LLM-Assisted Scoping Review of Artificial Intelligence in Brazilian Public Health: Lessons from Transfer and Federated Learning for Resource-Constrained Settings
Highlights
- Maps how artificial intelligence is currently applied within the Brazilian Unified Health System (SUS), identifying structural gaps between diagnostic innovation and health system integration.
- Examines Transfer Learning and Federated Learning as practical responses to public health challenges such as data scarcity, privacy protection, and infrastructure limitations in the Global South.
- Demonstrates that resource-aware AI architectures can enable equitable innovation in large universal health systems without reliance on centralized data extraction or high-cost infrastructure.
- Provides empirical evidence that data sovereignty and cooperative AI development are achievable within real-world public health settings through decentralized and adaptive methodologies.
- For policymakers, the findings support Federated Learning as a governance-aligned strategy consistent with data protection laws (e.g., LGPD) and national digital health sovereignty.
- For researchers and practitioners, the review highlights Transfer Learning and Federated Learning as scalable, low-resource pathways to deploy clinically relevant AI tools in underserved and heterogeneous health systems.
Abstract
1. Introduction
1.1. Asymmetries of AI in Global Health
1.2. Unique Challenges in Brazil
1.3. Transfer Learning and Federated Learning Solutions
2. Methods
2.1. Search Strategy
2.2. AI-Assisted Screening Workflow
2.2.1. Human Validation and Consensus
2.2.2. Researcher Expertise and Positional Transparency
2.3. Study Selection and Thematic Classification
2.4. Role of AI and Risk Mitigation
3. Results
4. Discussion
4.1. Limitations and Strengths
4.2. Comparative Challenges: Data-Centric vs. Infrastructure-Centric Barriers
4.3. Regulatory Implications: LGPD and ANVISA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ANVISA | Agência Nacional de Vigilância Sanitária |
| AUC | Area Under the Curve |
| ATC | Anatomical Therapeutic Chemical Classification System |
| BBBC | Broad Bioimage Benchmark Collection |
| CPU | Central Processing Unit |
| CVD | Cardiovascular Disease |
| DST | Deep Stacked Transformation |
| DPIA | Data Transfer Impact Assessments |
| DSC | Dice Similarity Coefficient |
| EMR | Electronic Medical Record |
| FedNCA | Equitable Federated Learning with Neighborhood Component Analysis |
| FeTS | Federated Tumor Segmentation |
| FL | Federated Learning |
| GPU | Graphics Processing Unit |
| HE | Homomorphic Encryption |
| HIC | High-Income Country |
| ICD | International Classification of Diseases |
| LLM | Large Language Model |
| LOINC | Logical Observation Identifiers Names and Codes |
| MACE | Major Adverse Cardiovascular Event |
| MCTI | Ministry of Science, Technology and Innovation (Brazil) |
| ML | Machine Learning |
| PNS | Pesquisa Nacional de Saúde (National Health Survey, Brazil) |
| PRE-CARE ML | Predictive Care through Machine Learning (ERA PerMed Consortium) |
| RF | Random Forest |
| SaMD | Software as a Medical Device |
| SEIDIGI | Secretaria de Informação e Saúde Digital |
| SHAP | SHapley Additive exPlanations |
| SMPC | Secure Multi-Party Computation |
| SUS | Sistema Único de Saúde (Brazilian Unified Health System) |
| TL | Transfer Learning |
| XGBoost | Extreme Gradient Boosting |
Appendix A
Search Strategy
| Database (Platform) | String Used |
|---|---|
| PubMed (MEDLINE) | (“artificial intelligence”) AND (“health” OR “healthcare” OR “public health” OR “medicine” OR “medical”) AND Brazil) |
| SciELO | (“inteligência artificial”OR “machine learning”) AND (“saúde” OR “saúde pública” OR “health” OR “healthcare”) AND (Brasil OR Brazil) |
| CNPq Theses & Dissertations Repository | (“inteligência artificial”OR “machine learning”) AND (“saúde” OR “saúde pública” OR “health” OR “healthcare”) AND (Brasil OR Brazil) |
Appendix B
Prompt and Technical Setup for AI-Assisted Screening
- Model: GPT-4o-mini
- Access method: OpenAI API
- Environment: Google Colab (https://colab.research.google.com/)
- Hardware: Standard laptop using CPU (no GPU acceleration)
