Suicides Mortality of Unemployed Individuals Becomes a Serious Public Health Concern in Japan in Post-COVID-19 Pandemic Era
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Data Sources
2.3. Statistical Analyses
3. Results
3.1. Fluctuation of CMR-Suicides Among Overall-Ages Disaggregated by Gender and Employment Status
3.2. Fluctuation of CMR-Suicides Disaggregated by Gender and Age
3.3. Fluctuation of Employed and Unemployed CMR-Suicides Disaggregated by Gender and Age
3.4. Impacts of Economic Condition, Uncertainty Indices, and Numbers of Employed People with Disabilities on Employed and Unemployed CMR-Suicides Disaggregated by Gender and Age
4. Discussion
4.1. Impacts of Economic Status
4.2. Impacts of Promotion of Employment for Individuals with Disabilities
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AENROP | government management instability |
BDSR | Basic Data on Suicide in Region |
CIs | composite indices |
CMR | crude suicide mortality rate |
coinCI | Coincident composite index |
EPU | economic policy uncertainty |
ESRI | Economic and Social Research Institute |
ITSA | interrupted time series analysis |
JPRA | joinpoint regression |
lagCI | Lagging composite index |
leadCI | Leading composite index |
MIAC | Ministry of Internal Affairs and Communications |
MHLW | Ministry of Health, Labor and Welfare |
RIETI | Research Institute of Economy, Trade, and Industry |
VAR | vector-autoregressive analysis with Granger causality and robust standard errors |
References
- Sinyor, M.; Silverman, M.; Pirkis, J.; Hawton, K. The effect of economic downturn, financial hardship, unemployment, and relevant government responses on suicide. Lancet Public Health 2024, 9, e802–e806. [Google Scholar] [CrossRef]
- Mathieu, S.; Treloar, A.; Hawgood, J.; Ross, V.; Kolves, K. The Role of Unemployment, Financial Hardship, and Economic Recession on Suicidal Behaviors and Interventions to Mitigate Their Impact: A Review. Front. Public Health 2022, 10, 907052. [Google Scholar] [CrossRef]
- Roelfs, D.J.; Shor, E. Financial Stress, Unemployment, and Suicide—A Meta-Analysis. Crisis 2023, 44, 506–517. [Google Scholar] [CrossRef]
- Na, P.J.; Shin, J.; Kwak, H.R.; Lee, J.; Jester, D.J.; Bandara, P.; Kim, J.Y.; Moutier, C.Y.; Pietrzak, R.H.; Oquendo, M.A.; et al. Social Determinants of Health and Suicide-Related Outcomes: A Review of Meta-Analyses. JAMA Psychiatry 2025, 82, 337–346. [Google Scholar] [CrossRef]
- Favril, L.; Yu, R.; Geddes, J.R.; Fazel, S. Individual-level risk factors for suicide mortality in the general population: An umbrella review. Lancet Public Health 2023, 8, e868–e877. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Resurreccion, D.M.; Antunes, A.; Frasquilho, D.; Cardoso, G. Impact of economic crises on mental health care: A systematic review. Epidemiol. Psychiatr. Sci. 2018, 29, e7. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Public Health. A public health approach to suicide prevention. Lancet Public Health 2024, 9, e709. [Google Scholar] [CrossRef] [PubMed]
- Swinscow, D. Some suicide statistics. Br. Med. J. 1951, 1, 1417–1423. [Google Scholar] [CrossRef]
- Chang, S.S.; Gunnell, D.; Sterne, J.A.; Lu, T.H.; Cheng, A.T. Was the economic crisis 1997–1998 responsible for rising suicide rates in East/Southeast Asia? A time-trend analysis for Japan, Hong Kong, South Korea, Taiwan, Singapore and Thailand. Soc. Sci. Med. 2009, 68, 1322–1331. [Google Scholar] [CrossRef]
- Chang, S.S.; Stuckler, D.; Yip, P.; Gunnell, D. Impact of 2008 global economic crisis on suicide: Time trend study in 54 countries. BMJ 2013, 347, f5239. [Google Scholar] [CrossRef]
- Kato, R.; Okada, M. Can Financial Support Reduce Suicide Mortality Rates? Int. J. Environ. Res. Public Health 2019, 16, 4797. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.Y.; Reither, E.N.; Masters, R.K. A population-based analysis of increasing rates of suicide mortality in Japan and South Korea, 1985–2010. BMC Public Health 2016, 16, 356. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.; Metraux, D.; Tohen, M. Cultural influences on suicide in Japan. Psychiatry Clin. Neurosci. 2017, 71, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Wu, K.C.; Yousuf, S.; Yip, P.S. Suicide in Asia: Opportunities and challenges. Epidemiol. Rev. 2012, 34, 129–144. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, M.H.; Kawachi, I.; Cho, Y. Comparative epidemiology of suicide in South Korea and Japan: Effects of age, gender and suicide methods. Crisis 2011, 32, 5–14. [Google Scholar] [CrossRef]
- Otsu, A.; Araki, S.; Sakai, R.; Yokoyama, K.; Scott Voorhees, A. Effects of urbanization, economic development, and migration of workers on suicide mortality in Japan. Soc. Sci. Med. 2004, 58, 1137–1146. [Google Scholar] [CrossRef]
- Stuckler, D.; Basu, S.; Suhrcke, M.; Coutts, A.; McKee, M. Effects of the 2008 recession on health: A first look at European data. Lancet 2011, 378, 124–125. [Google Scholar] [CrossRef]
- Gili, M.; Roca, M.; Basu, S.; McKee, M.; Stuckler, D. The mental health risks of economic crisis in Spain: Evidence from primary care centres, 2006 and 2010. Eur. J. Public Health 2013, 23, 103–108. [Google Scholar] [CrossRef]
- Barr, B.; Taylor-Robinson, D.; Scott-Samuel, A.; McKee, M.; Stuckler, D. Suicides associated with the 2008-10 economic recession in England: Time trend analysis. BMJ 2012, 345, e5142. [Google Scholar] [CrossRef]
- De Vogli, R.; Marmot, M.; Stuckler, D. Strong evidence that the economic crisis caused a rise in suicides in Europe: The need for social protection. J. Epidemiol. Community Health 2013, 67, 298. [Google Scholar] [CrossRef]
- Huikari, S.; Miettunen, J.; Korhonen, M. Economic crises and suicides between 1970 and 2011: Time trend study in 21 developed countries. J. Epidemiol. Community Health 2019, 73, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.A.; Nugent, C.N. Suicide and the Great Recession of 2007–2009: The role of economic factors in the 50 U.S. states. Soc. Sci. Med. 2014, 116, 22–31. [Google Scholar] [CrossRef]
- Matsubayashi, T.; Sekijima, K.; Ueda, M. Government spending, recession, and suicide: Evidence from Japan. BMC Public Health 2020, 20, 243. [Google Scholar] [CrossRef] [PubMed]
- ESRI. Indexes of Business Conditions. Available online: https://www.esri.cao.go.jp/en/stat/di/di-e.html (accessed on 19 April 2025).
- Takeshima, T.; Yamauchi, T.; Inagaki, M.; Kodaka, M.; Matsumoto, T.; Kawano, K.; Katsumata, Y.; Fujimori, M.; Hisanaga, A.; Takahashi, Y. Suicide prevention strategies in Japan: A 15-year review (1998–2013). J. Public Health Policy 2015, 36, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Hasegawa, T.; Kato, R.; Shiroyama, T. Analysing regional unemployment rates, GDP per capita and financial support for regional suicide prevention programme on suicide mortality in Japan using governmental statistical data. BMJ Open 2020, 10, e037537. [Google Scholar] [CrossRef]
- Hasegawa, T.; Matsumoto, R.; Yamamoto, Y.; Okada, M. Analysing effects of financial support for regional suicide prevention programmes on methods of suicide completion in Japan between 2009 and 2018 using governmental statistical data. BMJ Open 2021, 11, e049538. [Google Scholar] [CrossRef]
- McKibbin, W.; Vines, D. Global macroeconomic cooperation in response to the COVID-19 pandemic: A roadmap for the G20 and the IMF. Oxf. Rev. Econ. Policy 2020, 36, S297–S337. [Google Scholar] [CrossRef]
- Arya, V.; Page, A.; Spittal, M.J.; Dandona, R.; Vijayakumar, L.; Munasinghe, S.; John, A.; Gunnell, D.; Pirkis, J.; Armstrong, G. Suicide in India during the first year of the COVID-19 pandemic. J. Affect. Disord. 2022, 307, 215–220. [Google Scholar] [CrossRef]
- Menon, V.; Cherian, A.V.; Vijayakumar, L. Rising incidence and changing demographics of suicide in India: Time to recalibrate prevention policies? Asian J. Psychiatry 2021, 69, 102983. [Google Scholar] [CrossRef]
