Effects of Native Banana Starch Supplementation on Body Weight and Insulin Sensitivity in Obese Type 2 Diabetics
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Study Design
2.3. Material and Experimental Procedures
2.4. Clinical Laboratory Assays
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Patients
3.2. Dietary Treatment and Compliance
3.3. Body Weight
3.4. Glycemic Control and Insulin Resistance
3.5. Lipid Metabolism and Other Parameters
4. Discussion
5. Conclusions
Acknowledgments
References
- Wild, S; Roglic, G; Green, A; Sicree, R; King, H. Global prevalence of diabetes, estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar]
- Stumvoll, M; Goldstein, BJ; van Haeften, TW. Type 2 diabetes, principles of pathogenesis and therapy. Lancet 2005, 365, 1333–1346. [Google Scholar]
- Bray, GA. Medical consequences of obesity. J. Clin. Endocrinol. Metab 2004, 89, 2583–2589. [Google Scholar]
- Reaven, G; Abbasi, F; McLaughlin, T. Obesity, insulin resistance, and cardiovascular disease. Recent. Prog. Horm. Res 2004, 59, 207–223. [Google Scholar]
- Wadden, TA; Berkowitz, RI; Womble, LG; Sarwer, DB; Phelan, S; Cato, RK; Hesson, LA; Osei, SY; Kaplan, R; Stunkard, AJ. Randomized trial of lifestyle modification and pharmacotherapy for obesity. N. Engl. J. Med 2005, 353, 2111–2120. [Google Scholar]
- McKeown, NM; Meigs, JB; Liu, S; Wilson, PW; Jacques, PF. Whole-grain intake is favorably associated with metabolic risk factors for type 2 diabetes and cardiovascular disease in the Framingham Offspring Study. Am. J. Clin. Nutr 2002, 76, 390–398. [Google Scholar]
- Liese, AD; Roach, AK; Sparks, KC; Marquart, L; D’Agostino, RB, Jr; Mayer-Davis, EJ. Whole-grain intake and insulin sensitivity, the Insulin Resistance Atherosclerosis Study. Am. J. Clin. Nutr 2003, 78, 965–971. [Google Scholar]
- Parillo, M; Riccardi, G. Diet composition and the risk of type 2 diabetes, epidemiological and clinical evidence. Br. J. Nutr 2004, 92, 7–19. [Google Scholar]
- Slavin, JL. Position of the American Dietetic Association, health implications of dietary fiber. J. Am. Diet. Assoc 2008, 108, 1716–1731. [Google Scholar]
- Fuentes-Zaragoza, E; Riquelme-Navarrete, MJ; Sánchez-Zapata, E; Pérez-Álvarez, JA. Resistant starch as functional ingredient, a review. Food Res Int 2010. [Google Scholar]
- Topping, DL; Clifton, PM. Short-chain fatty acids and human colonic function, roles of resistant starch and nonstarch polysaccharides. Physiol. Rev 2001, 81, 1031–1064. [Google Scholar]
- Englyst, HN; Kingman, SM; Cummings, JH. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr 1992, 46, 33–50. [Google Scholar]
- Pérez-Sánchez, E. Efectos del consumo de una formulación que incluye almidón resistente de plátano en la glucemia postprandial de pacientes con diabetes mellitus tipo 2. Tesis de Maestría en Ciencias Alimentarias; Universidad Juárez Autónoma de Tabasco: Villahermosa, Tabasco, Mexico, 2007. [Google Scholar]
