Investigating the Dual Role of Trace and Toxic Elements in Pregnancy-Related Health Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Population
2.2. Data Collection Tools
2.3. Clinical and Laboratory Variables
2.4. Determination of Trace and Toxic Elements in Maternal Blood
2.5. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Trace and Toxic Element Concentrations
3.3. Correlation Coefficients of Selected Toxic Elements and Biological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cu | Copper |
Zn | Zinc |
Ca | Calcium |
Mg | Magnesium |
Fe | Iron |
Pb | Lead |
Cd | Cadmium |
Cr | Chromium |
As | Arsenic |
Hg | Mercury |
G-BMI | Gestational body mass index |
CBC | Complete blood count |
FPG | fasting plasma glucose |
OGTT | Oral glucose tolerance testing |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
G | Gravida |
ICP-OES | Inductively coupled plasma optical emission spectroscopy |
LoD | Limit of detection |
References
- Zheng, G.; Zhong, H.; Guo, Z.; Wu, Z.; Zhang, H.; Wang, C.; Zhou, Y.; Zuo, Z. Levels of heavy metals and trace elements in umbilical cord blood and the risk of adverse pregnancy outcomes: A population-based study. Biol. Trace Elem. Res. 2014, 160, 437–444. [Google Scholar] [CrossRef]
- Iqbal, S.; Ali, I.; Rust, P.; Kundi, M.; Ekmekcioglu, C. Selenium, Zinc, and Manganese Status in Pregnant Women and Its Relation to Maternal and Child Complications. Nutrients 2020, 12, 725. [Google Scholar] [CrossRef]
- Pathak, P.; Kapil, U. Role of trace elements zinc, copper and magnesium during pregnancy and its outcome. Indian J. Pediatr. 2014, 71, 1003–1005. [Google Scholar] [CrossRef] [PubMed]
- Almaghamsi, A.; Almalki, M.H.; Buhary, B.M. Hypocalcemia in Pregnancy: A Clinical Review Update. Oman Med. J. 2018, 33, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Fanni, D.; Gerosa, C.; Nurchi, V.M.; Manchia, M.; Saba, L.; Coghe, F.; Crisponi, G.; Gibo, Y.; Van Eyken, P.; Fanos, V.; et al. The Role of Magnesium in Pregnancy and in Fetal Programming of Adult Diseases. Biol. Trace Elem. Res. 2021, 199, 3647–3657. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczak, K.; Kwiatkowski, S.; Kosik-Bogacka, D. The Role of Fe, Zn, and Cu in Pregnancy. Biomolecules 2020, 10, 1176. [Google Scholar] [CrossRef]
- Wu, N.; Ye, E.; Ba, Y.; Caikai, S.; Ba, B.; Li, L.; Zhu, Q. The global burden of maternal disorders attributable to iron deficiency related sub-disorders in 204 countries and territories: An analysis for the Global Burden of Disease study. Front. Public Health 2024, 12, 1406549. [Google Scholar] [CrossRef]
- Lutfullah, G. Prevalence of zinc deficiency among rural women during childbearing age in Peshawar, Pakistan. Pak. J. Pharm. Sci. 2014, 27, 173–177. [Google Scholar]
- Gebremedhin, S.; Enquselassie, F.; Umeta, M. Prevalence of prenatal zinc deficiency and its association with socio-demographic, dietary and health care related factors in Rural Sidama, Southern Ethiopia: A cross-sectional study. BMC Public Health 2011, 11, 898. [Google Scholar] [CrossRef]
- De Benedictis, C.A.; Trame, S.; Rink, L.; Grabrucker, A.M. Prevalence of low dietary zinc intake in women and pregnant women in Ireland. Ir. J. Med. Sci. 2023, 192, 1835–1845. [Google Scholar] [CrossRef]
