Regulatory Mechanism of Human Endometrial Stromal Cell Decidualization by Ergothioneine
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Isolation of EnSCs
2.3. Induction of Decidualization in Primary Cultured Human EnSCs
2.4. Culture of EnSC Cell Line KC02-44D
2.5. Decidualization Treatment for KC02-44D Cells
2.6. Appropriate Concentration Test of EGT on Decidualization
2.7. Cytotoxicity Lactate Dehydrogenase Assay
2.8. Cell Proliferation Assay
2.9. Quantitative Polymerase Chain Reaction (qPCR)
2.10. Western Blotting Method
2.11. Co-Culture of KC02-44D Cells with BeWo Cells for In Vitro Implantation Model
2.12. Immunofluorescence Staining
2.13. Enzyme-Linked Immunosorbent Assay (ELISA)
2.14. Statistical Analysis
3. Results
3.1. SLC22A4 Increases in the Secretory Phase of Human Endometrium
3.2. Changes in SLC22A4 Expression in Primary Cultured Human EnSCs
3.3. SLC22A4 Expression in Human EnSC Strain
3.4. Effect of EGT Concentration on the Markers for Decidualization
3.5. Effects of EGT on Cell Viability and Death
3.6. Effect of EGT on Decidualization
3.7. Regulation by FOXO1 in Decidualization
3.8. EGT Induced Expansion of BeWo Spheroids on In Vitro Implantation Model
3.9. Effect of EGT on Function of In Vitro Implantation Model
3.10. Increased IGFBP1 Secretion by EGT
4. Discussion
Research Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanret, C. Sur une base nouvelle retiree du seigle ergote, l’ergothioneine. Rend. Acad. Sci. 1909, 149, 222–224. [Google Scholar]
- Franzoni, F.; Colognato, R.; Galetta, F.; Laurenza, I.; Barsotti, M.; Di Stefano, R.; Bocchetti, R.; Regoli, F.; Carpi, A.; Balbarini, A.; et al. An in vitro study on the free radical scavenging capacity of ergothioneine: Comparison with reduced glutathione, uric acid and trolox. Biomed. Pharmacother. Biomed. Pharmacother. 2006, 60, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Kubo, Y.; Iwata, D.; Kato, S.; Sudo, T.; Sugiura, T.; Kagaya, T.; Wakayama, T.; Hirayama, A.; Sugimoto, M.; et al. Gene knockout and metabolome analysis of carnitine/organic cation transporter OCTN1. Pharm. Res. 2010, 27, 832–840. [Google Scholar] [CrossRef]
- Toh, D.S.; Limenta, L.M.; Yee, J.Y.; Wang, L.Z.; Goh, B.C.; Murray, M.; Lee, E.J. Effect of mushroom diet on pharmacokinetics of gabapentin in healthy Chinese subjects. Br. J. Clin. Pharmacol. 2014, 78, 129–134. [Google Scholar] [CrossRef]
- Hseu, Y.C.; Vudhya Gowrisankar, Y.; Chen, X.Z.; Yang, Y.C.; Yang, H.L. The Antiaging Activity of Ergothioneine in UVA-Irradiated Human Dermal Fibroblasts via the Inhibition of the AP-1 Pathway and the Activation of Nrf2-Mediated Antioxidant Genes. Oxid. Med. Cell Longev. 2020, 2020, 2576823. [Google Scholar] [CrossRef]
- Morillon, A.C.; Williamson, R.D.; Baker, P.N.; Kell, D.B.; Kenny, L.C.; English, J.A.; McCarthy, F.P.; McCarthy, C. Effect of L-Ergothioneine on the metabolic plasma profile of the RUPP rat model of pre-eclampsia. PLoS ONE 2020, 15, e0230977. [Google Scholar] [CrossRef]
