Design and Development of Novel Nutraceuticals: Current Trends and Methodologies
Abstract
:1. Introduction
2. Review Methodology
3. Current Knowledge in the Field of Nutraceuticals
3.1. Nutraceuticals: Definition and Introduction
3.2. Nutraceuticals Classification
3.3. Regulatory Framework and Official Guidelines
4. Novel Approaches in Nutraceuticals’ Discovery
4.1. Natural Products (NPs) Databases (Chemo-Libraries)
- Virtual Natural Product Libraries
- Physical Natural Product Libraries
4.2. Virtual Screening (VS) Techniques
- Quantitative Structure-Activity Relationship (QSAR)
- Molecular Docking
- Pharmacophore Modeling
- Molecular Dynamics Simulations (MD simulation)
- Applications of in Silico Screening Techniques in the Field of Nutraceuticals
5. Nanotechnology: A Powerful Toolbox in the Field of Nutraceuticals
5.1. Health Effects and Limitations of Nanonutraceuticals
5.2. The Latest Updates Regarding Nanonutraceuticals Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dikmen, B.Y.; Filazi, A. Chapter 69—Nutraceuticals: Turkish Perspective. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 971–981. [Google Scholar]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New Concepts in Nutraceuticals as Alternative for Pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar] [PubMed]
- Chopra, A.S.; Lordan, R.; Horbańczuk, O.K.; Atanasov, A.G.; Chopra, I.; Horbańczuk, J.O.; Jóźwik, A.; Huang, L.; Pirgozliev, V.; Banach, M.; et al. The Current Use and Evolving Landscape of Nutraceuticals. Pharmacol. Res. 2022, 175, 106001. [Google Scholar] [CrossRef] [PubMed]
- BCC Research. Nutraceuticals Market Size, Share & Growth Analysis Report. Available online: https://www.bccresearch.com/market-research/food-and-beverage/nutraceuticals-global-markets.html (accessed on 13 March 2022).
- Mordor Intelligence. Global Nutraceuticals Market Size, Share, Trends, Growth (2022–27). Available online: https://www.mordorintelligence.com/industry-reports/global-nutraceuticals-market-industry (accessed on 13 March 2022).
- Daliu, P.; Santini, A.; Novellino, E. A Decade of Nutraceutical Patents: Where Are We Now in 2018? Expert Opin. Ther. Patents 2018, 28, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Pérez, K.M.; Ruiz-Pulido, G.; Medina, D.I.; Parra-Saldivar, R.; Iqbal, H.M. Insight of Nanotechnological Processing for Nano-Fortified Functional Foods and Nutraceutical—Opportunities, Challenges, and Future Scope in Food for Better Health. Crit. Rev. Food Sci. Nutr. 2021, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Paolino, D.; Mancuso, A.; Cristiano, M.C.; Froiio, F.; Lammari, N.; Celia, C.; Fresta, M. Nanonutraceuticals: The New Frontier of Supplementary Food. Nanomaterials 2021, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Daliu, P.; Santini, A.; Novellino, E. From Pharmaceuticals to Nutraceuticals: Bridging Disease Prevention and Management. Expert Rev. Clin. Pharmacol. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Hesari, M.; Mohammadi, P.; Khademi, F.; Shackebaei, D.; Momtaz, S.; Moasefi, N.; Farzaei, M.H.; Abdollahi, M. Current Advances in the Use of Nanophytomedicine Therapies for Human Cardiovascular Diseases. Int. J. Nanomed. 2021, 16, 3293–3315. [Google Scholar] [CrossRef]
- Murugan, N.A.; Podobas, A.; Gadioli, D.; Vitali, E.; Palermo, G.; Markidis, S. A Review on Parallel Virtual Screening Softwares for High-Performance Computers. Pharmaceuticals 2022, 15, 63. [Google Scholar] [CrossRef]
- Suay-García, B.; Bueso-Bordils, J.I.; Falcó, A.; Antón-Fos, G.M.; Alemán-López, P.A. Virtual Combinatorial Chemistry and Pharmacological Screening: A Short Guide to Drug Design. Int. J. Mol. Sci. 2022, 23, 1620. [Google Scholar] [CrossRef]
- Haga, J.H.; Ichikawa, K.; Date, S. Virtual Screening Techniques and Current Computational Infrastructures. Curr. Pharm. Des. 2016, 22, 3576–3584. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, A.K.; Gupta, A.; Pandey, A.K. In-Silico Approaches to Study Therapeutic Efficacy of Nutraceuticals. In Phytochemistry: An In-Silico and In-Vitro Update: Advances in Phytochemical Research; Kumar, S., Egbuna, C., Eds.; Springer: Singapore, 2019; pp. 479–490. [Google Scholar]