- Flores-Gorosquera, E; García-Suárez, FJ; Flores-Huicochea, E; Nuñez-Santiago, MC; González-Soto, RA; Bello-Pérez, LA. Rendimiento del proceso en la extracción de almidón a partir de frutos de plátano (Musa paradisiaca). Estudio en planta piloto. Acta Cien. Venezol 2004, 55, 86–90. [Google Scholar]
- Goñi, I; García-Diz, L; Mañas, E; Saura-Calixto, F. Analysis of resistant starch, a method for foods and food products. Food Chem 1996, 56, 445–449. [Google Scholar]
- Matthews, DR; Hosker, JP; Rudenski, AS; Naylor, BA; Treacher, DF; Turner, RC. Homeostasis model assessment, insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar]
- Howarth, NC; Saltzman, E; Roberts, SB. Dietary fiber and weight regulation. Nutr. Rev 2001, 59, 129–139. [Google Scholar]
- Slavin, JL; Green, H. Fibre and satiety. Nutr. Bull 2007, 32, 32–42. [Google Scholar]
- Behall, KM; Scholfield, DJ; Hallfrisch, JG; Liljeberg-Elmstahl, HG. Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women. Diabet. Care 2006, 29, 976–981. [Google Scholar]
- Robertson, MD; Bickerton, AS; Dennis, AL; Vidal, H; Frayn, KN. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am. J. Clin. Nutr 2005, 82, 559–567. [Google Scholar]
- Park, OJ; Kang, NE; Chang, MJ; Kim, WK. Resistant starch supplementation influences blood lipid concentrations and glucose control in overweight subjects. J. Nutr. Sci. Vitaminol. (Tokyo) 2004, 50, 93–99. [Google Scholar]
- Yki-Jarvinen, H; Koivisto, VA; Ylikahri, R; Taskinen, MR. Acute effects of ethanol and acetate on glucose kinetics in normal subjects. Am. J. Physiol 1988, 254, 175–180. [Google Scholar]
- Reilly, KJ; Frankel, WL; Bain, AM; Rombeau, JL. Colonic short chain fatty acids mediate jejunal growth by increasing gastrin. Gut 1995, 37, 81–86. [Google Scholar]
- Tappenden, KA; McBurney, MI. Systemic short-chain fatty acids rapidly alter gastrointestinal structure, function, and expression of early response genes. Dig. Dis. Sci 1998, 43, 1526–1536. [Google Scholar]
- Poykko, S; Ukkola, O; Kauma, H; Savolainen, MJ; Kesaniemi, YA. Ghrelin Arg51Gln mutation is a risk factor for Type 2 diabetes and hypertension in a random sample of middle-aged subjects. Diabetologia 2003, 46, 455–458. [Google Scholar]
- Choi, K; Roh, SG; Hong, YH; Shrestha, YB; Hishikawa, D; Chen, C; Kojima, M; Kangawa, K; Sasaki, S. The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology 2003, 144, 754–759. [Google Scholar]
- Lavigne, C; Marette, A; Jacques, H. Cod and soy proteins compared with casein improve glucose tolerance and insulin sensitivity in rats. Am. J. Physiol. Endocrinol. Metab 2000, 278, 491–500. [Google Scholar]
- Jayagopal, V; Albertazzi, P; Kilpatrick, ES; Howarth, EM; Jennings, PE; Hepburn, DA; Atkin, SL. Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabet. Care 2002, 25, 1709–1714. [Google Scholar]
- Hermansen, K; Sondergaard, M; Hoie, L; Carstensen, M; Brock, B. Beneficial effects of a soy-based dietary supplement on lipid levels and cardiovascular risk markers in type 2 diabetic subjects. Diabet. Care 2001, 24, 228–233. [Google Scholar]