- Rerkasem, A.; Nantakool, S.; Wilson, B.C.; Mangklabruks, A.; Boonyapranai, K.; Mutirangura, A.; Derraik, J.G.B.; Rerkasem, K. Associations between maternal plasma zinc concentrations in late pregnancy and LINE-1 and Alu methylation loci in the young adult offspring. PLoS ONE 2022, 17, e0279630. [Google Scholar] [CrossRef]
- Piammongkol, S.; Chongsuvivatwong, V.; Williams, G.; Pornpatkul, M. The prevalence and determinants of iron deficiency anemia in rural Thai-Muslim pregnant women in Pattani Province. Southeast Asian J. Trop. Med. Public Health 2006, 37, 553. [Google Scholar]
- Adams, J.B.; Kirby, J.K.; Sorensen, J.C.; Pollard, E.L.; Audhya, T. Evidence based recommendations for an optimal prenatal supplement for women in the US: Vitamins and related nutrients. Matern. Health Neonatol. Perinatol. 2022, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Tomczyk, K.; Rzymski, P.; Poniedzialek, B.; Opala, T.; Wilczak, M. Impact of heavy metals on the female reproductive system. Ann. Agric. Environ. Med. 2015, 22, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Myers, R.; Wei, T.; Bind, E.; Kassim, P.; Wang, G.; Ji, Y.; Hong, X.; Caruso, D.; Bartell, T.; et al. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 537–544. [Google Scholar] [CrossRef]
- Wei, M.H.; Li, J.X.; Mi, J.; Wang, Q.; Xu, F.; Xu, C. Associations between co-exposure to multiple heavy metals and age-related macular degeneration: A cross-sectional study. J. Trace Elem. Med. Biol. 2025, 87, 127573. [Google Scholar] [CrossRef] [PubMed]
- Waeyeng, D.; Khamphaya, T.; Pouyfung, P.; Vattanasit, U.; Yimthiang, S. Blood Lead Levels Among Non-Occupationally Exposed Pregnant Women in Southern Thailand. Toxics 2022, 10, 599. [Google Scholar] [CrossRef]
- Njoku, C.O.; Orisakwe, O.E. Higher blood lead levels in rural than urban pregnant women in Eastern Nigeria. Occup. Environ. Med. 2022, 69, 850–851. [Google Scholar]
- Huang, S.; Xia, W.; Sheng, X.; Qiu, L.; Zhang, B.; Chen, T.; Xu, S.; Li, Y. Maternal lead exposure and premature rupture of membranes: A birth cohort study in China. BMJ Open 2018, 8, e021565. [Google Scholar] [CrossRef]
- Sámano, R.; Chico-Barba, G.; Flores-Quijano, M.E.; Godínez-Martínez, E.; Martínez-Rojano, H.; Ortiz-Hernandez, L.; Nájera-Medina, O.; Hernández-Trejo, M.; Hurtado-Solache, C. Association of pregestational BMI and gestational weight gain with maternal and neonatal outcomes in adolescents and adults from Mexico City. Int. J. Environ. Res. Public Health 2021, 19, 280. [Google Scholar] [CrossRef]
- Kot, K.; Łanocha-Arendarczyk, N.; Kupnicka, P.; Szymański, S.; Malinowski, W.; Kalisińska, E.; Chlubek, D.; Kosik-Bogacka, D. Selected Metal Concentration in Maternal and Cord Blood. Int. J. Environ. Res. Public Health 2021, 18, 12407. [Google Scholar] [CrossRef]
- Assavapokee, N.; Khomphaiboonkij, U.; Tangjitgamol, S.; Khunamornpong, S.; Pongsuvareeyakul, T.; Chanpanitkitchot, S.; Lertkhachonsuk, A.A. Practice guideline for management of endometrial cancer in Thailand: A Thai Gynecologic Cancer Society consensus statement. J. Gynecol. Oncol. 2025, 36, e96. [Google Scholar] [CrossRef]