- Andlauer, W.; Fürst, P. Nutraceuticals: A Piece of History, Present Status and Outlook. Food Res. Int. 2002, 35, 171–176. [Google Scholar] [CrossRef]
- De Felice, S.L. The Nutraceutical Revolution: Its Impact on Food Industry R&D. Trends Food Sci. Technol. 1995, 6, 59–61. [Google Scholar] [CrossRef]
- Pandey, M.; Verma, R.; Saraf, S. Nutraceuticals: New Era of Medicine and Health. Asian J. Pharm. Clin. Res. 2010, 3, 2010. [Google Scholar]
- Andrew, R.; Izzo, A.A. Principles of Pharmacological Research of Nutraceuticals. Br. J. Pharmacol. 2017, 174, 1177–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronson, J.K. Defining “Nutraceuticals”: Neither Nutritious nor Pharmaceutical. Br. J. Clin. Pharmacol. 2017, 83, 8–19. [Google Scholar] [CrossRef]
- Ansari, S.; Chauhan, B.; Kalam, N.; Kumar, G. Current Concepts and Prospects of Herbal Nutraceutical: A Review. J. Adv. Pharm. Technol. Res. 2013, 4, 4–8. [Google Scholar] [CrossRef]
- De, S.; Gopikrishna, A.; Keerthana, V.; Girigoswami, A.; Girigoswami, K. An Overview of Nanoformulated Nutraceuticals and Their Therapeutic Approaches. Curr. Nutr. Food Sci. 2021, 17, 392–407. [Google Scholar] [CrossRef]
- Blaze, J. A Comparison of Current Regulatory Frameworks for Nutraceuticals in Australia, Canada, Japan, and the United States. Innov. Pharm. 2021, 12, 8. [Google Scholar] [CrossRef]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the Debate for a Regulatory Framework: Nutraceutical Regulatory Framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Lagunin, A.A.; Goel, R.K.; Gawande, D.Y.; Pahwa, P.; Gloriozova, T.A.; Dmitriev, A.V.; Ivanov, S.M.; Rudik, A.V.; Konova, V.I.; Pogodin, P.V.; et al. Chemo- and Bioinformatics Resources for in Silico Drug Discovery from Medicinal Plants beyond Their Traditional Use: A Critical Review. Nat. Prod. Rep. 2014, 31, 1585–1611. [Google Scholar] [CrossRef]
- Global Natural & Organic Personal Care Market 2018–2026: Growth Trends, Key Players and Competitive Strategies. Available online: https://www.prnewswire.com/news-releases/global-natural--organic-personal-care-market-2018-2026-growth-trends-key-players-and-competitive-strategies-300675255.html (accessed on 13 March 2022).
- Chen, Y.; de Bruyn Kops, C.; Kirchmair, J. Data Resources for the Computer-Guided Discovery of Bioactive Natural Products. J. Chem. Inf. Model. 2017, 57, 2099–2111. [Google Scholar] [CrossRef] [PubMed]
- Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT Online: Collection of Open Natural Products Database. J. Cheminform. 2021, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- van Santen, J.A.; Jacob, G.; Singh, A.L.; Aniebok, V.; Balunas, M.J.; Bunsko, D.; Neto, F.C.; Castaño-Espriu, L.; Chang, C.; Clark, T.N.; et al. The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Cent. Sci. 2019, 5, 1824–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naveja, J.J.; Rico-Hidalgo, M.P.; Medina-Franco, J.L. Analysis of a Large Food Chemical Database: Chemical Space, Diversity, and Complexity. F1000Research 2018, 7, 993. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, P.; Wang, Y.; Qin, C.; Chen, S.; He, W.; Tao, L.; Tan, Y.; Gao, D.; Wang, B.; et al. CMAUP: A Database of Collective Molecular Activities of Useful Plants. Nucleic Acids Res. 2019, 47, D1118–D1127. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, A.; Naughton, L.M.; Montánchez, I.; Dobson, A.D.W.; Rai, D.K. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Mar. Drugs 2017, 15, 272. [Google Scholar] [CrossRef]
- Pradhan, B.; Nayak, R.; Patra, S.; Jit, B.P.; Ragusa, A.; Jena, M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2021, 26, 37. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Pati, S.; Kari, Z.A.; Edinur, H.A.; Chakraborty, R. Novel Bioactive Compounds From Marine Sources as a Tool for Functional Food Development. Front. Mar. Sci. 2022, 9, 832957. [Google Scholar] [CrossRef]
- Khanam, S.; Prakash, A. Biomedical Applications and Therapeutic Potential of Marine Natural Products and Marine Algae. IP J. Nutr. Metab. Health Sci. 2021, 4, 76–82. [Google Scholar] [CrossRef]
- Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A Comprehensive Marine Natural Products Database towards Facilitating Drug Discovery from the Ocean. Nucleic Acids Res. 2021, 49, D509–D515. [Google Scholar] [CrossRef]