- Williamson, R.D.; McCarthy, F.P.; Manna, S.; Groarke, E.; Kell, D.B.; Kenny, L.C.; McCarthy, C.M. L-(+)-Ergothioneine Significantly Improves the Clinical Characteristics of Preeclampsia in the Reduced Uterine Perfusion Pressure Rat Model. Hypertension 2020, 75, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; George, R.L.; Huang, W.; Wang, H.; Conway, S.J.; Leibach, F.H.; Ganapathy, V. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim. Biophys. Acta 2000, 1466, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.M. Dose-related relationship between ergothioneine concentrations and risk of preeclampsia. Biosci. Rep. 2023, 43, BSR20231076. [Google Scholar] [CrossRef]
- Kenny, L.C.; Consortium, S.; Brown, L.W.; Ortea, P.; Tuytten, R.; Kell, D.B. Relationship between the concentration of ergothioneine in plasma and the likelihood of developing pre-eclampsia. Biosci. Rep. 2023, 43, BSR20230160. [Google Scholar] [CrossRef]
- Liu, L.; Yin, J.; Liu, Y.; Li, B.; Kang, S.; Du, N. Causal effects of genetically determined circulating metabolites on endometriosis: A Mendelian randomization study. Medicine 2024, 103, e40690. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Tanaka, S.; Tsuzuki-Nakao, T.; Kido, T.; Kakita-Kobayashi, M.; Kida, N.; Hisamatsu, Y.; Tsubokura, H.; Hashimoto, Y.; Kitada, M.; et al. The transcription factor HAND2 up-regulates transcription of the IL15 gene in human endometrial stromal cells. J. Biol. Chem. 2020, 295, 9596–9605. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.K.; Lim, H.; Das, S.K.; Reese, J.; Paria, B.C.; Daikoku, T.; Wang, H. Molecular cues to implantation. Endocr. Rev. 2004, 25, 341–373. [Google Scholar]
- Cha, J.; Sun, X.; Dey, S.K. Mechanisms of implantation: Strategies for successful pregnancy. Nat. Med. 2012, 18, 1754–1767. [Google Scholar]
- Singh, M.; Chaudhry, P.; Asselin, E. Bridging endometrial receptivity and implantation: Network of hormones, cytokines, and growth factors. J. Endocrinol. 2011, 210, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Plaisier, M. Decidualisation and angiogenesis. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 259–271. [Google Scholar] [CrossRef]
- Peng, X.; He, D.; Peng, R.; Feng, J.; Chen, D.; Xie, H.; Li, Q.; Guo, Y.; Zhou, J.; Chen, Y.; et al. Associations between IGFBP1 gene polymorphisms and the risk of preeclampsia and fetal growth restriction. Hypertens. Res. 2023, 46, 2070–2084. [Google Scholar] [CrossRef]
- Verma, S.; Hiby, S.E.; Loke, Y.W.; King, A. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol. Reprod. 2000, 62, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Fagerberg, L.; Hallstrom, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef]
- Yuhki, M.; Kajitani, T.; Mizuno, T.; Aoki, Y.; Maruyama, T. Establishment of an immortalized human endometrial stromal cell line with functional responses to ovarian stimuli. Reprod. Biol. Endocrinol. 2011, 9, 104. [Google Scholar] [CrossRef]
- Grundemann, D.; Harlfinger, S.; Golz, S.; Geerts, A.; Lazar, A.; Berkels, R.; Jung, N.; Rubbert, A.; Schomig, E. Discovery of the ergothioneine transporter. Proc. Natl. Acad. Sci. USA 2005, 102, 5256–5261. [Google Scholar] [CrossRef]
- Kumosani, T.A. L-ergothioneine level in red blood cells of healthy human males in the Western province of Saudi Arabia. Exp. Mol. Med. 2001, 33, 20–22. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath. 2013, 3, 71–85. [Google Scholar] [PubMed]
- Tanaka, S.; Sawachika, M.; Yoshida, N.; Futani, K.; Murata, H.; Okada, H. IL17A Suppresses IGFBP1 in Human Endometrial Stromal Cells. Reprod. Med. 2024, 5, 43–56. [Google Scholar] [CrossRef]