- Pirkis, J.; Gunnell, D.; Shin, S.; Del Pozo-Banos, M.; Arya, V.; Aguilar, P.A.; Appleby, L.; Arafat, S.M.Y.; Arensman, E.; Ayuso-Mateos, J.L.; et al. Suicide numbers during the first 9–15 months of the COVID-19 pandemic compared with pre-existing trends: An interrupted time series analysis in 33 countries. EClinicalMedicine 2022, 51, 101573. [Google Scholar] [CrossRef]
- Pirkis, J.; John, A.; Shin, S.; DelPozo-Banos, M.; Arya, V.; Analuisa-Aguilar, P.; Appleby, L.; Arensman, E.; Bantjes, J.; Baran, A.; et al. Suicide trends in the early months of the COVID-19 pandemic: An interrupted time-series analysis of preliminary data from 21 countries. Lancet Psychiatry 2021, 8, 579–588. [Google Scholar] [CrossRef]
- Tandon, R. COVID-19 and suicide: Just the facts. Key learnings and guidance for action. Asian J. Psychiatry 2021, 60, 102695. [Google Scholar] [CrossRef]
- Yan, Y.; Hou, J.; Li, Q.; Yu, N.X. Suicide before and during the COVID-19 Pandemic: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 3346. [Google Scholar] [CrossRef] [PubMed]
- Okada, M. Is an increase in Japan’s suicides caused by COVID-19 alone? Asian J. Psychiatry 2022, 78, 103320. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Matsumoto, R.; Motomura, E.; Shiroyama, T.; Murata, M. Exploring characteristics of increased suicide during the COVID-19 pandemic in Japan using provisional governmental data. Lancet Reg. Health West. Pac. 2022, 24, 100481. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, R.; Motomura, E.; Okada, M. Fluctuation of suicide mortality and temporal causality from unemployment duration to suicide mortality in Japan during 2009–2022. Asian J. Psychiatry 2023, 84, 103574. [Google Scholar] [CrossRef]
- Matsumoto, R.; Motomura, E.; Onitsuka, T.; Okada, M. Trends in Suicidal Mortality and Motives Among Working-ages Individuals in Japan during 2007–2022. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 2806. [Google Scholar] [CrossRef]
- Sakamoto, H.; Koda, M.; Eguchi, A.; Endo, K.; Arai, T.; Harada, N.; Nishio, T.; Nomura, S. Excess suicides in Japan: A three-year post-pandemic assessment of gender and age disparities. Psychiatry Res. 2024, 334, 115806. [Google Scholar] [CrossRef]
- Nomura, S.; Kawashima, T.; Yoneoka, D.; Tanoue, Y.; Eguchi, A.; Gilmour, S.; Kawamura, Y.; Harada, N.; Hashizume, M. Trends in suicide in Japan by gender during the COVID-19 pandemic, up to September 2020. Psychiatry Res. 2021, 295, 113622. [Google Scholar] [CrossRef]
- Turecki, G.; Brent, D.A.; Gunnell, D.; O’Connor, R.C.; Oquendo, M.A.; Pirkis, J.; Stanley, B.H. Suicide and suicide risk. Nat. Rev. Dis. Primers 2019, 5, 74. [Google Scholar] [CrossRef]
- Hughes, J.L.; Horowitz, L.M.; Ackerman, J.P.; Adrian, M.C.; Campo, J.V.; Bridge, J.A. Suicide in young people: Screening, risk assessment, and intervention. BMJ 2023, 381, e070630. [Google Scholar] [CrossRef]
- O’Connor, R.C.; Kirtley, O.J.; de Beurs, D. Preventing suicide: Understanding the complex interplay between individual and societal factors. Lancet Public Health 2024, 9, e714–e715. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.S.; Yip, P.S.; Wong, P.W.; Chen, E.Y. Suicide and unemployment: What are the missing links? Arch. Suicide Res. 2007, 11, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Yip, P.S.; Lee, C.; Fan, H.F.; Fu, K.W. Economic fluctuations and suicide: A comparison of Taiwan and Hong Kong. Soc. Sci. Med. 2010, 71, 2083–2090. [Google Scholar] [CrossRef]
- Yip, K.S.; Ng, Y.N. Chinese cultural dynamics of unemployability of male adults with psychiatric disabilities in Hong Kong. Psychiatr. Rehabil. J. 2002, 26, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Barrios, M.T.; Huertas, P.; Martin, P.; Martin, C.; Castillejos, M.C.; Petkari, E.; Moreno-Kustner, B. Determinants of Suicidality in the European General Population: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 4115. [Google Scholar] [CrossRef]