- Diallo, B.N.; Glenister, M.; Musyoka, T.M.; Lobb, K.; Tastan Bishop, Ö. SANCDB: An Update on South African Natural Compounds and Their Readily Available Analogs. J. Cheminform. 2021, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Pilon, A.C.; Valli, M.; Dametto, A.C.; Pinto, M.E.F.; Freire, R.T.; Castro-Gamboa, I.; Andricopulo, A.D.; Bolzani, V.S. NuBBEDB: An Updated Database to Uncover Chemical and Biological Information from Brazilian Biodiversity. Sci. Rep. 2017, 7, 7215. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.W.; Lin, Y.C.; Chang, H.S.; Wang, C.C.; Chen, I.S.; Jheng, J.L.; Li, J.H. TIPdb-3D: The Three-Dimensional Structure Database of Phytochemicals from Taiwan Indigenous Plants. Database 2014, 2014, bau055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.Y.C. TCM Database@Taiwan: The World’s Largest Traditional Chinese Medicine Database for Drug Screening In Silico. PLoS ONE 2011, 6, e15939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degtyarenko, K.; de Matos, P.; Ennis, M.; Hastings, J.; Zbinden, M.; McNaught, A.; Alcántara, R.; Darsow, M.; Guedj, M.; Ashburner, M. ChEBI: A Database and Ontology for Chemical Entities of Biological Interest. Nucleic Acids Res. 2008, 36, D344–D350. [Google Scholar] [CrossRef]
- Ntie-Kang, F.; Zofou, D.; Babiaka, S.B.; Meudom, R.; Scharfe, M.; Lifongo, L.L.; Mbah, J.A.; Mbaze, L.M.; Sippl, W.; Efange, S.M.N. AfroDb: A Select Highly Potent and Diverse Natural Product Library from African Medicinal Plants. PLoS ONE 2013, 8, e78085. [Google Scholar] [CrossRef]
- Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef]
- da Silva Rocha, S.F.L.; Olanda, C.G.; Fokoue, H.H.; Sant’Anna, C.M.R. Virtual Screening Techniques in Drug Discovery: Review and Recent Applications. Curr. Top. Med. Chem. 2019, 19, 1751–1767. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Lin, X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules 2020, 25, 1375. [Google Scholar] [CrossRef] [Green Version]
- Carpio, L.E.; Sanz, Y.; Gozalbes, R.; Barigye, S.J. Computational Strategies for the Discovery of Biological Functions of Health Foods, Nutraceuticals and Cosmeceuticals: A Review. Mol. Divers. 2021, 25, 1425–1438. [Google Scholar] [CrossRef]
- Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Front. Pharmacol. 2018, 9, 1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akamatsu, M. Current State and Perspectives of 3D-QSAR. Curr. Top. Med. Chem. 2002, 2, 1381–1394. [Google Scholar] [CrossRef] [PubMed]
- Rybińska-Fryca, A.; Sosnowska, A.; Puzyn, T. Representation of the Structure—A Key Point of Building QSAR/QSPR Models for Ionic Liquids. Materials 2020, 13, 2500. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Kar, S.; Das, R.N. Chemical Information and Descriptors. In Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment; Elsevier: Amsterdam, The Netherlands, 2015; pp. 47–80. [Google Scholar]
- Dudek, A.Z.; Arodz, T.; Gálvez, J. Computational Methods in Developing Quantitative Structure-Activity Relationships (QSAR): A Review. Comb. Chem. High Throughput Screen 2006, 9, 213–228. [Google Scholar] [CrossRef]
- Cherkasov, A.; Muratov, E.; Fourches, D.; Varnek, A.; Baskin, I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.; Todeschini, R.; et al. QSAR Modeling: Where Have You Been? Where Are You Going To? J. Med. Chem. 2013, 57, 4977–5010. [Google Scholar] [CrossRef] [Green Version]
- Achary, P.G.R. Applications of Quantitative Structure-Activity Relationships (QSAR) Based Virtual Screening in Drug Design: A Review. Mini Rev. Med. Chem. 2020, 20, 1375–1388. [Google Scholar] [CrossRef]
- Pripp, A.H.; Isaksson, T.; Stepaniak, L.; Sørhaug, T.; Ardö, Y. Quantitative Structure Activity Relationship Modelling of Peptides and Proteins as a Tool in Food Science. Trends Food Sci. Technol. 2005, 16, 484–494. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Smyth, M.S.; Martin, J.H. X Ray Crystallography. Mol. Pathol. 2000, 53, 8–14. [Google Scholar] [CrossRef]
- Sugiki, T.; Kobayashi, N.; Fujiwara, T. Modern Technologies of Solution Nuclear Magnetic Resonance Spectroscopy for Three-Dimensional Structure Determination of Proteins Open Avenues for Life Scientists. Comput. Struct. Biotechnol. J. 2017, 15, 328–339. [Google Scholar] [CrossRef]