- Lupton, D. The use and value of digital media for information about pregnancy and early motherhood: A focus group study. BMC Pregnancy Childbirth 2016, 16, 171. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, Y.F.; Hao, J.H.; Chen, Y.H.; Su, P.Y.; Wang, Y.; Yu, Z.; Fu, L.; Xu, Y.-Y.; Zhang, C.; et al. Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: A population-based birth cohort study. Sci. Rep. 2015, 5, 11262. [Google Scholar] [CrossRef] [PubMed]
- Kuma, M.N.; Tamiru, D.; Belachew, T. Level and predictors of dietary diversity among pregnant women in rural South-West Ethiopia: A community-based cross-sectional study. BMJ Open 2021, 11, e055125. [Google Scholar] [CrossRef]
- Paulson, J.A.; Brown, M.J. The CDC blood lead reference value for children: Time for a change. Environ. Health 2019, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Jiang, T.; Zhang, D.; Li, M.; Yu, T.; Zhai, M.; He, B.; Yin, T.; Wang, X.; Tao, F.; et al. Association of exposure to multiple heavy metals during pregnancy with the risk of gestational diabetes mellitus and insulin secretion phase after glucose stimulation. Environ. Res. 2024, 248, 118237. [Google Scholar] [CrossRef]
- Bibha, K.; Akhigbe, T.M.; Hamed, M.A.; Akhigbe, R.E. Metabolic derangement by arsenic: A review of the mechanisms. Biol. Trace Elem. Res. 2024, 202, 1972–1982. [Google Scholar] [CrossRef]
- Satarug, S. Benchmark dose modeling to define permissible exposure levels for environmental cadmium. J. Environ. Expo. Assess 2025, 4, 28. [Google Scholar] [CrossRef]
- Georgieff, M.K.; Krebs, N.F.; Cusick, S.E. The benefits and risks of iron supplementation in pregnancy and childhood. Annu. Rev. Nutr. 2019, 39, 121–146. [Google Scholar] [CrossRef]
- Bekele, Y.; Gallagher, C.; Batra, M.; Buultjens, M.; Eren, S.; Erbas, B. Does oral iron and folate supplementation during pregnancy protect against adverse birth outcomes and reduced neonatal and infant mortality in Africa: A protocol for a systematic review and meta-analysis? Nutr. Health 2025, 31, 15–22. [Google Scholar] [CrossRef]
- Sripada, K.; Lager, A.M. Interventions to reduce cadmium exposure in low-and middle-income countries during pregnancy and childhood: A systematic review. J. Glob. Health 2022, 12, 04089. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yang, X.; Xu, Q.; Li, H.; Su, Y.; Xu, Q.; Li, Q.X.; Xia, Y.; Shen, R. Association of maternal metals exposure, metabolites and birth outcomes in newborns: A prospective cohort study. Environ. Int. 2013, 179, 108183. [Google Scholar] [CrossRef]
- Patel, A.B.; Meleth, S.; Pasha, O.; Goudar, S.S.; Esamai, F.; Garces, A.L.; Chomba, E.; McClure, E.M.; Wright, L.L.; Koso-Thomas, M.; et al. Impact of exposure to cooking fuels on stillbirths, perinatal, very early and late neonatal mortality-a multicenter prospective cohort study in rural communities in India, Pakistan, Kenya, Zambia and Guatemala. Matern. Health Neonatol. Perinatol. 2015, 1, 18. [Google Scholar] [CrossRef]
- Wessells, K.R.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Ristovska, G.; Dadvand, P. WHO environmental noise guidelines for the European region: A systematic review on environmental noise and adverse birth outcomes. Int. J. Environ. Res. Public Health 2017, 14, 1252. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, A.A.; Zaher, M.M.; Abd El-Hafez, M.A.; Morsy, A.A.; Saleh, R.A. Relation between anemia and blood levels of lead, copper, zinc and iron among children. BMC Res. Notes 2010, 3, 133. [Google Scholar] [CrossRef]