- Programming language: Python 3.10+
- Key libraries: openai, pandas, re, math, time
- Batch size: 10 titles per request
- Output: CSV file with model classification and justification for each title
- Dynamic prompt construction for each batch
- Submission of prompts via OpenAI API
- Parsing of structured responses using regular expressions
- Integration of results into a working dataset for analysis
References
- Sobrinho, L.V.; Modolo, L.; Araújo de Santana, M.; Machado Magalhães Moreno, G.; Tonaco Borges, F.; Pinheiro dos Santos, W. (Eds.) Artificial Intelligence and Bioethics: Perspectives; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar] [CrossRef]
- Poostchi, M.; Silamut, K.; Maude, R.J.; Jaeger, S.; Thoma, G. Image Analysis and Machine Learning for Detecting Malaria. Transl. Res. 2018, 194, 36–55. [Google Scholar] [CrossRef]
- Bahrami, S.; Rubulotta, F. Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research. Int. J. Environ. Res. Public Health 2025, 22, 95. [Google Scholar] [CrossRef]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global Mortality from Outdoor Fine Particle Pollution Generated by Fossil Fuel Combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Solano Meza, J.K.; Orjuela Yepes, D.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.-E. Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities. Int. J. Environ. Res. Public Health 2023, 20, 4256. [Google Scholar] [CrossRef]
- Fisher, E.; Flynn, M.A.; Pratap, P.; Vietas, J.A. Occupational Safety and Health Equity Impacts of Artificial Intelligence: A Scoping Review. Int. J. Environ. Res. Public Health 2023, 20, 6221. [Google Scholar] [CrossRef]
- Alazmi, A.; Rakha, H. Assessing and Validating the Ability of Machine Learning to Handle Unrefined Particle Air Pollution Mobile Monitoring Data Randomly, Spatially, and Spatiotemporally. Int. J. Environ. Res. Public Health 2022, 19, 10098. [Google Scholar] [CrossRef]
- Topol, E.J. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again; Basic Books: New York, NY, USA, 2019. [Google Scholar]
- Moor, M.; Banerjee, O.; Abad, Z.S.H.; Krumholz, H.M.; Leskovec, J.; Topol, E.J.; Rajpurkar, P. Foundation Models for Generalist Medical Artificial Intelligence. Nature 2023, 616, 259–265. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Adekoya, A.; Tyagi, S.K.; Duru, C.N.; Satia, I.; Paudyal, V.; Kurmi, O.P. Effects of Household Air Pollution (HAP) on Cardiovascular Diseases in Low- and Middle-Income Countries (LMICs): A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 9298. [Google Scholar] [CrossRef]
- Cicci, K.R.; Maltby, A.; Clemens, K.K.; Vicedo-Cabrera, A.M.; Gunz, A.C.; Lavigne, É.; Wilk, P. High Temperatures and Cardiovascular-Related Morbidity: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 11243. [Google Scholar] [CrossRef]
- Brandt, E.J.; Chang, T.; Leung, C.; Ayanian, J.Z.; Nallamothu, B.K. Food Insecurity Among Individuals with Cardiovascular Disease and Cardiometabolic Risk Factors Across Race and Ethnicity in 1999–2018. JAMA Cardiol. 2022, 7, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Quer, G.; Topol, E.J. The Potential for Large Language Models to Transform Cardiovascular Medicine. Lancet Digit. Health 2024, 6, e767–e771. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal Biomedical AI. Nat. Med. 2022, 28, 1773–1784. Available online: https://www.nature.com/articles/s41591-022-01981-2 (accessed on 21 October 2025). [CrossRef] [PubMed]
- López, D.M.; Rico-Olarte, C.; Blobel, B.; Hullin, C. Challenges and Solutions for Transforming Health Ecosystems in Low- and Middle-Income Countries through Artificial Intelligence. Front. Med. 2022, 9, 958097. [Google Scholar] [CrossRef]
- Ministério da Ciência, Tecnologia e Inovação (MCTI). IA para o Bem de Todos: Estratégia Brasileira de Inteligência Artificial—2024; Governo Federal do Brasil: Brasília, Brazil, 2024. Available online: https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/noticias/2024/07/plano-brasileiro-de-ia-tera-supercomputador-e-investimento-de-r-23-bilhoes-em-quatro-anos/ia_para_o_bem_de_todos.pdf/view (accessed on 21 October 2025).