- Wang, Y; Jones, PJ; Ausman, LM; Lichtenstein, AH. Soy protein reduces triglyceride levels and triglyceride fatty acid fractional synthesis rate in hypercholesterolemic subjects. Atherosclerosis 2004, 173, 269–275. [Google Scholar]
- Ali, AA; Velasquez, MT; Hansen, CT; Mohamed, AI; Bhathena, SJ. Modulation of carbohydrate metabolism and peptide hormones by soybean isoflavones and probiotics in obesity and diabetes. J. Nutr. Biochem 2005, 16, 693–699. [Google Scholar]
Characteristics | Value |
---|---|
Men/Women (n = 28) | 4/24 |
Age (y) | 51.7 ± 5.6 |
Body weight (Kg) | 79.00 ± 16.63 |
Height (m) | 1.50 ± 0.10 |
BMI (Kg /m2) | 34.89 ± 2.32 |
Fasting glycemia (mg/dL) | 145.94 ± 104.17 |
Fasting insulin (μU/mL) | 14.1 (8.6, 20.30) |
Waist circumference (cm) | 102.5 ± 9.61 |
Waist to hip ratio (WHR) | 0.87 (0.85, 0.91) |
Body fat (%)a | 40.93 ± 5.11 |
HbA1c (%) | 6.4 (4.5, 9.6) |
Total cholesterol (mg/dL) | 205.5 (187.8, 251.5) |
HDL-cholesterol (mg/dL) | 42.07 ± 8.60 |
Triglycerides (mg/dL) | 227 (165.3, 311.5) |
NBS | CT | P value | |
---|---|---|---|
Body weight (Kg) | −1.2 (−1.95, −0.65)** | 0.1 (−1.2, 0.7) | 0.002 |
BMI (Kg/m2) | −0.59 (−0.85, −0.29)*** | 0.09 (−0.14, 0.37) | < 0.0001 |
Fasting glycemia (mg/dL) | −2.0 (−43, 39.50) | 1.0 (−15.75, 19.25) | 0.796 |
Fasting insulin (μU/mL) | −2.9 (−6.5, −0.8)** | −1.1 (−4.9,0.0) | 0.420 |
HOMA−IR | 2.21 (0.59, 3.36)* | 1.12 (0.30, 2.93) | 0.436 |
Waist−to−hip−ratio | −0.00 (−4.9, 1.36) | 1.13 (−2.48, 5.92) | 0.048 |
Body fat (%) | 0.0 (−1.0, 0.0) | 0.0 (0.0, 0.0) | 0.442 |
HbA1c (%) | −0.2 (−0.7, 0.15) | −0.1 (−0.6, 0.4) | 0.840 |
Total cholesterol (mg/dL) | 0.5 (−18.75, 13.75) | 2.0 (−17.5, 11.50) | 0.781 |
HDL−cholesterol (mg/dL) | 0.0 (−3.25,2.75) | 2.0 (−5.0, 6.0) | 0.3395 |
Triglycerides (mg/dL) | 25.0 (−36.5, 58) | −40.0 (−76.0, 16.0)* | 0.012 |
Calcium (mg/dL) | −0.10 (−0.20, 0.20) | 0.0 (−0.42, 0.30) | 0.755 |
Phosphates (mg/dL) | 0.10 (−0.25, 0.20) | −0.10 (−0.42, 0.05) | 0.111 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ble-Castillo, J.L.; Aparicio-Trápala, M.A.; Francisco-Luria, M.U.; Córdova-Uscanga, R.; Rodríguez-Hernández, A.; Méndez, J.D.; Díaz-Zagoya, J.C. Effects of Native Banana Starch Supplementation on Body Weight and Insulin Sensitivity in Obese Type 2 Diabetics. Int. J. Environ. Res. Public Health 2010, 7, 1953-1962. https://doi.org/10.3390/ijerph7051953
Ble-Castillo JL, Aparicio-Trápala MA, Francisco-Luria MU, Córdova-Uscanga R, Rodríguez-Hernández A, Méndez JD, Díaz-Zagoya JC. Effects of Native Banana Starch Supplementation on Body Weight and Insulin Sensitivity in Obese Type 2 Diabetics. International Journal of Environmental Research and Public Health. 2010; 7(5):1953-1962. https://doi.org/10.3390/ijerph7051953
Chicago/Turabian StyleBle-Castillo, Jorge L., María A. Aparicio-Trápala, Mateo U. Francisco-Luria, Rubén Córdova-Uscanga, Arturo Rodríguez-Hernández, José D. Méndez, and Juan C. Díaz-Zagoya. 2010. "Effects of Native Banana Starch Supplementation on Body Weight and Insulin Sensitivity in Obese Type 2 Diabetics" International Journal of Environmental Research and Public Health 7, no. 5: 1953-1962. https://doi.org/10.3390/ijerph7051953