- Qader, A.; Rehman, K.; Akash, M.S.H. Genetic susceptibility of δ-ALAD associated with lead (Pb) intoxication: Sources of exposure, preventive measures, and treatment interventions. Environ. Sci. Pollut. Res. 2021, 28, 44818–44832. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Yang, Q.; Li, C.; Chen, X.; Zhou, F. A global perspective of correlation between maternal blood lead levels and risks of preeclampsia: An updated systematic review and meta-analysis. Front. Public Health 2022, 10, 1072052. [Google Scholar] [CrossRef]
- Röllin, H.B.; Rudge, C.V.; Thomassen, Y.; Mathee, A.; Odland, J.Ø. Levels of toxic and essential metals in maternal and umbilical cord blood from selected areas of South Africa—Results of a pilot study. J. Environ. Monit. 2009, 11, 618–627. [Google Scholar] [CrossRef]
- Basiri, R.; Seidu, B.; Cheskin, L.J. Key nutrients for optimal blood glucose control and mental health in individuals with diabetes: A review of the evidence. Nutrients 2023, 15, 3929. [Google Scholar] [CrossRef] [PubMed]
- Rudge, C.V.; Röllin, H.B.; Nogueira, C.M.; Thomassen, Y.; Rudge, M.C.; Odland, J.Ø. The placenta as a barrier for toxic and essential elements in paired maternal and cord blood samples of South African delivering women. J. Environ. Monit. 2009, 11, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, S.A.; Klipsch, K.; Cockburn, M.S.; Carey, S. In vivo micronucleus assay on sodium molybdate in rats and its impact on the overall assessment of the genotoxicity of molybdenum substances. Regul. Toxicol. Pharmacol. 2024, 154, 105717. [Google Scholar] [CrossRef]
- Morton, A.; Teasdale, S. Physiological changes in pregnancy and their influence on the endocrine investigation. Clin. Endocrinol. 2022, 96, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Wang, Y.; Lin, L.; Zou, Y.; Qiu, L. Variations in blood copper and possible mechanisms during pregnancy. Biol. Trace Elem. Res. 2024, 202, 429–441. [Google Scholar] [CrossRef]
- Kennedy, E.; Everson, T.M.; Punshon, T.; Jackson, B.P.; Hao, K.; Lambertini, L. Copper associates with differential methylation in placentae from two US birth cohorts. Epigenetics 2020, 15, 215–230. [Google Scholar] [CrossRef]
- Churchill, D.; Nair, M.; Stanworth, S.J.; Knight, M. The change in haemoglobin concentration between the first and third trimesters of pregnancy: A population study. BMC Pregnancy Childbirth 2019, 19, 359. [Google Scholar] [CrossRef]
- Hansen, R.; Spangmose, A.L.; Sommer, V.M.; Holm, C.; Jørgensen, F.S.; Krebs, L. Maternal first trimester iron status and its association with obstetric and perinatal outcomes. Arch. Gynecol. Obstet. 2022, 306, 1359–1371. [Google Scholar] [CrossRef]
- Li, S.; Wang, Q.; Luo, W.; Jia, S.; Liu, D.; Ma, W.; Gu, H.; Wei, X.; He, Y.; Cao, S.; et al. Relationship between maternal heavy metal exposure and congenital heart defects: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2022, 29, 55348–55366. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, M.; Rahman, M.L.; Wang, X.; Hinkle, S.N.; Zhang, C.; Mueller, N.T. Exposure to heavy metals and trace minerals in first trimester and maternal blood pressure change over gestation. Environ. Int. 2021, 153, 106508. [Google Scholar] [CrossRef]