- Grummer, R.; Hohn, H.P.; Mareel, M.M.; Denker, H.W. Adhesion and invasion of three human choriocarcinoma cell lines into human endometrium in a three-dimensional organ culture system. Placenta 1994, 15, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Deryabin, P.I.; Borodkina, A.V. Stromal cell senescence contributes to impaired endometrial decidualization and defective interaction with trophoblast cells. Hum. Reprod. 2022, 37, 1505–1524. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Nie, G.; Salamonsen, L.A. Requirement for proprotein convertase 5/6 during decidualization of human endometrial stromal cells in vitro. J. Clin. Endocrinol. Metab. 2005, 90, 1028–1034. [Google Scholar] [CrossRef]
- Okada, H.; Nakajima, T.; Yoshimura, T.; Yasuda, K.; Kanzaki, H. The inhibitory effect of dienogest, a synthetic steroid, on the growth of human endometrial stromal cells in vitro. Mol. Hum. Reprod. 2001, 7, 341–347. [Google Scholar] [CrossRef]
- Brighton, P.J.; Maruyama, Y.; Fishwick, K.; Vrljicak, P.; Tewary, S.; Fujihara, R.; Muter, J.; Lucas, E.S.; Yamada, T.; Woods, L.; et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife 2017, 6, e31274. [Google Scholar] [CrossRef]
- Cho, H.; Okada, H.; Tsuzuki, T.; Nishigaki, A.; Yasuda, K.; Kanzaki, H. Progestin-induced heart and neural crest derivatives expressed transcript 2 is associated with fibulin-1 expression in human endometrial stromal cells. Fertil. Steril. 2013, 99, 248–255.e2. [Google Scholar] [CrossRef]
- Ujvari, D.; Jakson, I.; Babayeva, S.; Salamon, D.; Rethi, B.; Gidlof, S.; Hirschberg, A.L. Dysregulation of In Vitro Decidualization of Human Endometrial Stromal Cells by Insulin via Transcriptional Inhibition of Forkhead Box Protein O1. PLoS ONE 2017, 12, e0171004. [Google Scholar] [CrossRef] [PubMed]
- Okae, H.; Toh, H.; Sato, T.; Hiura, H.; Takahashi, S.; Shirane, K.; Kabayama, Y.; Suyama, M.; Sasaki, H.; Arima, T. Derivation of Human Trophoblast Stem Cells. Cell Stem Cell 2018, 22, 50–63.e6. [Google Scholar] [CrossRef] [PubMed]
- Trundley, A.; Gardner, L.; Northfield, J.; Chang, C.; Moffett, A. Methods for isolation of cells from the human fetal-maternal interface. Methods Mol. Med. 2006, 122, 109–122. [Google Scholar]
- Csoka, B.; Selmeczy, Z.; Koscso, B.; Nemeth, Z.H.; Pacher, P.; Murray, P.J.; Kepka-Lenhart, D.; Morris, S.M., Jr.; Gause, W.C.; Leibovich, S.J.; et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 2012, 26, 376–386. [Google Scholar] [CrossRef]
- Cohen, H.B.; Briggs, K.T.; Marino, J.P.; Ravid, K.; Robson, S.C.; Mosser, D.M. TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses. Blood 2013, 122, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Rouas-Freiss, N.; Kirszenbaum, M.; Dausset, J.; Carosella, E.D. [Fetomaternal tolerance: Role of HLA-G molecule in the protection of the fetus against maternal natural killer activity]. C. R. Acad. Sci. III 1997, 320, 385–392. [Google Scholar] [CrossRef]
- Rizzo, R.; Vercammen, M.; van de Velde, H.; Horn, P.A.; Rebmann, V. The importance of HLA-G expression in embryos, trophoblast cells, and embryonic stem cells. Cell. Mol. Life Sci. 2011, 68, 341–352. [Google Scholar] [PubMed]