- Nakane, T.; Kotecha, A.; Sente, A.; McMullan, G.; Masiulis, S.; Brown, P.M.G.E.; Grigoras, I.T.; Malinauskaite, L.; Malinauskas, T.; Miehling, J.; et al. Single-Particle Cryo-EM at Atomic Resolution. Nature 2020, 587, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, X.; Huang, Y.; Wang, C.; Chen, F.; Yang, L.; Ling, L.; Che, Z.; Chen, X. Recent Developments in Molecular Docking Technology Applied in Food Science: A Review. Int. J. Food Sci. Technol. 2020, 55, 33–45. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of New Features and Current Docking Performance. J. Comput. Chem. 2015, 36, 1132–1156. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking11Edited by F. E. Cohen. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [Green Version]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [Green Version]
- Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in Docking Success Rates Due to Dataset Preparation. J. Comput. Aided Mol. Des. 2012, 26, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef]
- McGann, M. FRED and HYBRID Docking Performance on Standardized Datasets. J. Comput. Aided Mol. Des. 2012, 26, 897–906. [Google Scholar] [CrossRef] [PubMed]
- McGann, M. FRED Pose Prediction and Virtual Screening Accuracy. J. Chem. Inf. Model. 2011, 51, 578–596. [Google Scholar] [CrossRef] [PubMed]
- Kelley, B.P.; Brown, S.P.; Warren, G.L.; Muchmore, S.W. POSIT: Flexible Shape-Guided Docking for Pose Prediction. J. Chem. Inf. Model. 2015, 55, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- van Zundert, G.C.P.; Rodrigues, J.P.G.L.M.; Trellet, M.; Schmitz, C.; Kastritis, P.L.; Karaca, E.; Melquiond, A.S.J.; van Dijk, M.; de Vries, S.J.; Bonvin, A.M.J.J. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J. Mol. Biol. 2016, 428, 720–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitencourt-Ferreira, G.; de Azevedo, W.F. Docking with SwissDock. Methods Mol. Biol. 2019, 2053, 189–202. [Google Scholar] [CrossRef]
- Seidel, T.; Bryant, S.D.; Ibis, G.; Poli, G.; Langer, T. 3D Pharmacophore Modeling Techniques in Computer-Aided Molecular Design Using LigandScout. In Tutorials in Chemoinformatics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 279–309. [Google Scholar]
- Yang, S.Y. Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Schaller, D.; Šribar, D.; Noonan, T.; Deng, L.; Nguyen, T.N.; Pach, S.; Machalz, D.; Bermudez, M.; Wolber, G. Next Generation 3D Pharmacophore Modeling. WIREs Comput. Mol. Sci. 2020, 10, e1468. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, M.; Murgueitio, M.S.; Bermudez, M.; Rademann, J.; Wolber, G.; Weindl, G. Identification of a Pyrogallol Derivative as a Potent and Selective Human TLR2 Antagonist by Structure-Based Virtual Screening. Biochem. Pharmacol. 2018, 154, 148–160. [Google Scholar] [CrossRef]
- Grabowski, M.; Murgueitio, M.S.; Bermudez, M.; Wolber, G.; Weindl, G. The Novel Small-Molecule Antagonist MMG-11 Preferentially Inhibits TLR2/1 Signaling. Biochem. Pharmacol. 2020, 171, 113687. [Google Scholar] [CrossRef]
- Barnum, D.; Greene, J.; Smellie, A.; Sprague, P. Identification of Common Functional Configurations Among Molecules. J. Chem. Inf. Comput. Sci. 1996, 36, 563–571. [Google Scholar] [CrossRef]
- Baroni, M.; Cruciani, G.; Sciabola, S.; Perruccio, F.; Mason, J.S. A Common Reference Framework for Analyzing/Comparing Proteins and Ligands. Fingerprints for Ligands and Proteins (FLAP): Theory and Application. J. Chem. Inf. Model. 2007, 47, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Wolber, G.; Langer, T. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Koes, D.R.; Camacho, C.J. Pharmer: Efficient and Exact Pharmacophore Search. J. Chem. Inf. Model. 2011, 51, 1307–1314. [Google Scholar] [CrossRef] [Green Version]
- Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: A New Engine for Pharmacophore Perception, 3D QSAR Model Development, and 3D Database Screening: 1. Methodology and Preliminary Results. J. Comput. Aided Mol. Des. 2006, 20, 647–671. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Krieger, J.M.; Li, H.; Bahar, I. Pharmmaker: Pharmacophore Modeling and Hit Identification Based on Druggability Simulations. Protein Sci. 2020, 29, 76–86. [Google Scholar] [CrossRef]
- Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PharmaGist: A Webserver for Ligand-Based Pharmacophore Detection. Nucleic Acids Res. 2008, 36, W223–W228. [Google Scholar] [CrossRef] [Green Version]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Huang, K.; Miao, M.; Feng, B.; Campanella, O.H. Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Compr. Rev. Food Sci. Food Saf. 2019, 18, 243–263. [Google Scholar] [CrossRef] [Green Version]
- González, M.A. Force Fields and Molecular Dynamics Simulations. École Thématique Société Française Neutron 2011, 12, 169–200. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Tripathi, T. Molecular Dynamics Simulation of Protein and Protein–Ligand Complexes. In Computer-Aided Drug Design; Singh, D.B., Ed.; Springer: Singapore, 2020; pp. 133–161. [Google Scholar]
- Tagde, P.; Tagde, S.; Tagde, P.; Bhattacharya, T.; Monzur, S.M.; Rahman, M.H.; Otrisal, P.; Behl, T.; ul Hassan, S.S.; Abdel-Daim, M.M.; et al. Nutraceuticals and Herbs in Reducing the Risk and Improving the Treatment of COVID-19 by Targeting SARS-CoV-2. Biomedicines 2021, 9, 1266. [Google Scholar] [CrossRef] [PubMed]
- Savant, S.; Srinivasan, S.; Kruthiventi, A.K. Potential Nutraceuticals for COVID-19. Nutr. Diet. Suppl. 2021, 13, 25–51. [Google Scholar] [CrossRef]
- Gyebi, G.A.; Elfiky, A.A.; Ogunyemi, O.M.; Ibrahim, I.M.; Adegunloye, A.P.; Adebayo, J.O.; Olaiya, C.O.; Ocheje, J.O.; Fabusiwa, M.M. Structure-Based Virtual Screening Suggests Inhibitors of 3-Chymotrypsin-Like Protease of SARS-CoV-2 from Vernonia Amygdalina and Occinum Gratissimum. Comput. Biol. Med. 2021, 136, 104671. [Google Scholar] [CrossRef]
- Kodchakorn, K.; Poovorawan, Y.; Suwannakarn, K.; Kongtawelert, P. Molecular Modelling Investigation for Drugs and Nutraceuticals against Protease of SARS-CoV-2. J. Mol. Graph. Model. 2020, 101, 107717. [Google Scholar] [CrossRef]
- Baig, A.; Srinivasan, H. SARS-CoV-2 Inhibitors from Nigella Sativa. Appl. Biochem. Biotechnol. 2022, 194, 1051–1090. [Google Scholar] [CrossRef]
- Gupta, S.; Tejavath, K.K. Nano Phytoceuticals: A Step Forward in Tracking Down Paths for Therapy Against Pancreatic Ductal Adenocarcinoma. J. Clust. Sci. 2022, 1–21. [Google Scholar] [CrossRef]
- Dubey, A.K.; Chaudhry, S.K.; Singh, H.B.; Gupta, V.K.; Kaushik, A. Perspectives on Nano-Nutraceuticals to Manage Pre and Post COVID-19 Infections. Biotechnol. Rep. 2022, 33, e00712. [Google Scholar] [CrossRef] [PubMed]
- Shende, P.; Mallick, C. Nanonutraceuticals: A Way towards Modern Therapeutics in Healthcare. J. Drug Deliv. Sci. Technol. 2020, 58, 101838. [Google Scholar] [CrossRef]
- Ferrado, J.B.; Perez, A.A.; Ruiz, M.C.; León, I.E.; Santiago, L.G. Chrysin-Loaded Bovine Serum Albumin Particles as Bioactive Nanosupplements. Food Funct. 2020, 11, 6007–6019. [Google Scholar] [CrossRef] [PubMed]
- El-Far, A.H.; Godugu, K.; Salaheldin, T.A.; Darwish, N.H.E.; Saddiq, A.A.; Mousa, S.A. Nanonutraceuticals: Anti-Cancer Activity and Improved Safety of Chemotherapy by Costunolide and Its Nanoformulation against Colon and Breast Cancer. Biomedicines 2021, 9, 990. [Google Scholar] [CrossRef] [PubMed]
- Sikk, A.M. Review on Defensive Roles of Thymoquinone Nanobiosensoring Prospective in Opposition to Cancer. J. Cancer Clin. Res. 2021, 4, 297–299. [Google Scholar]
- Rahat, I.; Rizwanullah, M.; Gilani, S.J.; Bin-Jummah, M.N.; Imam, S.S.; Kala, C.; Asif, M.; Alshehri, S.; Sharma, S.K. Thymoquinone Loaded Chitosan—Solid Lipid Nanoparticles: Formulation Optimization to Oral Bioavailability Study. J. Drug Deliv. Sci. Technol. 2021, 64, 102565. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef]
- Ashaolu, T.J. Emerging Applications of Nanotechnologies to Probiotics and Prebiotics. Int. J. Food Sci. Technol. 2021, 56, 3719–3725. [Google Scholar] [CrossRef]
- Durazzo, A.; Nazhand, A.; Lucarini, M.; Atanasov, A.G.; Souto, E.B.; Novellino, E.; Capasso, R.; Santini, A. An Updated Overview on Nanonutraceuticals: Focus on Nanoprebiotics and Nanoprobiotics. Int. J. Mol. Sci. 2020, 21, 2285. [Google Scholar] [CrossRef] [Green Version]
- Rambaran, T.F. A Patent Review of Polyphenol Nano-Formulations and Their Commercialization. Trends Food Sci. Technol. 2022, 120, 111–122. [Google Scholar] [CrossRef]