Elements | Spectral Line (nm) | Plasma Torch Position | %RSE | R2 |
---|---|---|---|---|
Cu | 327.395 | Axial | 8.78 | 0.99964 |
Zn | 213.857 | Axial | 8.00 | 0.99964 |
Fe | 238.204 | Axial | 8.45 | 0.99972 |
As | 193.696 | Axial | 10.93 | 0.99993 |
Cd | 214.439 | Axial | 1.62 | 0.99999 |
Pb | 220.353 | Axial | 1.57 | 0.99995 |
Cr | 267.716 | Axial | 1.23 | 0.99999 |
Variables | Mean ± SD or n (%) | |||
---|---|---|---|---|
Total (n = 200) | 1st Trimester (n = 71) | 2nd Trimester (n = 47) | 3rd Trimester (n = 82) | |
Age (years) | 30.2 ± 7.5 | 30.7 ± 1.0 | 30.2 ± 1.2 | 29.8 ± 0.7 |
G-BMI (kg/m2) | 27.5 ± 5.9 | 27.66 ± 0.8 | 25.77 ± 0.8 | 28.32 ± 0.6 |
Education | ||||
Less than high school | 24 (12.0) | 10 (14.1) | 4 (8.9) | 10 (11.9) |
High school | 104 (52.0) | 37 (52.1) | 27 (60.0) | 40 (47.6) |
Higher education | 72 (36.0) | 24 (33.8) | 14 (31.1) | 34 (40.5) |
Gravidity | ||||
1 | 60 (30.0) | 21 (29.6) | 12 (26.7) | 27 (32.1) |
2 | 51 (25.5) | 20 (28.2) | 10 (22.2) | 21 (25.0) |
≥3 | 89 (44.5) | 30 (42.3) | 23 (51.1) | 36 (42.9) |
Maternal occupation | ||||
Housewives | 66 (33.0) | 25 (35.2) | 18 (40.0) | 23 (27.4) |
Other | 134 (67.0) | 46 (64.8) | 27 (60.0) | 61 (72.6) |
SBP (mmHg) | 115.2 ± 12.2 | 116.7 ± 1.3 | 113.8 ± 1.9 | 114.7 ± 1.4 |
DBP (mmHg) | 74.7 ± 9.9 | 77.0 ± 0.9 | 73.8 ± 1.3 | 73.3 ± 1.3 |
Hematocrit (%) | 35.8 ± 3.6 | 36.3 ± 0.4 | 35.5 ± 0.5 | 35.6 ± 0.4 |
Plasma glucose | ||||
FPG (mg/dL) | 85.4 ± 18.5 | 90.1 ± 2.9 | 85.0 ± 2.8 | 87.7 ± 1.0 |
OGTT 1 h (mg/dL) | 158.5 ± 67.1 | 175.1 ± 11.8 | 150.2 ± 6.9 | 148.8 ± 3.4 |
OGTT 2 h (mg/dL) | 133.9 ± 39.9 | 140.0 ± 5.3 | 133.2 ± 7.3 | 129.2 ± 3.1 |
OGTT 3 h (mg/dL) | 120.1 ± 33.8 | 117.9 ± 4.5 | 121.9 ± 6.7 | 120.8 ± 2.4 |
Urine Protein | ||||
Negative | 184 (92.0) | 62 (89.9) | 43 (95.6) | 77 (91.7) |
Positive | 16 (8.0) | 7 (10.1) | 2 (4.4) | 7 (8.3) |
Urine Glucose | ||||
Negative | 186 (93.0) | 64 (90.1) | 42 (93.3) | 80 (95.2) |
Positive | 14 (7.0) | 7 (9.9) | 3 (6.6) | 4 (4.8) |
Blood Elements | Mean | SD | Range |
---|---|---|---|
Trace elements | |||
Cu | 294.72 | 67.19 | 145.00–525.00 |
Zn | 1187.20 | 211.38 | 479.00–1971.00 |
Fe | 75,178.00 | 12,045.00 | 41,713.00–101,887.00 |
Toxic elements | |||
As | 1.87 | 1.43 | ND–6.00 |
Cd | 0.98 | 0.27 | ND–4.00 |
Pb | 5.59 | 1.61 | 2.00–11.00 |
Cr | 2.80 | 1.47 | 1.00–16.00 |
Cu | Zn | Fe | As | Cd | Cr | Pb | |
---|---|---|---|---|---|---|---|
Cu | 1.000 | ||||||
Zn | 0.286 ** | 1.000 | |||||
Fe | 0.258 ** | 0.485 ** | 1.000 | ||||
As | −0.159 * | −0.074 | −0.151 * | 1.000 | |||
Cd | −0.159 * | −0.074 | −0.151 * | 1.000 ** | 1.000 | ||
Cr | 0.047 | 0.051 | 0.047 | 0.094 | 0.094 | 1.000 | |
Pb | 0.110 | 0.244 ** | 0.198 ** | 0.200 ** | 0.200 ** | 0.168 * | 1.000 |
Variables | Correlation Coefficient | ||||||
---|---|---|---|---|---|---|---|
Cu | Zn | Fe | As | Cd | Cr | Pb | |
GBMI | 0.023 | 0.028 | 0.051 | 0.049 | 0.049 | 0.051 | 0.121 |
SBP | −0.074 | 0.026 | 0.097 | 0.037 | 0.037 | 0.003 | 0.044 |
DBP | −0.099 | 0.022 | 0.122 | 0.067 | 0.067 | −0.024 | 0.085 |
Hematocrit | 0.174 * | −0.188 ** | 0.274 ** | 0.093 | 0.093 | −0.031 | −0.219 ** |
Urine protein | −0.079 | −0.084 | −0.003 | 0.032 | 0.032 | −0.049 | −0.006 |