- Milner, A.; Page, A.; LaMontagne, A.D. Cause and effect in studies on unemployment, mental health and suicide: A meta-analytic and conceptual review. Psychol. Med. 2014, 44, 909–917. [Google Scholar] [CrossRef]
- Milner, A.; Page, A.; LaMontagne, A.D. Long-term unemployment and suicide: A systematic review and meta-analysis. PLoS ONE 2013, 8, e51333. [Google Scholar] [CrossRef]
- Abdou, R.; Cassells, D.; Berrill, J.; Hanly, J. An empirical investigation of the relationship between business performance and suicide in the US. Soc. Sci. Med. 2020, 264, 113256. [Google Scholar] [CrossRef]
- Claveria, O.; Soric, M.; Soric, P. Analysis of the impact of financial and labour uncertainty on suicide mortality in England. Health Place 2024, 89, 103329. [Google Scholar] [CrossRef]
- Goto, H.; Kawachi, I.; Vandoros, S. The association between economic uncertainty and suicide in Japan by age, sex, employment status, and population density: An observational study. Lancet Reg. Health West. Pac. 2024, 46, 101069. [Google Scholar] [CrossRef] [PubMed]
- Antonakakis, N.; Gupta, R. Is Economic Policy Uncertainty Related to Suicide Rates? Evidence from the United States. Soc. Indic. Res. 2016, 133, 543–560. [Google Scholar] [CrossRef]
- Vandoros, S.; Kawachi, I. Economic uncertainty and suicide in the United States. Eur. J. Epidemiol. 2021, 36, 641–647. [Google Scholar] [CrossRef]
- Vandoros, S.; Avendano, M.; Kawachi, I. The association between economic uncertainty and suicide in the short-run. Soc. Sci. Med. 2019, 220, 403–410. [Google Scholar] [CrossRef]
- Claveria, O. Global economic uncertainty and suicide: Worldwide evidence. Soc. Sci. Med. 2022, 305, 115041. [Google Scholar] [CrossRef]
- Okubo, R.; Matsumoto, R.; Motomura, E.; Okada, M. Uncertainties of Economic Policy and Government Management Stability Played Important Roles in Increasing Suicides in Japan from 2009 to 2023. Int. J. Environ. Res. Public Health 2024, 21, 1366. [Google Scholar] [CrossRef]
- Pirkis, J.; Dandona, R.; Silverman, M.; Khan, M.; Hawton, K. Preventing suicide: A public health approach to a global problem. Lancet Public Health 2024, 9, e787–e795. [Google Scholar] [CrossRef]
- Hawton, K.; Pirkis, J. Preventing suicide: A call to action. Lancet Public Health 2024, 9, e825–e830. [Google Scholar] [CrossRef]
- Okada, M.; Matsumoto, R.; Motomura, E. Suicide mortality rates in Japan before and beyond the COVID-19 pandemic era. BMJ Open 2024, 3, e188. [Google Scholar] [CrossRef] [PubMed]
- MHLW. Basic Data on Suicide in Region. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000140901.html (accessed on 1 April 2025).
- Matsumoto, R.; Kawano, Y.; Motomura, E.; Shiroyama, T.; Okada, M. Analyzing the Changing Relationship Between Personal Consumption and Suicide Mortality During COVID-19 Pandemic in Japan, using governmental and personal consumption transaction databases. Front. Public Health 2022, 10, 982341. [Google Scholar] [CrossRef] [PubMed]
- MIAC. Surveys of Population, Population Change and the Number of Households Based on the Basic Resident Registration. Available online: https://www.e-stat.go.jp/en/statistics/00200241 (accessed on 1 April 2025).
- MHLW. Labor Force Survey. Available online: https://www.e-stat.go.jp/en/statistics/00200531 (accessed on 1 April 2025).
- MHLW. Survey on the Actual Situation of Disabled Persons. Available online: https://www.mhlw.go.jp/toukei/list/111-1.html (accessed on 1 April 2025).
- Matsumoto, R.; Motomura, E.; Shiroyama, T.; Okada, M. Impact of the Japanese government’s “general policies for comprehensive measures against suicide” on youth suicide from 2007–2022. BJPsych Open 2023, 10, e16. [Google Scholar] [CrossRef]
- Okada, M.; Matsumoto, R.; Shiroyama, T.; Motomura, E. Suicidal Mortality and Motives Among Middle-School, High-School and University Students. JAMA Netw. Open 2023, 6, e2328144. [Google Scholar] [CrossRef]
- RIETI. Japan Economic Policy Uncertainty Index. Available online: https://www.rieti.go.jp/jp/database/policyuncertainty/index.html (accessed on 9 April 2025).