- Xu, X.; Zhou, Y.; Wei, H. Roles of HLA-G in the Maternal-Fetal Immune Microenvironment. Front. Immunol. 2020, 11, 592010. [Google Scholar] [CrossRef]
- Leduc, K.; Bourassa, V.; Asselin, E.; Leclerc, P.; Lafond, J.; Reyes-Moreno, C. Leukemia inhibitory factor regulates differentiation of trophoblastlike BeWo cells through the activation of JAK/STAT and MAPK3/1 MAP kinase-signaling pathways. Biol. Reprod. 2012, 86, 54. [Google Scholar] [CrossRef]
- Stewart, C.L.; Kaspar, P.; Brunet, L.J.; Bhatt, H.; Gadi, I.; Kontgen, F.; Abbondanzo, S.J. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992, 359, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Dani, C.; Chambers, I.; Johnstone, S.; Robertson, M.; Ebrahimi, B.; Saito, M.; Taga, T.; Li, M.; Burdon, T.; Nichols, J.; et al. Paracrine induction of stem cell renewal by LIF-deficient cells: A new ES cell regulatory pathway. Dev. Biol. 1998, 203, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Tsuru, A.; Yoshie, M.; Suzuki, M.; Mochizuki, H.; Kametaka, S.; Ohmaru-Nakanishi, T.; Azumi, M.; Kusama, K.; Kato, K.; Tamura, K. Downregulation of PGRMC1 accelerates differentiation and fusion of a human trophoblast cell line. J. Endocrinol. 2024, 260, e230163. [Google Scholar] [CrossRef] [PubMed]
- Dybing, E.; Doe, J.; Groten, J.; Kleiner, J.; O’Brien, J.; Renwick, A.G.; Schlatter, J.; Steinberg, P.; Tritscher, A.; Walker, R.; et al. Hazard characterisation of chemicals in food and diet. dose response, mechanisms and extrapolation issues. Food Chem. Toxicol. 2002, 40, 237–282. [Google Scholar] [PubMed]
- Acosta, J.C.; O’Loghlen, A.; Banito, A.; Guijarro, M.V.; Augert, A.; Raguz, S.; Fumagalli, M.; Da Costa, M.; Brown, C.; Popov, N.; et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008, 133, 1006–1018. [Google Scholar] [CrossRef]
- Efsa Panel on Dietetic Products; Nurtrition and Allergies; Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; et al. Scientific and technical guidance for the preparation and presentation of a health claim application (Revision 2). EFSA J. 2017, 15, e04680. [Google Scholar]
- Vento-Tormo, R.; Efremova, M.; Botting, R.A.; Turco, M.Y.; Vento-Tormo, M.; Meyer, K.B.; Park, J.E.; Stephenson, E.; Polanski, K.; Goncalves, A.; et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 2018, 563, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Spaans, F.; Melgert, B.N.; Chiang, C.; Borghuis, T.; Klok, P.A.; de Vos, P.; van Goor, H.; Bakker, W.W.; Faas, M.M. Extracellular ATP decreases trophoblast invasion, spiral artery remodeling and immune cells in the mesometrial triangle in pregnant rats. Placenta 2014, 35, 587–595. [Google Scholar] [CrossRef]
- Patel, B.; Elguero, S.; Thakore, S.; Dahoud, W.; Bedaiwy, M.; Mesiano, S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum. Reprod. Update 2015, 21, 155–173. [Google Scholar]
- Shindoh, H.; Okada, H.; Tsuzuki, T.; Nishigaki, A.; Kanzaki, H. Requirement of heart and neural crest derivatives-expressed transcript 2 during decidualization of human endometrial stromal cells in vitro. Fertil. Steril. 2014, 101, 1781–1790.e5. [Google Scholar] [CrossRef]
- Tamura, I.; Jozaki, K.; Sato, S.; Shirafuta, Y.; Shinagawa, M.; Maekawa, R.; Taketani, T.; Asada, H.; Tamura, H.; Sugino, N. The distal upstream region of insulin-like growth factor-binding protein-1 enhances its expression in endometrial stromal cells during decidualization. J. Biol. Chem. 2018, 293, 5270–5280. [Google Scholar] [CrossRef]
