug resistance protein-1 in hypertension and vascular dysfunction caused by angiotensin II. Arterioscler Thromb Vasc Biol 2007, 27, 762–768. [Google Scholar] [CrossRef]
- Zolk, O.; Jacobi, J.; Pahl, A.; Fromm, M.F.; Schmieder, R.E. MDR1 genotype-dependent regulation of the aldosterone system in humans. Pharmacogenet Genomics 2007, 17, 137–144. [Google Scholar] [CrossRef]
- Stern, N.; Lustig, S.; Petrasek, D.; Jensen, G.; Eggena, P.; Lee, D.B.; et al. Cyclosporin A-induced hyperreninemic hypoaldosteronism. A model of adrenal resistance to angiotensin II. Hypertension 1987, 9, III31–III35. [Google Scholar] [CrossRef]
- Adu, D.; Turney, J.; Michael, J.; McMaster, P. Hyperkalaemiain cyclosporin-treated renal allograft recipients. Lancet 1983, 2, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Siest, G.; Jeannesson, E.; Visvikis-Siest, S. Enzymes and pharmacogenetics of cardiovascular drugs. Clin Chim Acta 2007, 381, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Del Moral, R.G.; Olmo, A.; Osuna, A.; Aguilar, M.; Carvia, R.; Becerra, P.; et al. Role of P-glycoprotein in chronic cyclosporine nephrotoxicity and its relationship to intrarenal angiotensin II deposits. Transplant Proc 1998, 30, 2014–2016. [Google Scholar] [CrossRef] [PubMed]
- Koziolek, M.J.; Riess, R.; Geiger, H.; Thevenod, F.; Hauser, I.A. Expression of multidrug resistance P-glycoprotein in kidney allografts from cyclosporine A-treated patients. Kidney Int 2001, 60, 156–166. [Google Scholar] [CrossRef]
- Liu, Y.T.; Hao, H.P.; Liu, C.X.; Wang, G.J.; Xie, H.G. Drugs as CYP3Aprobes, inducers, and inhibitors. Drug Metab Rev 2007, 39, 699–721. [Google Scholar] [CrossRef]
- Daly, A.K. Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 2006, 45, 13–31. [Google Scholar] [CrossRef]
- Givens, R.C.; Lin, Y.S.; Dowling, A.L.; Thummel, K.E.; Lamba, J.K.; Schuetz, E.G.; et al. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J Appl Physiol 2003, 95, 1297–1300. [Google Scholar] [CrossRef]
- Schuetz, E.G.; Schuetz, J.D.; Grogan, W.M.; Naray-Fejes-Toth, A.; Fejes-Toth, G.; Raucy, J.; et al. Expression of cytochrome P450 3A in amphibian, rat, and human kidney. Arch Biochem Biophys 1992, 294, 206–214. [Google Scholar] [CrossRef]
- Chowbay, B.; Zhou, S.; Lee, E.J. An interethnic comparison ofpolymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug Metab Rev 2005, 37, 327–328. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Basu, A.K.; Ghosh, S.; Hagley, R.; Kramer, L.; Schuetz, J.; et al. Renal and hepatic family 3A cytochromes P450 (CYP3A) in spontaneously hypertensive rats. Biochem Pharmacol 1995, 50, 49–54. [Google Scholar] [CrossRef]
- Watlington, C.O.; Kramer, L.B.; Schuetz, E.G.; Zilai, J.; Grogan, W.M.; Guzelian, P.; et al. Corticosterone 6 beta-hydroxylation correlates with blood pressure in spontaneously hypertensive rats. Am J Physiol 1992, 262, F927–F931. [Google Scholar] [CrossRef]
- Ho, H.; Pinto, A.; Hall, S.D.; Flockhart, D.A.; Li, L.; Skaar, T.C.; et al. Association between the CYP3A5 genotype and blood pressure. Hypertension 2005, 45, 1–5. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fromm, M.F.; Schmidt, B.M.; Pahl, A.; Jacobi, J.; Schmieder, R.E. CYP3A5 genotype is associated with elevated blood pressure. Pharmacogenet Genomics 2005, 15, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Kreutz, R.; Zuurman, M.; Kain, S.; Bolbrinker, J.; de Jong, P.E.; Navis, G. The role of the cytochrome P450 3A5 enzyme for blood pressure regulation in the general Caucasian population. Pharmacogenet Genomics 2005, 15, 831–837. [Google Scholar] [CrossRef]
- Langaee, T.Y.; Gong, Y.; Yarandi, H.N.; Katz, D.A.; Cooper-Dehoff, R.M.; Pepine, C.J.; et al. Association of CYP3A5 polymorphisms with hypertension and antihypertensive response to verapamil. Clin Pharmacol Ther 2007, 81, 386–391. [Google Scholar] [CrossRef]