- Baker, S.R.; Bloom, N.; Davis, S.J. Measuring Economic Policy Uncertainty*. Q. J. Econ. 2016, 131, 1593–1636. [Google Scholar] [CrossRef]
- Kyo, K.; Noda, H.; Kitagawa, G. Co-movement of Cyclical Components Approach to Construct a Coincident Index of Business Cycles. J. Bus. Cycle Res. 2022, 18, 101–127. [Google Scholar] [CrossRef]
- Kim, H.J.; Fay, M.P.; Feuer, E.J.; Midthune, D.N. Permutation tests for joinpoint regression with applications to cancer rates. Stat. Med. 2000, 19, 335–351. [Google Scholar] [CrossRef]
- Linden, A. Conducting Interrupted Time-series Analysis for Single- and Multiple-group Comparisons. Stata J. Promot. Commun. Stat. Stata 2015, 15, 480–500. [Google Scholar] [CrossRef]
- Bernal, J.L.; Cummins, S.; Gasparrini, A. Interrupted time series regression for the evaluation of public health interventions: A tutorial. Int. J. Epidemiol. 2017, 46, 348–355. [Google Scholar] [CrossRef]
- Matsumoto, R.; Motomura, E.; Okada, M. Impacts of Working Hours, Wages, and Regular Employment Opportunity on Suicide Mortalities of Employed and Unemployed Individuals before and during the COVID-19 Pandemic in Japan. Int. J. Environ. Res. Public Health 2024, 21, 499. [Google Scholar] [CrossRef]
- Liu, B.; Kim, H.-J.; Feuer, E.J.; Graubard, B.I. Joinpoint Regression Methods of Aggregate Outcomes for Complex Survey Data. J. Surv. Stat. Methodol. 2023, 11, 967–989. [Google Scholar] [CrossRef]
- Li, J.; Chan, N.B.; Xue, J.; Tsoi, K.K.F. Time series models show comparable projection performance with joinpoint regression: A comparison using historical cancer data from World Health Organization. Front. Public Health 2022, 10, 1003162. [Google Scholar] [CrossRef]
- Linden, A. A Comprehensive set of Postestimation Measures to Enrich Interrupted Time-series Analysis. Stata J. Promot. Commun. Stat. Stata 2017, 17, 73–88. [Google Scholar] [CrossRef]
- Yoshioka, E.; Hanley, S.J.B.; Sato, Y.; Saijo, Y. Impact of the COVID-19 pandemic on suicide rates in Japan through December 2021: An interrupted time series analysis. Lancet Reg. Health West. Pac. 2022, 24, 100480. [Google Scholar] [CrossRef] [PubMed]
- Seposo, X.T. COVID-19 threatens decade-long suicide initiatives in Japan. Asian J. Psychiatry 2021, 60, 102660. [Google Scholar] [CrossRef] [PubMed]
- Ewusie, J.E.; Blondal, E.; Soobiah, C.; Beyene, J.; Thabane, L.; Straus, S.E.; Hamid, J.S. Methods, applications, interpretations and challenges of interrupted time series (ITS) data: Protocol for a scoping review. BMJ Open 2017, 7, e016018. [Google Scholar] [CrossRef]
- Ewusie, J.E.; Soobiah, C.; Blondal, E.; Beyene, J.; Thabane, L.; Hamid, J.S. Methods, Applications and Challenges in the Analysis of Interrupted Time Series Data: A Scoping Review. J. Multidiscip. Healthc. 2020, 13, 411–423. [Google Scholar] [CrossRef]
- Hatemi-J, A. Multivariate tests for autocorrelation in the stable and unstable VAR models. Econ. Model. 2004, 21, 661–683. [Google Scholar] [CrossRef]
- Yang, R.; An, X.; Chen, Y.; Yang, X. The Knowledge Analysis of Panel Vector Autoregression: A Systematic Review. Sage Open 2023, 13, 21582440231215991. [Google Scholar] [CrossRef]
- Yalta, A.T.; Cottrell, A.; Rodrigues, P.C. Computational econometrics with gretl. Comput. Stat. 2024, 39, 3493–3495. [Google Scholar] [CrossRef]
- De Bruin, A.; Agyemang, A.; Chowdhury, M.I.H. New insights on suicide: Uncertainty and political conditions. Appl. Econ. Lett. 2019, 27, 1424–1429. [Google Scholar] [CrossRef]
- Matsumoto, R.; Motomura, E.; Okada, M. Impacts of Complete Unemployment Rates Disaggregated by Reason and Duration on Suicide Mortality from 2009–2022 in Japan. Healthcare 2023, 11, 2806. [Google Scholar] [CrossRef]
- OECD. Mental Health and Work. Available online: https://www.oecd.org/en/publications/mental-health-and-work_5jxsvvn6pq6g-en.html (accessed on 9 April 2025).