- Palla, C.A.; Aguilera-Garrido, A.; Carrín, M.E.; Galisteo-González, F.; Gálvez-Ruiz, M.J. Preparation of Highly Stable Oleogel-Based Nanoemulsions for Encapsulation and Controlled Release of Curcumin. Food Chem. 2022, 378, 132132. [Google Scholar] [CrossRef] [PubMed]
- Harakeh, S.; Qari, Y.; Tashkandi, H.; Almuhayawi, M.; Saber, S.H.; aljahdali, E.; El-Shitany, N.; Shaker, S.; Lucas, F.; Alamri, T.; et al. Thymoquinone Nanoparticles Protect against Cisplatin-Induced Nephrotoxicity in Ehrlich Carcinoma Model without Compromising Cisplatin Anti-Cancer Efficacy. J. King Saud Univ. Sci. 2022, 34, 101675. [Google Scholar] [CrossRef]
- Radwan, M.F.; El-Moselhy, M.A.; Alarif, W.M.; Orif, M.; Alruwaili, N.K.; Alhakamy, N.A. Optimization of Thymoquinone-Loaded Self-Nanoemulsion for Management of Indomethacin-Induced Ulcer. Dose-Response 2021, 19, 155932582110136. [Google Scholar] [CrossRef]
- Alhakamy, N.A.; Badr-Eldin, S.M.; Ahmed, O.A.A.; Aldawsari, H.M.; Okbazghi, S.Z.; Alfaleh, M.A.; Abdulaal, W.H.; Neamatallah, T.; Al-hejaili, O.D.; Fahmy, U.A. Green Nanoemulsion Stabilized by In Situ Self-Assembled Natural Oil/Native Cyclodextrin Complexes: An Eco-Friendly Approach for Enhancing Anticancer Activity of Costunolide against Lung Cancer Cells. Pharmaceutics 2022, 14, 227. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Maurizi, L.; Forte, J.; Marazzato, M.; Hanieh, P.; Conte, A.; Ammendolia, M.; Marianecci, C.; Carafa, M.; Longhi, C. Resveratrol-Loaded Nanoemulsions: In Vitro Activity on Human T24 Bladder Cancer Cells. Nanomaterials 2021, 11, 1569. [Google Scholar] [CrossRef] [PubMed]
- Javed Iqbal, M.; Quispe, C.; Javed, Z.; Sadia, H.; Qadri, Q.R.; Raza, S.; Salehi, B.; Cruz-Martins, N.; Abdulwanis Mohamed, Z.; Sani Jaafaru, M.; et al. Nanotechnology-Based Strategies for Berberine Delivery System in Cancer Treatment: Pulling Strings to Keep Berberine in Power. Front. Mol. Biosci. 2021, 7, 624494. [Google Scholar] [CrossRef]
- Cristiano, M.C.; Froiio, F.; Mancuso, A.; Cosco, D.; Dini, L.; Di Marzio, L.; Fresta, M.; Paolino, D. Oleuropein-Laded Ufasomes Improve the Nutraceutical Efficacy. Nanomaterials 2021, 11, 105. [Google Scholar] [CrossRef]
- Landucci, E.; Bonomolo, F.; De Stefani, C.; Mazzantini, C.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M.C. Preparation of Liposomal Formulations for Ocular Delivery of Thymoquinone: In Vitro Evaluation in HCEC-2 e HConEC Cells. Pharmaceutics 2021, 13, 2093. [Google Scholar] [CrossRef]
- Rachamalla, H.K.; Bhattacharya, S.; Ahmad, A.; Sridharan, K.; Madamsetty, V.S.; Mondal, S.K.; Wang, E.; Dutta, S.K.; Jan, B.L.; Jinka, S.; et al. Enriched Pharmacokinetic Behavior and Antitumor Efficacy of Thymoquinone by Liposomal Delivery. Nanomedicine 2021, 16, 641–656. [Google Scholar] [CrossRef]
- Castangia, I.; Manconi, M.; Allaw, M.; Perra, M.; Orrù, G.; Fais, S.; Scano, A.; Escribano-Ferrer, E.; Ghavam, M.; Rezvani, M.; et al. Mouthwash Formulation Co-Delivering Quercetin and Mint Oil in Liposomes Improved with Glycol and Ethanol and Tailored for Protecting and Tackling Oral Cavity. Antioxidants 2022, 11, 367. [Google Scholar] [CrossRef]
- Ghorbani, S.; Maryam, A. Encapsulation of Lactic Acid Bacteria and Bifidobacteria Using Starch-sodium Alginate Nanofibers to Enhance Viability in Food Model. J. Food Process. Preserv. 2021, 45, e16048. [Google Scholar] [CrossRef]
- Atraki, R.; Azizkhani, M. Survival of Probiotic Bacteria Nanoencapsulated within Biopolymers in a Simulated Gastrointestinal Model. Innov. Food Sci. Emerg. Technol. 2021, 72, 102750. [Google Scholar] [CrossRef]
- Pugliese, R.; Bartolomei, M.; Bollati, C.; Boschin, G.; Arnoldi, A.; Lammi, C. Gel-Forming of Self-Assembling Peptides Functionalized with Food Bioactive Motifs Modulate DPP-IV and ACE Inhibitory Activity in Human Intestinal Caco-2 Cells. Biomedicines 2022, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, R.; Arnoldi, A.; Lammi, C. Nanostructure, Self-Assembly, Mechanical Properties, and Antioxidant Activity of a Lupin-Derived Peptide Hydrogel. Biomedicines 2021, 9, 294. [Google Scholar] [CrossRef]
- Faruk, E.M.; Fouad, H.; Hasan, R.A.A.; Taha, N.M.; El-Shazly, A.M. Inhibition of Gene Expression and Production of INOS and TNF-α in Experimental Model of Neurodegenerative Disorders Stimulated Microglia by Soy Nano-Isoflavone/Stem Cell-Exosomes. Tissue Cell 2022, 76, 101758. [Google Scholar] [CrossRef]