- Kivisto, K.T.; Niemi, M.; Schaeffeler, E.; Pitkala, K.; Tilvis, R.; Fromm, M.F.; et al. CYP3A5 Genotype is Associated with Diagnosis of Hypertension in Elderly Patients: Data from the DEBATE Study. Am J Pharmacogenomics 2005, 5, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Lieb, W.; Bolbrinker, J.; Doring, A.; Hense, H.W.; Erdmann, J.; Schunkert, H.; et al. No association of the CYP3A5*1 allele with blood pressure and left ventricular mass and geometry: the KORA/MONICA Augsburg echocardiographic sub- study. Clin Sci (Lond) 2006, 111, 365–372. [Google Scholar] [CrossRef]
- Warrington, J.S.; Greenblatt, D.J.; von Moltke, L.L. Age-relateddifferences in CYP3A expression and activity in the rat liver, intestine, and kidney. J Pharmacol Exp Ther 2004, 309, 720–729. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, Y.H.; Miao, J.; Li, L.; Kovacs, R.J.; Marunde, R.; et al. Cytochrome P450 3A5 genotype is associated with verapamil response in healthy subjects. Clin Pharmacol Ther 2007, 82, 579–585. [Google Scholar] [CrossRef]
- Schuetz, E.G.; Beck, W.T.; Schuetz, J.D. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996, 49, 311–318. [Google Scholar] [CrossRef]
- Burk, O.; Arnold, K.A.; Geick, A.; Tegude, H.; Eichelbaum, M. Arole for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biol Chem 2005, 386, 503–513. [Google Scholar] [CrossRef]
- Burk, O.; Koch, I.; Raucy, J.; Hustert, E.; Eichelbaum, M.; Brockmoller, J.; et al. The Induction of Cytochrome P450 3A5 (CYP3A5) in the Human Liver and Intestine Is Mediated by the Xenobiotic Sensors Pregnane X Receptor (PXR) and Constitutively Activated Receptor (CAR). J Biol Chem 2004, 279, 38379–38385. [Google Scholar] [CrossRef] [PubMed]
- Geick, A.; Eichelbaum, M.; Burk, O. Nuclear Receptor Response Elements Mediate Induction of Intestinal MDR1 by Rifampin. J Biol Chem 2001, 276, 14581–14587. [Google Scholar] [CrossRef]
- Lamba, J.; Strom, S.; Venkataramanan, R.; Thummel, K.E.; Lin, Y.S.; Liu, W.; et al. MDR1 genotype is associated with hepatic cytochrome P450 3A4 basal and induction phenotype. Clin Pharmacol Ther 2006, 79, 325–338. [Google Scholar] [CrossRef]
- Hamlyn, J.M.; Hamilton, B.P.; Manunta, P. Endogenous ouabain, sodium balance and blood pressure: a review and a hypothesis. J Hypertens 1996, 14, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Brouillard, F.; Tondelier, D.; Edelman, A.; Baudouin-Legros, M. Drug resistance induced by ouabain via the stimulation of MDR1 gene expression in human carcinomatous pulmonary cells. Cancer Research 2001, 61, 1693–1698. [Google Scholar]
- Rautio, J.; Humphreys, J.E.; Webster, L.O.; Balakrishnan, A.; Keogh, J.P.; Kunta, J.R.; et al. In vitro p-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab Dispos 2006, 34, 786–792. [Google Scholar] [CrossRef] [PubMed]
© 2008 by the author. Attribution - Non-Commercial - NoDerivatives 4.0.
Share and Cite
Bochud, M.; Eap, C.B.; Bovet, P.; Burnier, M. La Génétique de L’Hypertension: Rôle Des Gènes CYP3A5 et ABCB1 Dans Le Contrôle de la Tension Artérielle. Cardiovasc. Med. 2008, 11, 353. https://doi.org/10.4414/cvm.2008.01368
Bochud M, Eap CB, Bovet P, Burnier M. La Génétique de L’Hypertension: Rôle Des Gènes CYP3A5 et ABCB1 Dans Le Contrôle de la Tension Artérielle. Cardiovascular Medicine. 2008; 11(11):353. https://doi.org/10.4414/cvm.2008.01368
Chicago/Turabian StyleBochud, Murielle, Chin B. Eap, Pascal Bovet, and Michel Burnier. 2008. "La Génétique de L’Hypertension: Rôle Des Gènes CYP3A5 et ABCB1 Dans Le Contrôle de la Tension Artérielle" Cardiovascular Medicine 11, no. 11: 353. https://doi.org/10.4414/cvm.2008.01368
APA StyleBochud, M., Eap, C. B., Bovet, P., & Burnier, M. (2008). La Génétique de L’Hypertension: Rôle Des Gènes CYP3A5 et ABCB1 Dans Le Contrôle de la Tension Artérielle. Cardiovascular Medicine, 11(11), 353. https://doi.org/10.4414/cvm.2008.01368