- Bruggeman, H.; Héroufosse, J.; Van der Heyden, J.; Smith, P. The relationship between mental health and employment: A systematic review of cohort studies. Eur. J. Public Health 2024, 34, ckae144-1106. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Sakurai, H.; Aoki, Y.; Takaesu, Y.; Okajima, I.; Tachimori, H.; Murao, M.; Maruki, T.; Tsuboi, T.; Watanabe, K. Relationship between Severity of Depressive Symptoms and Continuous Employment in Patients with Mood Disorders. Int. J. Neuropsychopharmacol. 2025, 28, i194–i195. [Google Scholar] [CrossRef]
- Fasching, H. Vocational education and training and transitions into the labour market of persons with intellectual disabilities. Eur. J. Spec. Needs Educ. 2014, 29, 505–520. [Google Scholar] [CrossRef]
- Weld-Blundell, I.; Shields, M.; Devine, A.; Dickinson, H.; Kavanagh, A.; Marck, C. Vocational Interventions to Improve Employment Participation of People with Psychosocial Disability, Autism and/or Intellectual Disability: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 12038. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.B. Adult mental health disorders and their age at onset. Br. J. Psychiatry Suppl. 2013, 54, s5–s10. [Google Scholar] [CrossRef] [PubMed]
- Twenge, J.M.; Cooper, A.B.; Joiner, T.E.; Duffy, M.E.; Binau, S.G. Age, period, and cohort trends in mood disorder indicators and suicide-related outcomes in a nationally representative dataset, 2005–2017. J. Abnorm. Psychol. 2019, 128, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Mithout, A.-L. From equal access to employment to equal career opportunities? Alter 2021, 15, 341–353. [Google Scholar] [CrossRef]
- Pirkis, J.; Gunnell, D.; Hawton, K.; Hetrick, S.; Niederkrotenthaler, T.; Sinyor, M.; Yip, P.S.F.; Robinson, J. A Public Health, Whole-of-Government Approach to National Suicide Prevention Strategies. Crisis 2023, 44, 85–92. [Google Scholar] [CrossRef]
- Park, S.; Hatim Sulaiman, A.; Srisurapanont, M.; Chang, S.M.; Liu, C.Y.; Bautista, D.; Ge, L.; Choon Chua, H.; Pyo Hong, J.; Mood Disorders Research, A.; et al. The association of suicide risk with negative life events and social support according to gender in Asian patients with major depressive disorder. Psychiatry Res. 2015, 228, 277–282. [Google Scholar] [CrossRef]
- Neubaum, G.; Krämer, N.C. Monitoring the Opinion of the Crowd: Psychological Mechanisms Underlying Public Opinion Perceptions on Social Media. Media Psychol. 2016, 20, 502–531. [Google Scholar] [CrossRef]
- Siggiridou, E.; Koutlis, C.; Tsimpiris, A.; Kugiumtzis, D. Evaluation of Granger Causality Measures for Constructing Networks from Multivariate Time Series. Entropy 2019, 21, 1080. [Google Scholar] [CrossRef]
Employed Males | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age | R2 | F | p | β | SE | T | p | |||
30−39 | 0.324 | 22.3 | <0.001 | ** | leadCI | −0.733 | 0.441 | −1.662 | 0.098 | |
coinCI | −0.056 | 0.092 | −0.608 | 0.544 | ||||||
lagCI | −1.419 | 0.421 | −3.372 | 0.001 | ** | |||||