- Haddad, A.E.; Garrido, D.; Shibata, L.; dos Santos, A.d.F.; D’Agostino, M. Evolução da Regulação Brasileira de Telessaúde: Do Programa Nacional de Telessaúde ao SUS Digital. Rev. Dir. Sanit. 2025, 25, e0008. [Google Scholar] [CrossRef]
- Catapan, S.C.; Melo, E.A.; Silva, A.B.; Albuquerque, M.V.; Calvo, M.C.M. Telecare in the Brazilian Unified Health System: Where We Are and Where We Are Heading. Cienc. Saude Colet. 2024, 29, e03302024. [Google Scholar]
- Cabral, B.P.; Braga, L.A.M.; Conte Filho, C.G.; Penteado, B.; Freire de Castro Silva, S.L.; Castro, L.; Fornazin, M.; Mota, F. Future Use of AI in Diagnostic Medicine: A Two-Wave Cross-Sectional Survey Study. J. Med. Internet Res. 2025, 27, e53892. [Google Scholar] [CrossRef]
- Modolo, L.; Carvalho, S.; Dias, T. Questões da Saúde Digital para o SUS: A “Saúde Móvel” e a Automação Algorítmica do Saber-Poder da Medicina. Saúde Soc. 2023, 32, e220245pt. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2019, 109, 43–76. [Google Scholar] [CrossRef]
- Jiang, J.; Shu, Y.; Wang, J.; Long, M. Transferability in Deep Learning: A Survey. arXiv 2022, arXiv:2201.05867. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, X. Transfer Adaptation Learning: A Decade Survey. arXiv 2019, arXiv:1903.04687. [Google Scholar] [CrossRef] [PubMed]
- Redko, I.; Morvant, E.; Habrard, A.; Sebban, M.; Bennani, Y. A Survey on Domain Adaptation Theory: Learning Bounds and Theoretical Guarantees. arXiv 2020, arXiv:2004.11829. [Google Scholar] [CrossRef]
- de Araújo, A.L.V.; Fonseca, F.S.; Torcate, A.S.; da Silva, A.C.G.; de Oliveira, F.M., Jr.; da Silva, J.C., Jr.; Gomes, D.A.; Gomes, J.C.; de Santana, M.A.; de Lima, C.L.; et al. Early Prediction of Sepsis in Intensive Care Units: A Comparative Analysis Based on Optimization Techniques and Committees. Res. Biomed. Eng. 2025, 41, 55. [Google Scholar] [CrossRef]
- Dayan, I.; Roth, H.R.; Zhong, A.; Harouni, A.; Gentili, A.; Abidin, A.Z.; Liu, A.; Costa, A.B.; Wood, B.J.; Tsai, C.-S.; et al. Federated Learning for Predicting Clinical Outcomes in Patients with COVID-19. Nat. Med. 2021, 27, 1735–1743. [Google Scholar] [CrossRef]
- Pati, S.; Baid, U.; Edwards, B.; Sheller, M.; Wang, S.H.; Reina, G.A.; Foley, P.; Gruzdev, A.; Karkada, D.; Davatzikos, C. Federated Learning Enables Big Data for Rare Cancer Boundary Detection. Nat. Commun. 2020, 13, 7346. [Google Scholar] [CrossRef]
- Wiesner, M.; Jäger, V.; Axt, M.; Barteit, S.; Briese, M. Equitable Federated Learning with NCA. arXiv 2025, arXiv:2506.21735. [Google Scholar] [CrossRef]
- Lorenzer, L.; Schrempf, M.; Jauk, S.; Kalabakov, S.; Pierri, G.; Firmino Suzuki, K.M.; César, H.V.; Kramer, D. Harmonization of Electronic Medical Records for Federated Learning: Addressing Challenges in International Healthcare Collaborations. Stud. Health Technol. Inform. 2025, 309, 141–147. [Google Scholar] [CrossRef]
- Calvino, G.; Peconi, C.; Strafella, C.; Trastulli, G.; Megalizzi, D.; Andreucci, S.; Cascella, R.; Caltagirone, C.; Zampatti, S.; Giardina, E. Federated Learning: Breaking Down Barriers in Global Genomic Research. Genes 2024, 15, 1650. [Google Scholar] [CrossRef]
- Shankar, K.; Perumal, E. E-DiCoNet: Extreme Learning Machine Based Classifier for Diagnosis of COVID-19 Using Deep Convolutional Network. J. Ambient Intell. Humaniz. Comput. 2021, 12, 8887–8898. [Google Scholar]
- Ferrari, R. Writing Narrative Style Literature Reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O'Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Ramos, J.S.; Vieira, I.H.P.; Rocha, W.S.; Esquerdo, R.P.; Watanabe, C.Y.V.; Zanchi, F.B. A Transfer Learning Approach to Identify Plasmodium in Microscopic Images. PLoS Comput. Biol. 2024, 20, e1012327. [Google Scholar] [CrossRef]
- Sanford, T.H.; Zhang, L.; Harmon, S.A.; Sackett, J.; Yang, D.; Roth, H.; Xu, Z.; Kesani, D.; Mehralivand, S.; Baroni, R.H.; et al. Data Augmentation and Transfer Learning to Improve Generalizability of an Automated Prostate Segmentation Model. AJR Am. J. Roentgenol. 2020, 215, 1403–1410. [Google Scholar] [CrossRef]
- Araujo-Moura, K.; Souza, L.; de Oliveira, T.A.; Rocha, M.S.; De Moraes, A.C.F.; Chiavegatto Filho, A.D.P. Prediction of Hypertension in the Pediatric Population Using Machine Learning and Transfer Learning: A Multicentric Analysis of the SAYCARE Study. Int. J. Public Health 2025, 70, 1607944. [Google Scholar] [CrossRef]
- Brasil. Lei Geral de Proteção de Dados Pessoais (LGPD)—Lei No. 13.709, de 14 de Agosto de 2018; Presidência da República: Brasília, Brazil, 2018. Available online: https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.htm (accessed on 21 October 2025).

