Next Article in Journal
Aflatoxin Contamination in Food and Body Fluids in Relation to Malnutrition and Cancer Status in Cameroon
Next Article in Special Issue
A Systematic Review of Occupational Exposure to Particulate Matter and Cardiovascular Disease
Previous Article in Journal
Maternal Cigarette Smoking during Pregnancy and Offspring Externalizing Behavioral Problems: A Propensity Score Matching Analysis
Previous Article in Special Issue
Associations between Area-Level Unemployment, Body Mass Index, and Risk Factors for Cardiovascular Disease in an Urban Area
Open AccessArticle

Estimating Prevalence of Coronary Heart Disease for Small Areas Using Collateral Indicators of Morbidity

Department of Geography and Centre for Statistics, Queen Mary University of London, Mile End Rd, London E1 4NS, UK
Int. J. Environ. Res. Public Health 2010, 7(1), 164-177; https://doi.org/10.3390/ijerph7010164
Received: 20 November 2009 / Accepted: 14 January 2010 / Published: 18 January 2010
(This article belongs to the Special Issue Cardiovascular Diseases and Public Health)
Different indicators of morbidity for chronic disease may not necessarily be available at a disaggregated spatial scale (e.g., for small areas with populations under 10 thousand). Instead certain indicators may only be available at a more highly aggregated spatial scale; for example, deaths may be recorded for small areas, but disease prevalence only at a considerably higher spatial scale. Nevertheless prevalence estimates at small area level are important for assessing health need. An instance is provided by England where deaths and hospital admissions for coronary heart disease are available for small areas known as wards, but prevalence is only available for relatively large health authority areas. To estimate CHD prevalence at small area level in such a situation, a shared random effect method is proposed that pools information regarding spatial morbidity contrasts over different indicators (deaths, hospitalizations, prevalence). The shared random effect approach also incorporates differences between small areas in known risk factors (e.g., income, ethnic structure). A Poisson-multinomial equivalence may be used to ensure small area prevalence estimates sum to the known higher area total. An illustration is provided by data for London using hospital admissions and CHD deaths at ward level, together with CHD prevalence totals for considerably larger local health authority areas. The shared random effect involved a spatially correlated common factor, that accounts for clustering in latent risk factors, and also provides a summary measure of small area CHD morbidity. View Full-Text
Keywords: Prevalence; common factor; spatial correlation; coronary heart disease; Bayesian Prevalence; common factor; spatial correlation; coronary heart disease; Bayesian
MDPI and ACS Style

Congdon, P. Estimating Prevalence of Coronary Heart Disease for Small Areas Using Collateral Indicators of Morbidity. Int. J. Environ. Res. Public Health 2010, 7, 164-177.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop