Control of Advanced Cancer: The Road to Chronicity
Abstract
:1. Introduction: The Increasing Burden of Advanced Cancer
2. The Emerging Evidence of a Transition to Chronicity
3. Building the Tools: The Role of Biologics and Small Molecules
4. Using the Tools: The Changing Paradigm in Clinical Research
5. Case Study: The CIM-Immunotherapy Program
6. The Obstacles Along the Road
7. Conclusions: Moving from “Proof of Concept” to Impact in Public Health
- The acceptance of a new clinical trial paradigm (with its regulatory implications) to speed up the registration of new drugs, particularly for cancer immunotherapy.
- The improvement in the manufacturing processes of biologics to guarantee wide availability and lower costs.
- The training of the primary health care institutions to use biologics and small molecules for long term, and to evaluate their impact in the context of complex health interventions, including nutritional and “quality-of-life” interventions.
- The clinical testing of drug combinations, wisely designed on the basis of the diverse mechanisms of action of the new drugs.
- The output of fundamental research, providing tools to intervene in the redundant regulatory circuits of the immune system.
- The identification of a simple set of meaningful tests to personalize the probability of effect of given small molecules or biologics in individual patients.
- The quality evaluation of managing advanced cancer at population level, narrowing the discrepancies between what ought to be done and what is really done.
References
- Jemal, A; Siegel, R; Xu, J; Ward, E. Cancer statistics, 2010. CA Cancer J. Clin 2010, 60, 277–300. [Google Scholar]
- Ferlay, J; Parkin, DM; Steliarova-Foucher, E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer 2010, 46, 765–781. [Google Scholar]
- Breakaway: The Global Burden of Cancer: Challenges and Opportunities; Economist Intelligence Unit: London, UK, 2009; pp. 1–73.
- Lage, A; Pascual, MR; Pérez, R. Estudios sobre el pronóstico del cáncer mamario. Análisis de las curvas de mortalidad y recaída en el cáncer de mama. Rev. Cub. Oncol 1986, 2, 21–29. [Google Scholar]
- Balducci, L; Ershler, WB. Cancer and ageing: A nexus at several levels. Nat. Rev. Cancer 2005, 5, 655–662. [Google Scholar]
- The World Health Report 2008: Primary Health Care Now More Than Ever; World Health Organization: Geneva, Switerland, 2008; pp. 1–119.
- Ramsey, SD; Howlader, N; Etzioni, RD; Donato, B. Chemotherapy use, outcomes, and costs for older persons with advanced non-small-cell lung cancer: Evidence from surveillance, epidemiology and end results-Medicare. J. Clin. Oncol 2004, 22, 4971–4878. [Google Scholar]
- Fernandez Garrote, L; Graupera Boschmonar, M; Galan Alvarez, Y; Lezcano Cicilli, M; Martin Garcia, A; Camacho Rodriguez, R. Cancer survival in Cuba. IARC Sci. Publ 1998, 145, 51–59. [Google Scholar]
- Graupera Boschmonar, MC; Jiménez Chaviano, PJ; Martín García, AA; Galán Alvarez, YH; Fernández Garrote, LM; Sankaranarayanan, R. Trends in survival rates of cancer in Cuba. Eur. J. Epidemiol 1999, 15, 521–528. [Google Scholar]
- Alonso, ED; Jo, AH; Galán, Y. The burden of disease from cancer in Cuba, 1990–2002. Rev. Panam. Salud. Publica 2009, 26, 412–418. [Google Scholar]
- Brenner, H. Long-term survival rates of cancer patients achieved by the end of the 20th century: A period analysis. Lancet 2002, 360, 1131–1135. [Google Scholar]
- Giordano, SH; Buzdar, AU; Smith, TL; Kau, SW; Yang, Y; Hortobagyi, GN. Is breast cancer survival improving? Cancer 2004, 100, 44–52. [Google Scholar]
- The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med 1993, 329, 977–986. [Google Scholar]
- Marin, D. Current status of imatinib as frontline therapy for chronic myeloid leukemia. Semin. Hematol 2010, 47, 312–318. [Google Scholar]
- Cirocchi, R; Farinella, E; La Mura, F; Cavaliere, D; Avenia, N; Verdecchia, GM; Giustozzi, G; Noya, G; Sciannameo, F. Efficacy of surgery and imatinib mesylate in the treatment of advanced gastrointestinal stromal tumor: A systematic review. Tumori 2010, 96, 392–399. [Google Scholar]
- Sulkes, A. Novel multitargeted anticancer oral therapies: Sunitinib and sorafenib as a paradigm. Isr. Med. Assoc. J 2010, 12, 628–632. [Google Scholar]
- Caponi, S; Vasile, E; Ginocchi, L; Tibaldi, C; Borghi, F; D’Incecco, A; Lucchesi, M; Caparello, C; Andreuccetti, M; Falcone, A. Second-line treatment for non-small-cell lung cancer: One size does not fit all. Clin. Lung. Cancer 2010, 11, 320–327. [Google Scholar]
- Laack, E; Sauter, G; Bokemeyer, C. Lessons learnt from gefitinib and erlotinib: Key insights into small-molecule EGFR-targeted kinase inhibitors in non-small cell lung cancer. Lung Cancer 2010, 69, 259–264. [Google Scholar]
- Weiner, LM; Surana, R; Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol 2010, 10, 317–327. [Google Scholar]
- Kantoff, PW; Higano, CS; Shore, ND; Berger, ER; Small, EJ; Penson, DF; Redfern, CH; Ferrari, AC; Dreicer, R; Sims, RB; Xu, Y; Frohlich, MW; Schellhammer, PF. IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med 2010, 363, 411–422. [Google Scholar]
- 2008 Report: Medicines in Development. Biotechnology; Pharmaceutical Research and Manufacturers of America: Washington, DC, USA, 2004; pp. 1–60.
- Monoclonal Antibodies: 2009 Update; Datamonitor: London, UK, 2009; pp. 1–243, Product code DMHC2579.
- Mannocci, A; De Feo, E; de Waure, C; Specchia, ML; Gualano, MR; Barone, C; Ricciardi, W; La Torre, G. Use of trastuzumab in HER2-positive metastatic breast cancer beyond disease progression: A systematic review of published studies. Tumori 2010, 96, 385–391. [Google Scholar]
- Kozloff, MF; Berlin, J; Flynn, PJ; Kabbinavar, F; Ashby, M; Dong, W; Sing, AP; Grothey, A. Clinical outcomes in elderly patients with metastatic colorectal cancer receiving bevacizumab and chemotherapy: Results from the BRiTE observational cohort study. Oncology 2010, 78, 329–339. [Google Scholar]
- Moschella, F; Proietti, E; Capone, I; Belardelli, F. Combination strategies for enhancing the efficacy of immunotherapy in cancer patients. Ann. N Y Acad. Sci 2010, 1194, 169–178. [Google Scholar]
- Richards, L. Chemotherapy. Conventional chemotherapy boosts the effect of cancer vaccines. Nat. Rev. Clin. Oncol 2010, 7, 297. [Google Scholar]
- Emens, LA. Chemoimmunotherapy. Cancer J 2010, 16, 295–303. [Google Scholar]
- Chen, CA; Ho, CM; Chang, MC; Sun, WZ; Chen, YL; Chiang, YC; Syu, MH; Hsieh, CY; Cheng, WF. Metronomic chemotherapy enhances antitumor effects of cancer vaccine by depleting regulatory T lymphocytes and inhibiting tumor angiogenesis. Mol. Ther 2010, 18, 1233–1243. [Google Scholar]
- Ghiringhelli, F; Menard, C; Puig, PE; Ladoire, S; Roux, S; Martin, F; Solary, E; Le Cesne, A; Zitvogel, L; Chauffert, B. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother 2007, 56, 641–648. [Google Scholar]
- Hoos, A; Parmiani, G; Hege, K; Sznol, M; Loibner, H; Eggermont, A; Urba, W; Blumenstein, B; Sacks, N; Keilholz, U; Nichol, G; Cancer Vaccine Clinical Trial Working Group. A clinical development paradigm for cancer vaccines and related biologics. J. Immunother 2007, 30, 1–15. [Google Scholar]
- Finke, LH; Wentworth, K; Blumenstein, B; Rudolph, NS; Levitsky, H; Hoos, A. Lessons from randomized phase III studies with active cancer immunotherapies—outcomes from the 2006 meeting of the Cancer Vaccine Consortium (CVC). Vaccine 2007, 25(Suppl 2), B97–B109. [Google Scholar]
- Wolchok, JD; Hoos, A; O’Day, S. Guidelines for the evaluation of immune therapy activity in solid tumors: Immune-related response criteria. Clin. Cancer Res 2009, 15, 7412–7420. [Google Scholar]
- Hoos, A; Eggermont, AM; Janetzki, S; Hodi, FS; Ibrahim, R; Anderson, A; Humphrey, R; Blumenstein, B; Old, L; Wolchok, J. Improved endpoints for cancer immunotherapy trials. J. Natl. Cancer Inst 2010, 102, 1388–1397. [Google Scholar]
- Lee, JJ; Feng, L. Randomized phase II designs in cancer clinical trials: Current status and future directions. J. Clin. Oncol 2005, 23, 4450–4457. [Google Scholar]
- Provencio, M; Camps, C; Alberola, V; Massutti, B; Viñolas, N; Isla, D; Dómine, M; Millán, I; Cobo, M; Rosell, R. Lung cancer and treatment in elderly patients: The Achilles Study. Lung Cancer 2009, 66, 103–106. [Google Scholar]
- Elting, LS; Cooksley, C; Bekele, BN; Frumovitz, M; Avritscher, EB; Sun, C; Bodurka, DC. Generalizability of cancer clinical trial results: Prognostic differences between participants and nonparticipants. Cancer 2006, 106, 2452–2458. [Google Scholar]
- Weiss, NS. Generalizability of cancer clinical trial results. Cancer 2007, 109, 341, author reply 342. [Google Scholar]
- Lage, A. Connecting immunology research to public health: Cuban biotechnology. Nat. Immunol 2008, 9, 109–112. [Google Scholar]
- Talavera, A; Friemann, R; Gómez-Puerta, S; Martinez-Fleites, C; Garrido, G; Rabasa, A; López-Requena, A; Pupo, A; Johansen, RF; Sánchez, O; Krengel, U; Moreno, E. Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation. Cancer Res 2009, 69, 5851–5859. [Google Scholar]
- Rodríguez, MO; Rivero, TC; del Castillo Bahi, R; Muchuli, CR; Bilbao, MA; Vinageras, EN; Alert, J; Galainena, JJ; Rodríguez, E; Gracias, E; Mulén, B; Wilkinson, B; de Armas, EL; Pérez, K; Pineda, I; Frómeta, M; Leonard, I; Mullens, V; Viada, C; Luaces, P; Torres, O; Iznaga, N; Crombet, T. Nimotuzumab plus radiotherapy for unresectable squamous-cell carcinoma of the head and neck. Cancer Biol. Ther 2010, 9, 343–349. [Google Scholar]
- Ramakrishnan, MS; Eswaraiah, A; Crombet, T; Piedra, P; Saurez, G; Iyer, H; Arvind, AS. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. MAbs 2009, 1, 41–48. [Google Scholar]
- Rodríguez, PC; Rodríguez, G; González, G; Lage, A. Clinical development and perspectives of CIMAvax EGF, Cuban vaccine for non-small-cell lung cancer therapy. MEDICC Rev 2010, 12, 17–23. [Google Scholar]