| Thematic Domain | Subcategory/Application Area | Count | TL Studies | FL Studies | Technique Highlight |
|---|---|---|---|---|---|
| Pattern Recognition | Infectious Diseases (COVID-19, Zika, Dengue, Malaria) | 110 | 1 | 1 | Deep Learning (CNNs), Transfer Learning (Microscopy), Federated Learning (Prognosis) |
| Oncology (Breast, Prostate, Skin, Lung cancer) | 86 | 1 | 1 | CNNs, Segmentation (U-Net), Federated Learning (Rare Cancers), Transfer Learning | |
| Cardiovascular (ECG, Heart Disease risk) | 46 | 1 | 1 | ML Classifiers, Signal Processing, Transfer Learning (Pediatrics), Federated Learning (Harmonization) | |
| Neurological (Alzheimer’s, Stroke, Parkinson’s) | 38 | 0 | 0 | MRI analysis, Deep Learning | |
| General Medical Imaging (X-ray, CT, Ultrasound) | 36 | 0 | 0 | Image Processing, Computer Vision | |
| Applications in SUS | Primary Care & Family Health | 15 | 0 | 0 | Risk Stratification, Triage Algorithms (incl. Low-resource ML) |
| Hospital Management & Logistics | 10 | 0 | 0 | Resource Allocation, Bed Management | |
| Public Policies | Regulation & Ethics | 6 | 0 | 0 | Qualitative Analysis, Framework Proposals |
| Health Research | Methodological Studies | 3 | 0 | 0 | Reviews, Benchmarking |
| Challenges | Implementation Barriers | 2 | 0 | 0 | Surveys, Critical Analysis |
| TOTAL | 352 | 3 | 3 |
| Study and Brazilian Participation | Context and Dataset Characteristics | Methodology (AI Technique) | Performance and Quantitative Indicators | Clinical and Public Health Relevance |
|---|---|---|---|---|
| Dayan et al. [27] (Global Consortium). Brazil Role: DASA & hospitals among 20 global sites. | Scope: 20 institutions across 4 continents (N. America, S. America, Europe, Asia). Data: Electronic Medical Records (EMR) + Chest X-rays (CXR). | FL: EXAM model training decentralized models without data transfer. | AUC: >0.92 (avg across sites). Gen: +38% improvement in generalizability over local models. | Resource Allocation: Predicts oxygen requirements (24–72 h), optimizing ICU/ventilator usage during pandemic surges. |
| Lorenzer et al. [30] (ERA PerMed Consortium). Brazil Role: Ribeirão Preto Medical School (USP). | Scope: Multicenter data from Austria, Germany, and Brazil. Data: Unharmonized EMRs predicting MACE. | Federated Learning (Interoperability): Semantic harmonization of disparate coding systems (ICD-10, LOINC, ATC). | Outcome: Successful semantic mapping across 3 languages/systems; data ready for federated modeling. | Interoperability Blueprint: Establishes standards for cross-border public health surveillance without sharing sensitive patient data. |
| Sheller et al. [28] (FeTS Initiative). Brazil Role: University of São Paulo (USP). | Scope: 71 institutions across 6 continents. Data: 6314 patients (largest dataset for Glioblastoma). | Federated Learning: U-Net architecture with local normalization for tumor boundary detection. | DSC: 0.78 (mean). Gain: +33% boundary delineation vs. public models; +20% perf. over local models. | Rare Disease Precision: Enables big data analytics for rare cancers where single-center data is insufficient for training. |
| Ramos et al. [37] (Single-Center Initiative). Brazil Role: Fiocruz Rondônia (Amazon Region). | Scope: Local samples from Brazilian Amazon + Broad Bioimage Benchmark. Data: 6222 Regions of Interest (ROIs). | Transfer Learning: DenseNet201, InceptionV3, MobileNetV2 adapted for malaria diagnosis. | AUC: 99.41%.Accuracy: 97.29% (DenseNet201). | Diagnostic Automation: Automates diagnosis in low-resource settings, reducing dependency on specialists in endemic regions. |
| Sanford et al. [38] (NIH/NVIDIA Collaboration). Brazil Role: Hospital Albert Einstein (São Paulo). | Scope: 6 international centers (USA, Brazil, UK, Italy). Data: 648 MRI exams used to test generalizability. | Transfer Learning: AH-Net with deep augmentation and fine-tuning for prostate segmentation. | DSC: 91.5 (Whole Prostate); 89.7 (Transition Zone). Gain: +2–3% DSC via TL. | Oncology Workflow: Enhances generalizability of models across different hospitals/scanners for radiotherapy planning. |
