Vitamin D Physiology, Deficiency, Genetic Influence, and the Effects of Daily vs. Bolus Doses of Vitamin D on Overall Health: A Clinical Approach
Abstract
:1. Introduction
2. Physiology of Vitamin D
2.1. Vitamin D Absorption
2.2. Vitamin D Metabolism
2.3. Genomic and Non-Genomic Mechanisms of Vitamin D
2.4. Vitamin D Polymorphism of Clinical Relevance
3. Timing of Vitamin D Assumption and Absorption
4. Vitamin D Deficiency
The Latitude Hypothesis and Immigrants
5. Recommendations Regarding Vitamin D Supplementation and Doses
6. Daily Dose vs. Bolus
Year | Dose | Principal Effect | Outcome | Ref. |
---|---|---|---|---|
2022 | Bolus dose 100,000 IU with 10,000 IU/week | Increase in serum calcidiol levels | Positive | [74] |
2011 | Daily dose (1600 IU or once-monthly (50,000 IU) | Increase in serum calcidiol levels | - | [75] |
2008 | Daily dose (1500 IU), weekly bolus dose (10,500 IU), or monthly bolus dose (45,000 IU) | Increase in serum calcidiol levels | - | [76] |
2017 | Daily dose (1000 IU), weekly dose (7000 IU), or monthly dose (30,000 IU) | Increase in serum calcidiol levels | - | [77] |
2020 | Daily dose, weekly dose, or bi-weekly dose | Increase in serum vitamin D levels | - | [78] |
2017 | Daily dose | Increase and maintenance of serum 25(OH)D levels | Positive | [79] |
2019 | Bolus dose | No reduction in total cancer mortality | Negative | [80] |
2022 | Daily dose | Reduction in total cancer mortality | Positive | [81] |
2022 | Bolus dose | No improvement in COVID-19 outcomes | - | [82] |
2018 | Daily dose or bolus dose | Increase in 25(OH)D3 levels and less diversion to 24,24(OH)2D3 | - | [83] |
2021 | Bolus dose | Downregulation of 1,25(OH)2D levels | - | [5] |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nair, R.; Maseeh, A. Vitamin D: The “sunshine” vitamin. J. Pharmacol. Pharmacother. 2012, 3, 118–126. [Google Scholar] [PubMed]
- Malaguarnera, L. Vitamin D and microbiota: Two sides of the same coin in the immunomodulatory aspects. Int. Immunopharmacol. 2020, 79, 106112. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, F.; Saba, A.; Zucchi, R. An update on vitamin D metabolism. Int. J. Mol. Sci. 2020, 21, 6573. [Google Scholar] [CrossRef]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Mazess, R.B.; Bischoff-Ferrari, H.A.; Dawson-Hughes, B. Vitamin D: Bolus is bogus—A narrative review. JBMR Plus 2021, 5, e10567. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Kinsella, M.; McNulty, B.A.; Walton, J.; Gibney, M.J.; Flynn, A.; Kiely, M. Dietary vitamin D2–a potentially underestimated contributor to vitamin D nutritional status of adults? Br. J. Nutr. 2014, 112, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurya, V.K.; Aggarwal, M. Factors influencing the absorption of vitamin D in GIT: An overview. J. Food Sci. Technol. 2017, 54, 3753–3765. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Harris, S.S.; Lichtenstein, A.H.; Dolnikowski, G.; Palermo, N.J.; Rasmussen, H. Dietary fat increases vitamin D-3 absorption. J. Acad. Nutr. Diet. 2015, 115, 225–230. [Google Scholar] [CrossRef]
- Goncalves, A.; Roi, S.; Nowicki, M.; Dhaussy, A.; Huertas, A.; Amiot, M.-J.; Reboul, E. Fat-soluble vitamin intestinal absorption: Absorption sites in the intestine and interactions for absorption. Food Chem. 2015, 172, 155–160. [Google Scholar] [CrossRef]
- Reboul, E. Intestinal absorption of vitamin D: From the meal to the enterocyte. Food Funct. 2015, 6, 356–362. [Google Scholar] [CrossRef]