40−49 | 0.639 | 61.6 | <0.001 | ** | leadCI | −1.151 | 0.889 | −1.294 | 0.197 | |
coinCI | 0.274 | 0.991 | 0.276 | 0.783 | ||||||
lagCI | −2.893 | 1.163 | −2.488 | 0.014 | * | |||||
50−59 | 0.768 | 107.9 | <0.001 | ** | leadCI | −1.673 | 1.025 | −1.633 | 0.104 | |
coinCI | 1.308 | 1.136 | 1.151 | 0.251 | ||||||
lagCI | −2.987 | 1.401 | −2.131 | 0.034 | * | |||||
60−69 | 0.824 | 223.3 | <0.001 | ** | leadCI | −1.072 | 0.866 | −1.238 | 0.217 | |
coinCI | 0.661 | 0.889 | 0.743 | 0.458 | ||||||
lagCI | −2.065 | 1.020 | −2.024 | 0.044 | * | |||||
Unemployed Males | ||||||||||
Age | R2 | F | p | β | SE | T | p | |||
30−39 | 0.242 | 16.7 | <0.001 | ** | leadCI | −3.315 | 6.212 | −0.534 | 0.594 | |
coinCI | 0.005 | 7.144 | 0.001 | 0.999 | ||||||
lagCI | −9.866 | 6.527 | −1.512 | 0.132 | ||||||
40−49 | 0.472 | 50.4 | <0.001 | ** | leadCI | −6.230 | 8.928 | −0.698 | 0.486 | |
coinCI | 0.770 | 9.012 | 0.085 | 0.932 | ||||||
lagCI | −12.094 | 9.261 | −1.306 | 0.193 | ||||||
50−59 | 0.427 | 30.1 | <0.001 | ** | leadCI | 1.629 | 10.785 | 0.151 | 0.880 | |
coinCI | −8.655 | 11.311 | −0.765 | 0.445 | ||||||
lagCI | −2.812 | 10.970 | −0.256 | 0.798 | ||||||
60−69 | 0.370 | 21.3 | <0.001 | ** | leadCI | 3.287 | 6.357 | 0.517 | 0.606 | |
coinCI | −6.601 | 6.784 | −0.973 | 0.332 | ||||||
lagCI | 2.978 | 6.164 | 0.483 | 0.630 | ||||||
Employed Females | ||||||||||
Age | R2 | F | p | β | SE | T | p | |||
30−39 | 0.274 | 18.0 | <0.001 | ** | leadCI | −0.070 | 0.156 | −0.447 | 0.655 | |
coinCI | −0.044 | 0.041 | −1.064 | 0.289 | ||||||
lagCI | −0.996 | 0.207 | −4.806 | <0.001 | ** | |||||
40−49 | 0.186 | 10.8 | <0.001 | ** | leadCI | 0.073 | 0.161 | 0.450 | 0.654 | |
coinCI | −0.027 | 0.039 | −0.686 | 0.494 | ||||||
lagCI | −0.810 | 0.174 | −4.651 | <0.001 | ** | |||||
50−59 | 0.146 | 8.8 | <0.001 | ** | leadCI | 0.030 | 0.180 | 0.166 | 0.869 | |
coinCI | −0.053 | 0.035 | −1.507 | 0.133 | ||||||
lagCI | −0.686 | 0.169 | −4.058 | <0.001 | ** | |||||
60−69 | 0.370 | 27.6 | <0.001 | ** | leadCI | −0.428 | 0.240 | −1.785 | 0.076 | |
coinCI | 0.014 | 0.044 | 0.308 | 0.759 | ||||||
lagCI | −1.498 | 0.230 | −6.510 | <0.001 | ** | |||||
Unemployed Females | ||||||||||
Age | R2 | F | p | β | SE | T | p | |||
30−39 | 0.243 | 9.9 | <0.001 | ** | leadCI | 2.091 | 3.708 | 0.564 | 0.574 | |
coinCI | −2.619 | 3.852 | −0.680 | 0.497 | ||||||
lagCI | 1.753 | 3.452 | 0.508 | 0.612 | ||||||
40−49 | 0.181 | 9.0 | <0.001 | ** | leadCI | 5.443 | 3.570 | 1.525 | 0.129 | |
coinCI | −6.407 | 3.700 | −1.731 | 0.085 | ||||||
lagCI | 6.718 | 3.586 | 1.874 | 0.063 | ||||||
50−59 | 0.100 | 5.0 | 0.001 | ** | leadCI | 6.115 | 3.843 | 1.591 | 0.113 | |
coinCI | −5.457 | 4.012 | −1.360 | 0.175 | ||||||
lagCI | 6.410 | .3.781 | 1.696 | 0.092 | ||||||
60−69 | 0.127 | 5.6 | <0.001 | ** | leadCI | 3.586 | 3.545 | 1.011 | 0.313 | |
coinCI | −2.804 | 3.507 | −0.800 | 0.425 | ||||||
lagCI | 1.671 | 3.582 | 0.467 | 0.641 |
Employed Males | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age | R2 | F | p | β | SE | T | p | |||