Database Name | NP Type | No. of Compounds | VS Format | Link |
---|---|---|---|---|
COCONUT [27] | Generalistic | 406,747 | .SMILES and .SDF | https://coconut.naturalproducts.net accessed on 11 April 2022 |
NPAtlas [28] | Microbial | 24,594 | .SMILES and .SDF | https://www.npatlas.org/ accessed on 11 April 2022 |
FooDB [29] | Food Ingredients | 23,883 | .MOL, .SDF, .PDB, and .SMILES | https://foodb.ca/ accessed on 11 April 2022 |
CMAUP [30] | Plant Ingredients | 5645 | .SMILES | http://bidd.group/CMAUP/index.html accessed on 11 April 2022 |
CMNPD [35] | Marine | >31,000 | .SDF | https://www.cmnpd.org/ accessed on 11 April 2022 |
SANCDB [36] | Chemical compounds of South African biodiversity | 1012 | .SDF and .SMILES | https://sancdb.rubi.ru.ac.za/ accessed on 11 April 2022 |
NuBBEDB [37] | NPs and derivatives from plants and microorganisms native | 2218 | .MOL2 | https://nubbe.iq.unesp.br/portal/nubbe-search.html accessed on 11 April 2022 |
TIPdb [38] | Phytochemicals originated in Taiwan | >9000 Focused on anticancer, antiplatelet, and antituberculosis | .SDF | https://cwtung.kmu.edu.tw/tipdb/ accessed on 11 April 2022 |
TCM database@Taiwan [39] | Generalistic | >20,000 | .MOL2 | http://tcm.cmu.edu.tw/ accessed on 11 April 2022 |
ChEBI [40] | Generalistic | >12,000 | .SDF and .SMILES | https://www.ebi.ac.uk/chebi/ accessed on 11 April 2022 |
Database Name | NP Type | No. of Compounds | VS Format | Link |
---|---|---|---|---|
ZINC 15 [42] | Generalistic | >80,000 | .MOL2 .SDF .SMILES | https://zinc15.docking.org/ accessed on 11 April 2022 |
Analyticon Discovery [26] | MEGx plants and microorganisms | 5000 NC | .SDF via request | https://ac-discovery.com/ accessed on 11 April 2022 |
MACROx Macrocycle compounds | >1800 | |||
FRGx Fragments | >200 | |||
Ambinter and GreenPharma [26] | Generalistic | >8000 | .SDF | https://www.ambinter.com/ accessed on 11 April 2022 |
InterBioScreen [26] | Plants and Microorganisms | >68,000 | .SDF .SMILES | https://www.ibscreen.com/ accessed on 11 April 2022 |
Indofine | Generalistic | >1900 | .SDF | https://indofinechemical.com/ accessed on 11 April 2022 |
MolPort | Generalistic | >10,000 | .SDF .SMILES | https://www.molport.com/ accessed on 11 April 2022 |
MedChemExpress | Generalistic | >3000 | .SDF | https://www.medchemexpress.com/ accessed on 11 April 2022 |
Food additive-related compounds | 396 |
Name | Availability | Link |
---|---|---|
Open Babel | Free | http://openbabel.org accessed on 11 April 2022 |
RDKit | Free | http://www.rdkit.org/ accessed on 11 April 2022 |
Dragon | Free | https://chm.kode-solutions.net/pf/dragon-7-0/ accessed on 11 April 2022 |
Chemistry Development Kit (CDK) | Free | https://cdk.github.io/ accessed on 11 April 2022 |
Qikprop | Commercial | https://www.schrodinger.com/products/qikprop accessed on 11 April 2022 |
Name | Availability | Link |
---|---|---|
AutoDock [60] | Free/Open Source | https://autodock.scripps.edu/ accessed on 11 April 2022 |
AutoDock Vina [61] | Free | https://vina.scripps.edu/ accessed on 11 April 2022 |
Dock [62] | Free | http://dock.compbio.ucsf.edu/ accessed on 11 April 2022 |
GOLD [63] | Commercial | https://www.ccdc.cam.ac.uk/solutions/csddiscovery/components/gold/ accessed on 11 April 2022 |
Glide [64] | Commercial/License requirement | https://www.schrodinger.com/products/glide accessed on 11 April 2022 |
Molecular Operating Environment (MOE) [65] Molecular Operating Environment (MOE), 2020.09 Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2022 | Commercial | https://www.chemcomp.com/Products.htm accessed on 11 April 2022 |
PyRx [66] | Open Source | https://pyrx.sourceforge.io/downloads accessed on 11 April 2022 |
OEDocking [67,68,69] | Commercial | https://www.eyesopen.com/oedocking accessed on 11 April 2022 |
HADDOCK (High Ambiguity Driven protein-protein DOCKing) [70] | Docking Web Server/registration requirement | https://wenmr.science.uu.nl/haddock2.4/ accessed on 11 April 2022 |
SwissDock [71] | Docking Web Server | http://www.swissdock.ch/ accessed on 11 April 2022 |
Name | Availability | Link |
---|---|---|
Catalyst [77] | Commercial | Not available |
FLAP [78] | Commercial | https://www.moldiscovery.com/software/flap/ accessed on 11 April 2022 |