- Matsuo, A. Studies on the Regulation of Instllin-Like Growth Factor-Binding Protein-1 Release in Human Decidua. J. Tokyo Women’s Med. Univ. 1993, 63, 1510–1519. [Google Scholar]
- Tanaka, K.; Sakai, K.; Matsushima, M.; Matsuzawa, Y.; Izawa, T.; Nagashima, T.; Furukawa, S.; Kobayashi, Y.; Iwashita, M. Branched-chain amino acids regulate insulin-like growth factor-binding protein 1 (IGFBP1) production by decidua and influence trophoblast migration through IGFBP1. Mol. Hum. Reprod. 2016, 22, 890–899. [Google Scholar] [CrossRef]
- Paul, B.D.; Snyder, S.H. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Differ. 2010, 17, 1134–1140. [Google Scholar] [CrossRef]
- Ishimoto, T.; Masuo, Y.; Kato, Y.; Nakamichi, N. Ergothioneine-induced neuronal differentiation is mediated through activation of S6K1 and neurotrophin 4/5-TrkB signaling in murine neural stem cells. Cell. Signal. 2019, 53, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Sotgia, S.; Zinellu, A.; Mangoni, A.A.; Pintus, G.; Attia, J.; Carru, C.; McEvoy, M. Clinical and biochemical correlates of serum L-ergothioneine concentrations in community-dwelling middle-aged and older adults. PLoS ONE 2014, 9, e84918. [Google Scholar] [CrossRef] [PubMed]
- Chaleckis, R.; Murakami, I.; Takada, J.; Kondoh, H.; Yanagida, M. Individual variability in human blood metabolites identifies age-related differences. Proc. Natl. Acad. Sci. USA 2016, 113, 4252–4259. [Google Scholar] [CrossRef]
- Long, J.; Yang, C.S.; He, J.L.; Liu, X.Q.; Ding, Y.B.; Chen, X.M.; Tong, C.; Peng, C.; Wang, Y.X.; Gao, R.F. FOXO3a is essential for murine endometrial decidualization through cell apoptosis during early pregnancy. J. Cell. Physiol. 2019, 234, 4154–4166. [Google Scholar] [CrossRef]
- Kajihara, T.; Jones, M.; Fusi, L.; Takano, M.; Feroze-Zaidi, F.; Pirianov, G.; Mehmet, H.; Ishihara, O.; Higham, J.M.; Lam, E.W.; et al. Differential expression of FOXO1 and FOXO3a confers resistance to oxidative cell death upon endometrial decidualization. Mol. Endocrinol. 2006, 20, 2444–2455. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; Igarashi, K.; Engel, J.D.; Yamamoto, M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999, 13, 76–86. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Itoh, K.; Yamamoto, M.; Hayes, J.D. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J. Biol. Chem. 2003, 278, 21592–21600. [Google Scholar] [CrossRef]
- Jin, S.; Wang, T.T.; Huang, J.C.; Wang, Y.S.; Guo, B.; Yue, Z.P. Melatonin modulates endometrial decidualization via NOTCH1-NRF2-FOXO1-GSH pathwaydagger. Biol. Reprod. 2023, 109, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Owusu-Ansah, E.; Song, W.; Perrimon, N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 2013, 155, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.F.; Zheng, L.W.; Yang, Z.Q.; Wang, Y.S.; Wang, T.T.; Yue, Z.P.; Guo, B. TAZ as a novel regulator of oxidative damage in decidualization via Nrf2/ARE/Foxo1 pathway. Exp. Mol. Med. 2021, 53, 1307–1318. [Google Scholar] [CrossRef]