- Neninger Vinageras, E; de la Torre, A; Osorio Rodríguez, M; Catalá Ferrer, M; Bravo, I; Mendoza del Pino, M; Abreu Abreu, D; Acosta Brooks, S; Rives, R; del Castillo Carrillo, C; González Dueñas, M; Viada, C; García Verdecia, B; Crombet Ramos, T; González Marinello, G; Lage Dávila, A. Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer. J. Clin. Oncol 2008, 26, 1452–1458. [Google Scholar]
- Roque-Navarro, L; Chakrabandhu, K; de León, J; Rodríguez, S; Toledo, C; Carr, A; de Acosta, CM; Hueber, AO; Pérez, R. Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity. Mol. Cancer Ther 2008, 7, 2033–2041. [Google Scholar]
- Montero, E; Falcon, L; Morera, Y; Delgado, J; Amador, JF; Perez, R. CD6 molecule may be important in the pathological mechanisms of lymphocytes adhesion to human skin in psoriasis and ior t1 MAb a possible new approach to treat this disease. Autoimmunity 1999, 29, 155–156. [Google Scholar]
- Mulens, V; de la Torre, A; Marinello, P; Rodríguez, R; Cardoso, J; Díaz, R; O’Farrill, M; Macias, A; Viada, C; Saurez, G; Carr, A; Crombet, T; Mazorra, Z; Perez, R; Fernandez, LE. Immunogenicity and safety of a NeuGcGM3 based cancer vaccine: Results from a controlled study in metastatic breast cancer patients. Hum. Vaccin 2010, 6, 736–744. [Google Scholar]
- Hernández, AM; Toledo, D; Martínez, D; Griñán, T; Brito, V; Macías, A; Alfonso, S; Rondón, T; Suárez, E; Vázquez, AM; Pérez, R. Characterization of the antibody response against NeuGcGM3 ganglioside elicited in non-small cell lung cancer patients immunized with an anti-idiotype antibody. J. Immunol 2008, 181, 6625–6634. [Google Scholar]
- Basavaraj, C; Sierra, P; Shivu, J; Melarkode, R; Montero, E; Nair, P. Nimotuzumab with chemoradiation confers a survival advantage in treatment-naïve head and neck tumors over expressing EGFR. Cancer Biol. Ther 2010, 10, 673–681. [Google Scholar]
- Ramos, TC; Figueredo, J; Catala, M; González, S; Selva, JC; Cruz, TM; Toledo, C; Silva, S; Pestano, Y; Ramos, M; Leonard, I; Torres, O; Marinello, P; Pérez, R; Lage, A. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: Report from a phase I/II trial. Cancer Biol. Ther 2006, 5, 375–379. [Google Scholar]
- Casacó, A; López, G; García, I; Rodríguez, JA; Fernández, R; Figueredo, J; Torres, L; Perera, A; Batista, J; Leyva, R; Peña, Y; Amador, Z; González, A; Estupiñan, B; Coca, M; Hernández, A; Puig, M; Iglesias, M; Hernández, A; Ramos, M; Rodríquez, L; Suarez, N. Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188 Re in adult recurrent high-grade glioma. Cancer Biol. Ther 2008, 7, 333–339. [Google Scholar]
- Allan, DG. Nimotuzumab: Evidence of clinical benefit without rash. Oncologist 2005, 10, 760–761. [Google Scholar]
- Boland, WK; Bebb, G. Nimotuzumab: A novel anti-EGFR monoclonal antibody that retains anti-EGFR activity while minimizing skin toxicity. Expert Opin. Biol. Ther 2009, 9, 1199–1206. [Google Scholar]
- Neninger, E; Verdecia, BG; Crombet, T; Viada, C; Pereda, S; Leonard, I; Mazorra, Z; Fleites, G; González, M; Wilkinson, B; González, G; Lage, A. Combining an EGF-based cancer vaccine with chemotherapy in advanced nonsmall cell lung cancer. J. Immunother 2009, 32, 92–99. [Google Scholar]
- Gonzalez, G; Crombet, T; Lage, A. Chronic Vaccination with a Therapeutic EGF-Based Cancer Vaccine: A Review of Patients Receiving Long Lasting Treatment. Curr. Cancer Drug Targets 2010, 11, 103–110. [Google Scholar]