LigandScout [79] | Commercial | Not available |
MOE | Commercial | https://www.chemcomp.com/ accessed on 11 April 2022 Chemical Computing Group. Molecular operating environment (MOE). Montreal, QC, Canada; 2010 |
Pharmer [80] | Free for academic use | http://pharmer.sourceforge.net accessed on 11 April 2022 |
PHASE [81] | Commercial | https://www.schrodinger.com/products/phase accessed on 11 April 2022 |
Pharmmaker [82] | Free | http://prody.csb.pitt.edu/pharmmaker/ accessed on 11 April 2022 |
PharmaGist [83] | Freely available webserver | https://bioinfo3d.cs.tau.ac.il/PharmaGist/php.php accessed on 11 April 2022 |
Nanonutraceuticals | Bioactive Compounds | Disease | References |
---|---|---|---|
Bovine serum albumin nanoparticles (BSAnp) | Chrysin (Flavonoid) | Potential use in cancer treatment | [101] |
Poly (lactic-co-glycolic acid) (PLGA)-polyvinyl alcohol (PVA)-Chitosan nanoemulsion | Costunolide (Sesquiterpene lactone) | Possible anticancer and cardiac muscles protection | [102] |
Chitosan-modified solid lipid nanoparticles (SLNs) | Thymoquinone (Monoterpene) | Possible anticancer, antidiabetic, antimicrobial, hepatoprotective, anti-inflammatory, and central nervous system protective activity | [103,104] |
Micro-micelles | Sinacurcumin (Curcuminoid) | Possible antiviral properties against COVID-19 | [99] |
Nanocomposites | Glycyrrhizic acid (Triterpene glycoside) | Possible anti-inflammatory effects against COVID-19 | [99] |
Nanoparticles | Vitamin E/Squalene (Endogenous lipid) | Decrease in pro-inflammatory cytokines and increase in IL-10 in COVID-19 cases | [99] |
Nanonutraceuticals | Bioactive Compounds | Properties | References |
---|---|---|---|
Nanoemulsion of monoglyceride oleogels | Curcumin | Higher encapsulation efficiency/Decelerate curcumin release | [109] |
Nanoemulsion of PLGA and PVA natural polymers | Thymoquinone | Reduce cisplatin-induced kidney inflammation without hindering its anti-tumor activity | [110] |
Almond oil nanoemulsion | Thymoquinone | Gastroprotective activities | [111] |
α-Cyclodextrin nanoemulsion | Costunolide | Enhanced anticancer properties | [112] |
Oil-in-water nanoemulsions | Resveratrol | Improved solubility, bioavailability, in vivo efficacy, and cytotoxic activity | [113] |
Solid lipid nanoparticles | Berberine | Higher bioavailability and anticancer effect | [114] |
Ufasomes | Oleuropein | Higher antioxidant activity | [115] |
Liposomes | Thymoquinone | Reduced toxicity, increased cell absorption and permeability/enhanced bioavailability and anticancer efficacy | [116,117] |
Liposomes | Quercetin and mint oil | Protection against oral cavities | [118] |
Corn starch-sodium alginate nanofibers | Bifidobacteria and lactic acid bacteria | Protection of their probiotic activity in a food model and a simulated gastrointestinal system | [119,120] |
Food-derived hydrogel nanostructures | Lupin- and soybean glycinin-derived peptides | Antioxidant activity/ DPP-IV and ACE inhibitors | [121,122] |
Nanoparticles | Soy isoflavones | Activity against the neurogenerative effect of D-galactose | [123] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiaka, T.; Kritsi, E.; Tsiantas, K.; Christodoulou, P.; Sinanoglou, V.J.; Zoumpoulakis, P. Design and Development of Novel Nutraceuticals: Current Trends and Methodologies. Nutraceuticals 2022, 2, 71-90. https://doi.org/10.3390/nutraceuticals2020006
Tsiaka T, Kritsi E, Tsiantas K, Christodoulou P, Sinanoglou VJ, Zoumpoulakis P. Design and Development of Novel Nutraceuticals: Current Trends and Methodologies. Nutraceuticals. 2022; 2(2):71-90. https://doi.org/10.3390/nutraceuticals2020006
Chicago/Turabian StyleTsiaka, Thalia, Eftichia Kritsi, Konstantinos Tsiantas, Paris Christodoulou, Vassilia J. Sinanoglou, and Panagiotis Zoumpoulakis. 2022. "Design and Development of Novel Nutraceuticals: Current Trends and Methodologies" Nutraceuticals 2, no. 2: 71-90. https://doi.org/10.3390/nutraceuticals2020006
APA StyleTsiaka, T., Kritsi, E., Tsiantas, K., Christodoulou, P., Sinanoglou, V. J., & Zoumpoulakis, P. (2022). Design and Development of Novel Nutraceuticals: Current Trends and Methodologies. Nutraceuticals, 2(2), 71-90. https://doi.org/10.3390/nutraceuticals2020006