- Irving, J.A.; Lala, P.K. Functional role of cell surface integrins on human trophoblast cell migration: Regulation by TGF-beta, IGF-II, and IGFBP-1. Exp. Cell Res. 1995, 217, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, G.S.; Lysiak, J.J.; Han, V.K.; Lala, P.K. Autocrine-paracrine regulation of human trophoblast invasiveness by insulin-like growth factor (IGF)-II and IGF-binding protein (IGFBP)-1. Exp. Cell Res. 1998, 244, 147–156. [Google Scholar] [CrossRef]
- Crossey, P.A.; Pillai, C.C.; Miell, J.P. Altered placental development and intrauterine growth restriction in IGF binding protein-1 transgenic mice. J. Clin. Investig. 2002, 110, 411–418. [Google Scholar] [CrossRef]
- Matsumoto, H.; Sakai, K.; Iwashita, M. Insulin-like growth factor binding protein-1 induces decidualization of human endometrial stromal cells via alpha5beta1 integrin. Mol. Hum. Reprod. 2008, 14, 485–489. [Google Scholar] [CrossRef]
Sample No. | Origins | Age | Time of Collection in Menstrual Cycle | Days Since Last Menstrual Period |
---|---|---|---|---|
1 | Liquid nitrogen cryopreservation endometrial tissue | 46 | Proliferative | 10 |
2 | Liquid nitrogen cryopreservation endometrial tissue | 36 | Proliferative | 9 |
3 | Liquid nitrogen cryopreservation endometrial tissue | 38 | Mid-secretory | 20 |
4 | Liquid nitrogen cryopreservation endometrial tissue | 43 | Proliferative | 8 |
5 | Liquid nitrogen cryopreservation endometrial tissue | 42 | Proliferative | 8 |
6 | Liquid nitrogen cryopreservation endometrial tissue | 44 | Early-secretory | 19 |
7 | Liquid nitrogen cryopreservation endometrial tissue | 43 | Late-secretory | 28 |
8 | Liquid nitrogen cryopreservation endometrial tissue | 40 | Proliferative | 10 |
9 | Liquid nitrogen cryopreservation endometrial tissue | 42 | Mid-secretory | 21 |
10 | Liquid nitrogen cryopreservation endometrial tissue | 42 | Mid-secretory | 21 |
11 | Liquid nitrogen cryopreservation endometrial tissue | 46 | Mid-secretory | 22 |
12 | Liquid nitrogen cryopreservation endometrial tissue | 41 | Proliferative | 8 |
13 | Liquid nitrogen cryopreservation endometrial tissue | 42 | Mid-secretory | 24 |
14 | Liquid nitrogen cryopreservation endometrial tissue | 39 | Early-secretory | 16 |
15 | Liquid nitrogen cryopreservation endometrial tissue | 39 | Proliferative | 6 |
16 | Liquid nitrogen cryopreservation endometrial tissue | 48 | Early-secretory | 17 |
17 | Liquid nitrogen cryopreservation endometrial tissue | 35 | Late-secretory | 25 |
18 | Liquid nitrogen cryopreservation endometrial tissue | 35 | Mid-secretory | 24 |
19 | Primary cultured endometrial stromal cells | 50 | Proliferative | unidentified |
20 | Primary cultured endometrial stromal cells | 45 | Mid-secretory | unidentified |
21 | Primary cultured endometrial stromal cells | 48 | Late-secretory | 28 |
22 | Primary cultured endometrial stromal cells | 50 | Mid-secretory | 20 |
23 | Primary cultured endometrial stromal cells | 44 | Late-secretory | unidentified |
24 | Primary cultured endometrial stromal cells | 43 | Early-secretory | 17 |
Gene Name | Gene Symbol | Oligonucleotide Name | Sequence |
---|---|---|---|
hypoxanthine phosphoribosyltransferase 1 | HPRT1 | 895F | 5′-CTAGTTCTGTGGCCATCTGCTTAG-3′ |
1034R | 5′-GGGAACTGATAGTCTATAGGCTCATAGTG-3′ | ||
solute carrier family 22 member 4 | SLC22A4 | 836F | 5′-ATGGGCCAGATCTCCAACTATG-3′ |
975R | 5′-TAAGCAAACAGTGGCAGCAG-3′ | ||