- Christakos, S.; Ajibade, D.V.; Dhawan, P.; Fechner, A.J.; Mady, L.J. Vitamin D: Metabolism. Rheum. Dis. Clin. 2012, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D.; Schwartz, J. Vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiological conditions. Front. Endocrinol. 2019, 10, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Schoor, N.; Lips, P. Worldwide vitamin D status. Vitam. D 2018, 25, 671–680. [Google Scholar] [CrossRef]
- Jukic, A.M.Z.; Hoofnagle, A.N.; Lutsey, P.L. Measurement of vitamin D for epidemiologic and clinical research: Shining light on a complex decision. Am. J. Epidemiol. 2018, 187, 879–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouillon, R.; Schuit, F.; Antonio, L.; Rastinejad, F. Vitamin D binding protein: A historic overview. Front. Endocrinol. 2020, 10, 910. [Google Scholar] [CrossRef]
- Shieh, A.; Ma, C.; Chun, R.F.; Witzel, S.; Rafison, B.; Contreras, H.T.; Wittwer-Schegg, J.; Swinkels, L.; Huijs, T.; Hewison, M. Effects of cholecalciferol vs calcifediol on total and free 25-hydroxyvitamin D and parathyroid hormone. J. Clin. Endocrinol. Metab. 2017, 102, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.; Gibson, S.; De La Hunty, A.; Lamberg-Allardt, C.; Ashwell, M. Measurement of 25-hydroxyvitamin D in the clinical laboratory: Current procedures, performance characteristics and limitations. Steroids 2010, 75, 477–488. [Google Scholar] [CrossRef]
- Haussler, M.R.; Jurutka, P.W.; Mizwicki, M.; Norman, A.W. Vitamin D receptor (VDR)-mediated actions of 1α, 25 (OH) 2vitamin D3: Genomic and non-genomic mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 543–559. [Google Scholar] [CrossRef] [PubMed]
- Hii, C.S.; Ferrante, A. The non-genomic actions of vitamin D. Nutrients 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Slominski, A.T.; Li, W.; Kim, T.-K.; Semak, I.; Wang, J.; Zjawiony, J.K.; Tuckey, R.C. Novel activities of CYP11A1 and their potential physiological significance. J. Steroid Biochem. Mol. Biol. 2015, 151, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Henry, H.L. Regulation of vitamin D metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Abdollahzadeh, R.; Shushizadeh, M.H.; Barazandehrokh, M.; Choopani, S.; Azarnezhad, A.; Paknahad, S.; Pirhoushiaran, M.; Makani, S.Z.; Yeganeh, R.Z.; Al-Kateb, A. Association of Vitamin D receptor gene polymorphisms and clinical/severe outcomes of COVID-19 patients. Infect. Genet. Evol. 2021, 96, 105098. [Google Scholar] [CrossRef] [PubMed]
- Gnagnarella, P.; Raimondi, S.; Aristarco, V.; Johansson, H.A.; Bellerba, F.; Corso, F.; Gandini, S. Vitamin D receptor polymorphisms and cancer. In Sunlight, Vitamin D and Skin Cancer; Springer: New York, NY, USA, 2020; pp. 53–114. [Google Scholar]
- Bizzaro, G.; Antico, A.; Fortunato, A.; Bizzaro, N. Vitamin D and autoimmune diseases: Is vitamin D receptor (VDR) polymorphism the culprit? Isr. Med. Assoc. J. 2017, 9, 18. [Google Scholar]
- Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, 10, e1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usategui-Martín, R.; Luis-Román, D.; Fernández-Gómez, J.M.; Ruiz-Mambrilla, M.; Pérez-Castrillón, J.-L. Vitamin D receptor (VDR) gene polymorphisms modify the response to vitamin D supplementation: A systematic review and meta-analysis. Nutrients 2022, 14, 360. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ballesteros, A.I.; Meza-Meza, M.R.; Vizmanos-Lamotte, B.; Parra-Rojas, I.; de la Cruz-Mosso, U. Association of vitamin D metabolism gene polymorphisms with autoimmunity: Evidence in population genetic studies. Int. J. Mol. Sci. 2020, 21, 9626. [Google Scholar] [CrossRef]