Urine glucose | −0.126 | −0.036 | 0.064 | −0.184 ** | −0.184 ** | −0.126 | −0.016 |
FPG | −0.162* | −0.030 | 0.054 | 0.043 | 0.043 | −0.141 * | 0.046 |
OGTT 1 h | −0.038 | 0.119 | 0.095 | 0.032 | 0.032 | 0.005 | −0.060 |
OGTT 2 h | −0.026 | −0.174 * | 0.162 * | 0.023 | 0.023 | 0.121 | −0.016 |
OGTT 3 h | 0.101 | −0.220 ** | 0.110 | 0.006 | 0.006 | 0.072 | −0.053 |
Blood Elements (µg/dL) | 1st Trimester (n = 71) | 2nd Trimester (n = 47) | 3rd Trimester (n = 82) | p-Value |
---|---|---|---|---|
Trace elements | ||||
Cu | 265.0 (145.0–442.0) | 288.0 (149.0–402.0) | 326.5 (154.0–525.0) | <0.001 ** |
Zn | 1209.0 (479.0–1549.0) | 1124.0 (715.0–1607.0) | 1234.5 (708.0–1971.0) | 0.026 * |
Fe | 81,780.0 (48,256.0–101,887.0) | 75,204.0 (43,462.0–96,510.0) | 73,022.0 (41,713.0–101,578.0) | 0.002 * |
Toxic elements | ||||
As | 2.0 (ND–6.0) | 2.0 (ND–5.0) | 1.0 (ND–5.0) | 0.531 |
Cd | 1.0 (ND–1.0) | 1.0 (ND–1.0) | 1.0 (ND–4.0) | 0.739 |
Cr | 3.0 (1.0–4.0) | 3.0 (2.0–16.0) | 3.0 (2.00–6.0) | 0.691 |
Pb | 6.0 (1.0–9.0) | 5.0 (1.0–9.0) | 6.0 (2.0–11.0) | 0.033 * |
Blood Elements | Pairwise Trimester Comparison | Test Statistic | Std. Error | Z | p-Value | Adj. p-Value |
---|---|---|---|---|---|---|
Cu | 1 vs. 2 | –19.741 | 10.883 | –1.814 | 0.070 | 0.209 |
1 vs. 3 | –46.122 | 9.382 | –4.916 | <0.001 | <0.001 * | |
2 vs. 3 | –26.382 | 10.589 | –2.492 | 0.013 | 0.038 * | |
Fe | 2 vs. 3 | –1.369 | 10.589 | –0.129 | 0.897 | 1.000 |
2 vs. 1 | 30.993 | 10.884 | 2.848 | 0.004 | 0.013 * | |
3 vs. 1 | 29.625 | 9.383 | 3.157 | 0.002 | 0.005 * | |
Zn | 2 vs. 1 | 17.983 | 10.884 | 1.652 | 0.098 | 0.295 |
2 vs. 3 | –28.617 | 10.589 | –2.703 | 0.007 | 0.021 * | |
1 vs. 3 | –10.634 | 9.383 | –1.133 | 0.257 | 0.771 | |
Pb | 2 vs. 3 | –22.631 | 10.388 | –2.179 | 0.029 | 0.088 |
2 vs. 1 | 26.395 | 10.677 | 2.472 | 0.013 | 0.040 * | |
3 vs. 1 | 3.765 | 9.204 | 0.409 | 0.683 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sai-ong, T.; Waeyeng, D.; Khamphaya, T.; Rattanapan, Y.; Hnoocham, W.; Samaphong, K.; Satarug, S.; Yimthiang, S. Investigating the Dual Role of Trace and Toxic Elements in Pregnancy-Related Health Outcomes. Int. J. Environ. Res. Public Health 2025, 22, 1423. https://doi.org/10.3390/ijerph22091423
Sai-ong T, Waeyeng D, Khamphaya T, Rattanapan Y, Hnoocham W, Samaphong K, Satarug S, Yimthiang S. Investigating the Dual Role of Trace and Toxic Elements in Pregnancy-Related Health Outcomes. International Journal of Environmental Research and Public Health. 2025; 22(9):1423. https://doi.org/10.3390/ijerph22091423
Chicago/Turabian StyleSai-ong, Thaveesak, Donrawee Waeyeng, Tanaporn Khamphaya, Yanisa Rattanapan, Warinya Hnoocham, Katesiri Samaphong, Soisungwan Satarug, and Supabhorn Yimthiang. 2025. "Investigating the Dual Role of Trace and Toxic Elements in Pregnancy-Related Health Outcomes" International Journal of Environmental Research and Public Health 22, no. 9: 1423. https://doi.org/10.3390/ijerph22091423
APA StyleSai-ong, T., Waeyeng, D., Khamphaya, T., Rattanapan, Y., Hnoocham, W., Samaphong, K., Satarug, S., & Yimthiang, S. (2025). Investigating the Dual Role of Trace and Toxic Elements in Pregnancy-Related Health Outcomes. International Journal of Environmental Research and Public Health, 22(9), 1423. https://doi.org/10.3390/ijerph22091423