Prolactin | PRL | 374F | 5′-ATTCGATAAACGGTATACCCATGGC-3′ |
623R | 5′-TTGCTCCTCAATCTCTACAGCTTTG-3′ | ||
insulin-like growth factor binding protein 1 | IGFBP1 | 636F | 5′-CTATGATGGCTCGAAGGCTC-3′ |
791R | 5′-TTCTTGTTGCAGTTTGGCAG-3′ | ||
interleukin15 | IL15 | 165F | 5′-GTTCACCCCAGTTGCAAAGT-3′ |
351R | 5′-CCTCCAGTTCCTCACATTC-3′ | ||
heart and neural crest derivatives expressed 2 | HAND2 | 1479F | 5′-AGAGGAGCTGAACGA-3′ |
1552R | 5′-CGTCCGGCCTTTGGTTTTTT-3′ | ||
forkhead box O3 | FOXO3 | 1217F | 5′-TTCCGTTCACGCACCAATTC-3′ |
1289R | 5′-ACTCTGTGCTTGCCATGATG-3′ | ||
left-right determination factor 2 | LEFTY2 | 1282F | 5′-TTAGTGCTCCTGTGTGACCTTC-3′ |
1418R | 5′-ATCAGCATGCCAGCATTTCC-3′ | ||
insulin receptor | INSR | 2730F | 5′-TGCACAACGTGGTTTTCGTC-3′ |
2832R | 5′-ACATTCCCAACATCGCCAAG-3′ | ||
Decorin | DCN | 807F | 5′- ACATCCGCATTGCTGATACC-3′ |
921R | 5′- TTCAGGCTAGCTGCATCAAC-3′ | ||
forkhead box O1 | FOXO1 | 2336F | 5′-ATGTGTTGCCCAACCAAAGC-3′ |
2475R | 5′-TTGGACTGCTTCTCTCAGTTCC-3′ | ||
keratin 7 | KRT7 | 603F | 5′-AATTAACCACCGCACAGCTG-3′ |
677R | 5′-TTGCTCATGTAGGCAGCATC-3′ | ||
ectonucleoside triphosphate diphosphohydrolase 1 | ENTPD1 | 189F | 5′-ACCCAGAACAAAGCATTGCC-3′ |
306R | 5′-CGCCTGTGTCATTCTCCTTTTC-3′ | ||
5′-nucleotidase ecto | NT5E | 708F | 5′-ACTGGGACATTCGGGTTTTG-3′ |
827R | 5′-TCTTTGGAAGGTGGATTGCC-3′ | ||
major histocompatibility complex, class I, G | HLA-G | F | 5′-GAAGAGGAGACACGGAACACCA-3′ |
G | 5′-TCGCAGCCAATCATCCACTGGA-3′ | ||
leukemia inhibitory factor receptor | LIFR | 3454F | 5′-CTCCAGACTCTCCTAGATCCATAGAC-3′ |
3587R | 5′-CCACCCTCCTCCATTAGATTTAGG-3′ | ||
KLF transcription factor 4 | KLF4 | 486F | 5′-TCGGCCAATTTGGGGTTTTG-3′ |
613R | 5′-CAGGTGGCTGCCTCATTAATG-3′ | ||
SRY-box transcription factor 2 | SOX2 | 1529F | 5′-CATCACCCACAGCAAATGACAG-3′ |
1614R | 5′-AGTTTTCTTGTCGGCATCGC-3′ | ||
Nanog homeobox | NANOG | 582F | 5′-GCAGATGCAAGAACTCTCCAAC-3′ |
691R | 5′-TCGGCCAGTTGTTTTTCTGC-3′ | ||
POU class 5 homeobox 1 | POU5F1 | 592F | 5′-TCAAGTGATTCTCCTGCCTCAG-3′ |
687R | 5′-AGCTTGGCAAATTGCTCGAG-3′ | ||
progesterone receptor | PGR | 2484F | 5′-CCTTTGGAAGGGCTACGAAGT-3′ |
2593R | 5′-GAGCTCGACACAACTCCTTTTTG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, N.; Murata, H.; Ide, K.; Tanaka, M.; Mori, K.; Futani, K.; Sawachika, M.; Okada, H.; Tanaka, S. Regulatory Mechanism of Human Endometrial Stromal Cell Decidualization by Ergothioneine. Nutraceuticals 2025, 5, 16. https://doi.org/10.3390/nutraceuticals5030016
Yoshida N, Murata H, Ide K, Tanaka M, Mori K, Futani K, Sawachika M, Okada H, Tanaka S. Regulatory Mechanism of Human Endometrial Stromal Cell Decidualization by Ergothioneine. Nutraceuticals. 2025; 5(3):16. https://doi.org/10.3390/nutraceuticals5030016
Chicago/Turabian StyleYoshida, Namika, Hiromi Murata, Konomi Ide, Marika Tanaka, Kurumi Mori, Kensuke Futani, Misa Sawachika, Hidetaka Okada, and Susumu Tanaka. 2025. "Regulatory Mechanism of Human Endometrial Stromal Cell Decidualization by Ergothioneine" Nutraceuticals 5, no. 3: 16. https://doi.org/10.3390/nutraceuticals5030016
APA StyleYoshida, N., Murata, H., Ide, K., Tanaka, M., Mori, K., Futani, K., Sawachika, M., Okada, H., & Tanaka, S. (2025). Regulatory Mechanism of Human Endometrial Stromal Cell Decidualization by Ergothioneine. Nutraceuticals, 5(3), 16. https://doi.org/10.3390/nutraceuticals5030016