- Lafi, Z.M.; Irshaid, Y.M.; El-Khateeb, M.; Ajlouni, K.M.; Hyassat, D. Association of rs7041 and rs4588 polymorphisms of the vitamin D binding protein and the rs10741657 polymorphism of CYP2R1 with vitamin D status among Jordanian patients. Genet. Test. Mol. Biomark. 2015, 19, 629–636. [Google Scholar] [CrossRef]
- Rozmus, D.; Ciesielska, A.; Płomiński, J.; Grzybowski, R.; Fiedorowicz, E.; Kordulewska, N.; Savelkoul, H.; Kostyra, E.; Cieślińska, A. Vitamin D binding protein (VDBP) and its gene polymorphisms—The risk of malignant tumors and other diseases. Int. J. Mol. Sci. 2020, 21, 7822. [Google Scholar] [CrossRef]
- Hussein, A.G.; Mohamed, R.H.; Alghobashy, A.A. Synergism of CYP2R1 and CYP27B1 polymorphisms and susceptibility to type 1 diabetes in Egyptian children. Cell. Immunol. 2012, 279, 42–45. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Z.; Liu, J.; Hu, P.; Liu, Z. Association study between genetic variants in vitamin D metabolism related genes and childhood autism spectrum disorder. Metab. Brain Dis. 2020, 35, 971–978. [Google Scholar] [CrossRef]
- Allegra, S.; Cusato, J.; De Francia, S.; Arduino, A.; Longo, F.; Pirro, E.; Massano, D.; De Nicolò, A.; Piga, A.; D’avolio, A. Role of CYP24A1, VDR and GC gene polymorphisms on deferasirox pharmacokinetics and clinical outcomes. Pharmacogenomics J. 2018, 18, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, G.B.; Licata, A. Taking vitamin D with the largest meal improves absorption and results in higher serum levels of 25-hydroxyvitamin D. J. Bone Miner. Res. 2010, 25, 928–930. [Google Scholar] [CrossRef]
- US Department of Agriculture. A.R.S. Food Data Central External Link Disclaimer; U.S. Department of Agriculture, Agricultural Research Service. FoodData Central: Washington, D.C, USA, 2019. Available online: fdc.nal.usda.gov (accessed on 15 May 2023).
- Food and Drug Administration, HHS. Food labeling: Revision of the nutrition and supplement facts labels. Final rule. Fed. Regist. 2016, 81, 33741–33999. [Google Scholar]
- Vitamin, D. Fact Sheet for Health Professionals; Office of Dietary Supplements, National Institutes of Health: Bethesda, MD, USA, 2017. Available online: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional (accessed on 15 May 2023).
- Black, L.J.; Walton, J.; Flynn, A.; Kiely, M. Adequacy of vitamin D intakes in children and teenagers from the base diet, fortified foods and supplements. Public Health Nutr. 2014, 17, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Vieth, R. Vitamin D supplementation: Cholecalciferol, calcifediol, and calcitriol. Eur. J. Clin. Nutr. 2020, 74, 1493–1497. [Google Scholar] [CrossRef]
- Han, B.; Zhu, F.-X.; Shi, C.; Wu, H.-L.; Gu, X.-H. Association between serum vitamin D levels and sleep disturbance in hemodialysis patients. Nutrients 2017, 9, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, Y.S.; Chae, C.H.; Kim, Y.O.; Son, J.S.; Kim, C.W.; Park, H.O.; Lee, J.H.; Shin, Y.H.; Kwak, H.S. The relationship between serum vitamin D levels and sleep quality in fixed day indoor field workers in the electronics manufacturing industry in Korea. Ann. Occup. Environ. Med. 2017, 29, 25. [Google Scholar] [CrossRef] [PubMed]
- Bertisch, S.M.; Sillau, S.; De Boer, I.H.; Szklo, M.; Redline, S. 25-Hydroxyvitamin D concentration and sleep duration and continuity: Multi-ethnic study of atherosclerosis. Sleep 2015, 38, 1305–1311. [Google Scholar] [CrossRef] [Green Version]