| Araujo-Moura et al. [39] (SAYCARE Study). Brazil Role: USP & UEPB coordination. | Scope: Multicentric study across 7 South American cities. Data: 658 participants (351 children, 307 adolescents). | Transfer Learning: Deep neural networks and fine-tuning for pediatric hypertension prediction. | Accuracy: 1.0 (Adolescents with TL); ~0.90 (Children). Gain: +12% F1-score with TL. | Early Prevention: Identifies risk factors (e.g., processed food) early, enabling targeted interventions in schools/families. |
| Dimension | Transfer Learning | Federated Learning |
|---|---|---|
| Primary Barrier | Domain Shift & Negative Transfer: Performance degradation when source data (e.g., HIC datasets) differs statistically from target data (e.g., Amazonian samples). | Client Heterogeneity (Non-IID): Divergence in data distribution and quantity across participating institutions destabilizes model convergence. |
| Infrastructure Needs | Low to Moderate: Can often be deployed on standard hardware after pre-training; computation is localized and offline. | High: Requires reliable high-speed connectivity to handle communication overhead, latency, and synchronization between global nodes. |
| Data Interoperability | Label Alignment: Requires target labels to match source classes (e.g., exact tumor types or parasite species). | Semantic Alignment: Requires strict harmonization of ontologies (ICD-10, LOINC, ATC) across all nodes to ensure the algorithm “reads” data identically. |
| Privacy Risk | Centralization Risk: Often requires moving local data to a central server or cloud for fine-tuning, potentially exposing patient information. | Inference Risk: Data remains local, but the model is susceptible to gradient leakage or reconstruction attacks if differential privacy is not strictly enforced. |
| Governance Focus | Asset Management: Focuses on acquiring and licensing pre-trained models and datasets. | Orchestration: Focuses on managing the consortium, legal agreements for weight sharing, and software versioning across borders. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Borges, F.T.; Machado, G.d.M.; Santana, M.A.d.; Sancho, K.A.; França, G.V.A.d.; Santos, W.P.d.; Siqueira, C.E.G. LLM-Assisted Scoping Review of Artificial Intelligence in Brazilian Public Health: Lessons from Transfer and Federated Learning for Resource-Constrained Settings. Int. J. Environ. Res. Public Health 2026, 23, 81. https://doi.org/10.3390/ijerph23010081
Borges FT, Machado GdM, Santana MAd, Sancho KA, França GVAd, Santos WPd, Siqueira CEG. LLM-Assisted Scoping Review of Artificial Intelligence in Brazilian Public Health: Lessons from Transfer and Federated Learning for Resource-Constrained Settings. International Journal of Environmental Research and Public Health. 2026; 23(1):81. https://doi.org/10.3390/ijerph23010081
Chicago/Turabian StyleBorges, Fabiano Tonaco, Gabriela do Manco Machado, Maíra Araújo de Santana, Karla Amorim Sancho, Giovanny Vinícius Araújo de França, Wellington Pinheiro dos Santos, and Carlos Eduardo Gomes Siqueira. 2026. "LLM-Assisted Scoping Review of Artificial Intelligence in Brazilian Public Health: Lessons from Transfer and Federated Learning for Resource-Constrained Settings" International Journal of Environmental Research and Public Health 23, no. 1: 81. https://doi.org/10.3390/ijerph23010081
APA StyleBorges, F. T., Machado, G. d. M., Santana, M. A. d., Sancho, K. A., França, G. V. A. d., Santos, W. P. d., & Siqueira, C. E. G. (2026). LLM-Assisted Scoping Review of Artificial Intelligence in Brazilian Public Health: Lessons from Transfer and Federated Learning for Resource-Constrained Settings. International Journal of Environmental Research and Public Health, 23(1), 81. https://doi.org/10.3390/ijerph23010081