- Shepperd, S; Lewin, S; Straus, S; Clarke, M; Eccles, MP; Fitzpatrick, R; Wong, G; Sheikh, A. Can we systematically review studies that evaluate complex interventions? PLoS Med 2009, 6, e1000086. [Google Scholar]
- Craig, P; Dieppe, P; Macintyre, S; Michie, S; Nazareth, I; Petticrew, M. Medical Research Council Guidance. Developing and evaluating complex interventions: The new Medical Research Council guidance. BMJ 2008, 337, a1655. [Google Scholar]
- Murray, E; Treweek, S; Pope, C; MacFarlane, A; Ballini, L; Dowrick, C; Finch, T; Kennedy, A; Mair, F; O’Donnell, C; Ong, BN; Rapley, T; Rogers, A; May, C. Normalisation process theory: A framework for developing, evaluating and implementing complex interventions. BMC Med 2010, 8, 63. [Google Scholar]
- Rowland, K; Schumann, SA. Palliative care: Earlier is better. J. Fam. Pract 2010, 59, 695–698. [Google Scholar]
- Malik, NN. Controlling the cost of innovative cancer therapeutics. Nat. Rev. Clin. Oncol 2009, 4, 550–552. [Google Scholar]
- Scolnik, PA. mAbs: a business perspective. MAbs 2009, 1, 179–184. [Google Scholar]
- Ferris, RL; Jaffee, EM; Ferrone, S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: Clinical response, cellular immunity, and immunoescape. J. Clin. Oncol 2010, 28, 4390–4399. [Google Scholar]
- Peggs, KS; Quezada, SA. Ipilimumab: Attenuation of an inhibitory immune checkpoint improves survival in metastatic melanoma. Expert Rev. Anticancer Ther 2010, 10, 1697–1701. [Google Scholar]
- Jacobs, JF; Punt, CJ; Lesterhuis, WJ; Sutmuller, RP; Brouwer, HM; Scharenborg, NM; Klasen, IS; Hilbrands, LB; Figdor, CG; de Vries, IJ; Adema, GJ. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: A phase I/II study in metastatic melanoma patients. Clin. Cancer Res 2010, 16, 5067–5078. [Google Scholar]
- Hayflick, L. The future of ageing. Nature 2000, 408, 267–269. [Google Scholar]
- Aw, D; Silva, AB; Palmer, DB. Immunosenescence: Emerging challenges for an ageing population. Immunology 2007, 120, 435–446. [Google Scholar]
- Shrikant, P; Mescher, MF. Opposing effects of IL-2 in tumor immunotherapy: promoting CD8 T cell growth and inducing apoptosis. J. Immunol 2002, 169, 1753–1759. [Google Scholar]
- de Visser, KE; Eichten, A; Coussens, LM. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 2006, 6, 24–37. [Google Scholar]
- Coleman, MP; Gatta, G; Verdecchia, A; Estève, J; Sant, M; Storm, H; Allemani, C; Ciccolallo, L; Santaquilani, M; Berrino, F. EUROCARE Working Group. EUROCARE-3 summary: Cancer survival in Europe at the end of the 20th century. Ann Oncol 2003, 14(Suppl 5), v128–v149. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lage, A.; Crombet, T. Control of Advanced Cancer: The Road to Chronicity. Int. J. Environ. Res. Public Health 2011, 8, 683-697. https://doi.org/10.3390/ijerph8030683
Lage A, Crombet T. Control of Advanced Cancer: The Road to Chronicity. International Journal of Environmental Research and Public Health. 2011; 8(3):683-697. https://doi.org/10.3390/ijerph8030683
Chicago/Turabian StyleLage, Agustin, and Tania Crombet. 2011. "Control of Advanced Cancer: The Road to Chronicity" International Journal of Environmental Research and Public Health 8, no. 3: 683-697. https://doi.org/10.3390/ijerph8030683
APA StyleLage, A., & Crombet, T. (2011). Control of Advanced Cancer: The Road to Chronicity. International Journal of Environmental Research and Public Health, 8(3), 683-697. https://doi.org/10.3390/ijerph8030683