- Golan, D.; Staun-Ram, E.; Glass-Marmor, L.; Lavi, I.; Rozenberg, O.; Dishon, S.; Barak, M.; Ish-Shalom, S.; Miller, A. The influence of vitamin D supplementation on melatonin status in patients with multiple sclerosis. Brain Behav. Immun. 2013, 32, 180–185. [Google Scholar] [CrossRef]
- Mason, C.; de Dieu Tapsoba, J.; Duggan, C.; Wang, C.-Y.; Korde, L.; McTiernan, A. Repletion of vitamin D associated with deterioration of sleep quality among postmenopausal women. Prev. Med. 2016, 93, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Kou, T.; Zhuang, B.; Ren, Y.; Dong, X.; Wang, Q. The association between vitamin D deficiency and sleep disorders: A systematic review and meta-analysis. Nutrients 2018, 10, 1395. [Google Scholar] [CrossRef] [Green Version]
- Romano, F.; Muscogiuri, G.; Di Benedetto, E.; Zhukouskaya, V.V.; Barrea, L.; Savastano, S.; Colao, A.; Di Somma, C. Vitamin D and sleep regulation: Is there a role for vitamin D? Curr. Pharm. Des. 2020, 26, 2492–2496. [Google Scholar] [CrossRef]
- Pludowski, P.; Holick, M.F.; Grant, W.B.; Konstantynowicz, J.; Mascarenhas, M.R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A.P.; Karonova, T. Vitamin D supplementation guidelines. J. Steroid Biochem. Mol. Biol. 2018, 175, 125–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, S.H.; Cheetham, T.D. Diagnosis and management of vitamin D deficiency. BMJ 2010, 340, b5664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zgaga, L. Plasma vitamin D concentration influences survival outcome after a diagnosis of colorectal cancer. J. Clin. Oncol. 2014, 32, 2430–2439. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.J.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; Kovacs, C.S. IOM committee members respond to Endocrine Society vitamin D guideline. J. Clin. Endocrinol. Metab. 2012, 97, 1146–1152. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zittermann, A.; Iodice, S.; Pilz, S.; Grant, W.B.; Bagnardi, V.; Gandini, S. Vitamin D deficiency and mortality risk in the general population: A meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2012, 95, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Heaney, R.P. Assessing vitamin D status. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 440–444. [Google Scholar] [CrossRef]
- Ford, E.S.; Zhao, G.; Tsai, J.; Li, C. Vitamin D and all-cause mortality among adults in USA: Findings from the National Health and Nutrition Examination Survey Linked Mortality Study. Int. J. Epidemiol. 2011, 40, 998–1005. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, R.; Kunutsor, S.; Vitezova, A.; Oliver-Williams, C.; Chowdhury, S.; Kiefte-de-Jong, J.C.; Khan, H.; Baena, C.P.; Prabhakaran, D.; Hoshen, M.B. Vitamin D and risk of cause specific death: Systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ 2014, 348, g1903. [Google Scholar] [CrossRef] [Green Version]
- Borsche, L.; Glauner, B.; von Mendel, J. COVID-19 mortality risk correlates inversely with vitamin D3 status, and a mortality rate close to zero could theoretically be achieved at 50 ng/mL 25 (OH) D3: Results of a systematic review and meta-analysis. Nutrients 2021, 13, 3596. [Google Scholar] [CrossRef]
- Göring, H.; Koshuchowa, S. Vitamin D deficiency in Europeans today and in Viking settlers of Greenland. Biochemistry 2016, 81, 1492–1497. [Google Scholar] [CrossRef] [PubMed]
- Young, A.R.; Morgan, K.A.; Ho, T.-W.; Ojimba, N.; Harrison, G.I.; Lawrence, K.P.; Jakharia-Shah, N.; Wulf, H.C.; Cruickshank, J.K.; Philipsen, P.A. Melanin has a small inhibitory effect on cutaneous vitamin D synthesis: A comparison of extreme phenotypes. J. Investig. Dermatol. 2020, 140, 1418–1426.e1411. [Google Scholar] [CrossRef]
- Lips, P.; de Jongh, R.T. Vitamin D deficiency in immigrants. Bone Rep. 2018, 9, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Farrokhyar, F.; Tabasinejad, R.; Dao, D.; Peterson, D.; Ayeni, O.R.; Hadioonzadeh, R.; Bhandari, M. Prevalence of vitamin D inadequacy in athletes: A systematic-review and meta-analysis. Sports Med. 2015, 45, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R. Comparative analysis of nutritional guidelines for vitamin D. Nat. Rev. Endocrinol. 2017, 13, 466–479. [Google Scholar] [CrossRef]
- Ramasamy, I. Vitamin D metabolism and guidelines for vitamin D supplementation. Clin. Biochem. Rev. 2020, 41, 103. [Google Scholar] [CrossRef] [PubMed]
- Perrine, C.G.; Sharma, A.J.; Jefferds, M.E.D.; Serdula, M.K.; Scanlon, K.S. Adherence to vitamin D recommendations among US infants. Pediatrics 2010, 125, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Rusińska, A.; Płudowski, P.; Walczak, M.; Borszewska-Kornacka, M.K.; Bossowski, A.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dobrzańska, A.; Franek, E.; Helwich, E. Vitamin D supplementation guidelines for general population and groups at risk of vitamin D deficiency in Poland—Recommendations of the polish Society of Pediatric Endocrinology and Diabetes and the expert panel with participation of national specialist consultants and representatives of scientific societies—2018 update. Front. Endocrinol. 2018, 9, 246. [Google Scholar]
- Razzaque, M.S. Can adverse effects of excessive vitamin D supplementation occur without developing hypervitaminosis D? J. Steroid Biochem. Mol. Biol. 2018, 180, 81–86. [Google Scholar] [CrossRef]
- Capozzi, A.; Scambia, G.; Lello, S. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas 2020, 140, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Bjørklund, G.; Peana, M.; Mujawdiya, P.K.; Pivina, L.; Ongenae, A.; Piscopo, S.; Severin, B. Phosphocalcic metabolism and the role of vitamin D, vitamin K2, and nattokinase supplementation. Crit. Rev. Food Sci. Nutr. 2022, 62, 7062–7071. [Google Scholar] [CrossRef] [PubMed]
- Hupperts, R.; Smolders, J.; Vieth, R.; Holmøy, T.; Marhardt, K.; Schluep, M.; Killestein, J.; Barkhof, F.; Beelke, M.; Grimaldi, L.M. Randomized trial of daily high-dose vitamin D3 in patients with RRMS receiving subcutaneous interferon β-1a. Neurology 2019, 93, e1906–e1916. [Google Scholar] [CrossRef] [Green Version]
- Chandler, P.D.; Chen, W.Y.; Ajala, O.N.; Hazra, A.; Cook, N.; Bubes, V.; Lee, I.-M.; Giovannucci, E.L.; Willett, W.; Buring, J.E. Effect of vitamin D3 supplements on development of advanced cancer: A secondary analysis of the VITAL randomized clinical trial. JAMA Netw. Open 2020, 3, e2025850. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Bassuk, S.S.; Buring, J.E.; Group, V.R. Principal results of the VITamin D and OmegA-3 TriaL (VITAL) and updated meta-analyses of relevant vitamin D trials. J. Steroid Biochem. Mol. Biol. 2020, 198, 105522. [Google Scholar] [CrossRef]
- Gallagher, J.C. Vitamin D and falls—The dosage conundrum. Nat. Rev. Endocrinol. 2016, 12, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Martineau, A.R.; MacLaughlin, B.D.; Hooper, R.L.; Barnes, N.C.; Jolliffe, D.A.; Greiller, C.L.; Kilpin, K.; McLaughlin, D.; Fletcher, G.; Mein, C.A. Double-blind randomised placebo-controlled trial of bolus-dose vitamin D3 supplementation in adults with asthma (ViDiAs). Thorax 2015, 70, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Camargo, C.A., Jr.; Reid, I.R.; Beros, A.; Sluyter, J.D.; Waayer, D.; Lawes, C.M.; Toop, L.; Khaw, K.-T.; Scragg, R. What factors modify the effect of monthly bolus dose vitamin D supplementation on 25-hydroxyvitamin D concentrations? J. Steroid Biochem. Mol. Biol. 2020, 201, 105687. [Google Scholar] [CrossRef]
- Dalle Carbonare, L.; Valenti, M.T.; Del Forno, F.; Caneva, E.; Pietrobelli, A. Vitamin D: Daily vs. monthly use in children and elderly—What is going on? Nutrients 2017, 9, 652. [Google Scholar]
- Hosseini, B.; Tremblay, C.L.; Longo, C.; Glochi, S.; White, J.H.; Quach, C.; Ste-Marie, L.-G.; Platt, R.W.; Ducharme, F.M. Oral vitamin D supplemental therapy to attain a desired serum 25-hydroxyvitamin D concentration in essential healthcare teams. Trials 2022, 23, 1019. [Google Scholar] [CrossRef] [PubMed]
- Binkley, N.; Gemar, D.; Engelke, J.; Gangnon, R.; Ramamurthy, R.; Krueger, D.; Drezner, M. Evaluation of ergocalciferol or cholecalciferol dosing, 1,600 IU daily or 50,000 IU monthly in older adults. J. Clin. Endocrinol. Metab. 2011, 96, 981–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ish-Shalom, S.; Segal, E.; Salganik, T.; Raz, B.; Bromberg, I.L.; Vieth, R. Comparison of daily, weekly, and monthly vitamin D3 in ethanol dosing protocols for two months in elderly hip fracture patients. J. Clin. Endocrinol. Metab. 2008, 93, 3430–3435. [Google Scholar] [CrossRef] [Green Version]
- Takács, I.; Tóth, B.E.; Szekeres, L.; Szabó, B.; Bakos, B.; Lakatos, P. Randomized clinical trial to comparing efficacy of daily, weekly and monthly administration of vitamin D 3. Endocrine 2017, 55, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Fassio, A.; Adami, G.; Rossini, M.; Giollo, A.; Caimmi, C.; Bixio, R.; Viapiana, O.; Milleri, S.; Gatti, M.; Gatti, D. Pharmacokinetics of oral cholecalciferol in healthy subjects with vitamin D deficiency: A randomized open-label study. Nutrients 2020, 12, 1553. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ 2017, 356, i6583. [Google Scholar] [CrossRef] [Green Version]
- Keum, N.; Lee, D.; Greenwood, D.; Manson, J.; Giovannucci, E. Vitamin D supplementation and total cancer incidence and mortality: A meta-analysis of randomized controlled trials. Ann. Oncol. 2019, 30, 733–743. [Google Scholar] [CrossRef]
- Keum, N.; Chen, Q.; Lee, D.; Manson, J.; Giovannucci, E. Vitamin D supplementation and total cancer incidence and mortality by daily vs. infrequent large-bolus dosing strategies: A meta-analysis of randomised controlled trials. Br. J. Cancer 2022, 127, 872–878. [Google Scholar] [CrossRef]
- Cannata-Andía, J.B.; Díaz-Sottolano, A.; Fernández, P.; Palomo-Antequera, C.; Herrero-Puente, P.; Mouzo, R.; Carrillo-López, N.; Panizo, S.; Ibañez, G.H.; Cusumano, C.A. A single-oral bolus of 100,000 IU of cholecalciferol at hospital admission did not improve outcomes in the COVID-19 disease: The COVID-VIT-D—A randomised multicentre international clinical trial. BMC Med. 2022, 20, 83. [Google Scholar] [CrossRef]
- Ketha, H.; Thacher, T.D.; Oberhelman, S.S.; Fischer, P.R.; Singh, R.J.; Kumar, R. Comparison of the effect of daily versus bolus dose maternal vitamin D3 supplementation on the 24, 25-dihydroxyvitamin D3 to 25-hydroxyvitamin D3 ratio. Bone 2018, 110, 321–325. [Google Scholar] [CrossRef]
- Hewison, M. Vitamin D and the immune system: New perspectives on an old theme. Rheum. Dis. Clin. 2012, 38, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Hollis, B.W.; Wagner, C.L. The role of the parent compound vitamin D with respect to metabolism and function: Why clinical dose intervals can affect clinical outcomes. J. Clin. Endocrinol. Metab. 2013, 98, 4619–4628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dietary Sources | Serving | Micrograms (mcg) per Serving | International Unit (U.I.) | % Daily Value (DV) |
---|---|---|---|---|
Cod liver oil | 1 tablespoon | 34.0 | 1360 | 170 |
Trout (rainbow), farmed, cooked | 3 ounces | 16.2 | 645 | 81 |
Salmon (sockeye), cooked | 3 ounces | 14.2 | 570 | 71 |
Milk, 2% milkfat, vitamin D fortified | 1 cup | 2.9 | 120 | 15 |
Soy, almond, and oat milks, vitamin D fortified | 1 cup | 2.5–3.6 | 100–144 | 13–18 |
Sardines (Atlantic), canned in oil, drained | 2 sardines | 1.2 | 46 | 6 |
Egg ** | 1 large | 1.1 | 44 | 6 |
Liver, beef, braised | 3 ounces | 1.0 | 42 | 5 |
Tuna fish (light), canned in water, drained | 3 ounces | 1.0 | 40 | 5 |
Cheese, cheddar | 1.5 ounce | 0.4 | 17 | 2 |
Chicken breast, roasted | 3 ounces | 0.1 | 4 | 1 |
Optimal Plasma Level to Achieve (25OHD3) | Recommend Daily Dietary Intake with 25OHD3 > 30 ng/mL | Recommend Daily Dose with 20 ng/mL < 25OHD3 < 30 ng/mL | Recommend Daily Dose with 10 ng/mL < 25OHD3 < 20 ng/mL | Recommend Daily Dose with 25OHD3 < 10 ng/mL | |
---|---|---|---|---|---|
Pregnancy and breastfeeding | 30–50 ng/mL (75–125 nmol/L). | 800 U.I. | 1000–2000 U.I. | 1000–2000 U.I. | 4000 U.I. |
Preterm infants | 400 U.I. | 400 U.I. | 600 U.I. | 1000 U.I. | |
Infants 0–2 | 400 U.I. | 400–600 U.I. | 800 U.I. | 1000 U.I. | |
Children 3–6 | 400 U.I. | 600–800 U.I. | 1000 U.I. | 2000 U.I. | |
Children 7–10 | 600 U.I. | 800–1000 U.I. | 1000 U.I. | 4000 U.I. | |
Adolescents 11–18 | 600 U.I. | 800–2000 U.I. | 2000 U.I. | 4000 U.I. | |
Adults 19–65 | 600 U.I. | 800–2000 U.I. | 2000 U.I. | 4000 U.I. | |
Seniors 66–75 | 800 U.I. | 800–2000 U.I. | 2000 U.I. | 4000 U.I. | |
Elderly >75 | 800 U.I. | 2000–4000 U.I. | 4000 U.I. | 8000 U.I. | |
Double the dose in obese individuals | Until optimal plasma levels are achieved | Until optimal plasma levels are achieved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorrenti, V.; Buriani, A.; Davinelli, S.; Scapagnini, G.; Fortinguerra, S. Vitamin D Physiology, Deficiency, Genetic Influence, and the Effects of Daily vs. Bolus Doses of Vitamin D on Overall Health: A Clinical Approach. Nutraceuticals 2023, 3, 403-420. https://doi.org/10.3390/nutraceuticals3030030
Sorrenti V, Buriani A, Davinelli S, Scapagnini G, Fortinguerra S. Vitamin D Physiology, Deficiency, Genetic Influence, and the Effects of Daily vs. Bolus Doses of Vitamin D on Overall Health: A Clinical Approach. Nutraceuticals. 2023; 3(3):403-420. https://doi.org/10.3390/nutraceuticals3030030
Chicago/Turabian StyleSorrenti, Vincenzo, Alessandro Buriani, Sergio Davinelli, Giovanni Scapagnini, and Stefano Fortinguerra. 2023. "Vitamin D Physiology, Deficiency, Genetic Influence, and the Effects of Daily vs. Bolus Doses of Vitamin D on Overall Health: A Clinical Approach" Nutraceuticals 3, no. 3: 403-420. https://doi.org/10.3390/nutraceuticals3030030
APA StyleSorrenti, V., Buriani, A., Davinelli, S., Scapagnini, G., & Fortinguerra, S. (2023). Vitamin D Physiology, Deficiency, Genetic Influence, and the Effects of Daily vs. Bolus Doses of Vitamin D on Overall Health: A Clinical Approach. Nutraceuticals, 3(3), 403-420. https://doi.org/10.3390/nutraceuticals3030030