30–39 | 0.273 | 23.3 | <0.001 | ** | AENROP | 0.160 | 0.064 | 2.486 | 0.014 | * |
EPU | −0.029 | 0.075 | −0.387 | 0.700 | ||||||
40–49 | 0.609 | 70.3 | <0.001 | ** | AENROP | 0.287 | 0.080 | 3.589 | <0.001 | ** |
EPU | −0.022 | 0.083 | −0.271 | 0.787 | ||||||
50–59 | 0.762 | 125.6 | <0.001 | ** | AENROP | 0.202 | 0.061 | 3.312 | 0.001 | ** |
EPU | −0.059 | 0.078 | −0.750 | 0.454 | ||||||
60–69 | 0.809 | 228.7 | <0.001 | ** | AENROP | 0.146 | 0.070 | 2.070 | 0.040 | * |
EPU | −0.051 | 0.060 | −0.855 | 0.394 | ||||||
Unemployed Males | ||||||||||
Age | R2 | F | p | β | SE | T | p | |||
30–39 | 0.233 | 19.3 | <0.001 | ** | AENROP | 1.576 | 0.453 | 3.478 | 0.001 | ** |
EPU | −0.275 | 0.650 | −0.422 | 0.673 | ||||||
40–49 | 0.469 | 59.7 | <0.001 | ** | AENROP | 2.044 | 0.787 | 2.599 | 0.010 | * |
EPU | −0.303 | 0.757 | −0.401 | 0.689 | ||||||
50–59 | 0.762 | 125.6 | <0.001 | ** | AENROP | 0.202 | 0.061 | 3.312 | 0.001 | ** |
EPU | −0.059 | 0.078 | −0.750 | 0.454 | ||||||
60–69 | 0.387 | 26.3 | <0.001 | ** | AENROP | 1.123 | 0.380 | 2.957 | 0.004 | ** |
EPU | −0.562 | 0.381 | −1.474 | 0.142 | ||||||
Employed Females | ||||||||||
Age | R2 | F | p | β | SE | T | p | |||
30–39 | 0.196 | 21.3 | <0.001 | ** | AENROP | 0.007 | 0.004 | 1.990 | 0.048 | * |
EPU | 0.001 | 0.003 | 0.214 | 0.831 | ||||||
40–49 | 0.113 | 10.5 | <0.001 | ** | AENROP | 0.057 | 0.028 | 2.063 | 0.041 | * |
EPU | −0.016 | 0.030 | −0.545 | 0.587 | ||||||
50–59 | 0.096 | 7.4 | <0.001 | ** | AENROP | 0.058 | 0.025 | 2.310 | 0.022 | * |
EPU | −0.036 | 0.032 | −1.105 | 0.270 | ||||||
60–69 | 0.256 | 20.5 | <0.001 | ** | AENROP | 0.147 | 0.031 | 4.673 | <0.001 | ** |
EPU | 0.055 | 0.040 | 1.363 | 0.175 | ||||||
Unemployed Females | ||||||||||
Age | R2 | F | p | β | SE | T | p | |||
30–39 | 0.265 | 14.3 | <0.001 | ** | AENROP | 0.053 | 0.022 | 2.460 | 0.015 | * |
EPU | −0.038 | 0.029 | −1.321 | 0.188 | ||||||
40–49 | 0.190 | 12.0 | <0.001 | ** | AENROP | 0.403 | 0.236 | 1.710 | 0.089 | |
EPU | −0.564 | 0.324 | −1.740 | 0.084 | ||||||
50–59 | 0.107 | 6.9 | <0.001 | ** | AENROP | 0.340 | 0.257 | 1.325 | 0.187 | |
EPU | −0.694 | 0.395 | −1.759 | 0.080 | ||||||
60–69 | 0.133 | 9.8 | <0.001 | ** | AENROP | 0.345 | 0.263 | 1.311 | 0.191 | |
EPU | −0.067 | 0.337 | −0.197 | 0.844 |
Employed Males | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age | R2 | F | p | β | SE | T | p | |||
30–39 | 0.303 | 26.0 | <0.001 | ** | AENROP | 0.139 | 0.061 | 2.302 | 0.023 | * |
lagCI | −0.269 | 0.101 | −2.662 | 0.008 | ** | |||||
40–49 | 0.628 | 79.7 | <0.001 | ** | AENROP | 0.277 | 0.076 | 3.672 | <0.001 | ** |
lagCI | −0.334 | 0.121 | −2.757 | 0.006 | ** | |||||
50–59 | 0.766 | 148.9 | <0.001 | ** | AENROP | 0.190 | 0.055 | 3.457 | 0.001 | ** |
lagCI | −0.219 | 0.119 | −1.840 | 0.067 | ||||||
60–69 | 0.811 | 240.6 | <0.001 | ** | AENROP | 0.142 | 0.066 | 2.148 | 0.033 | * |
lagCI | −0.157 | 0.100 | −1.565 | 0.119 | ||||||
Employed Females | ||||||||||
Age | R2 | F | p | β | SE | T | p | |||
30–39 | 0.270 | 22.9 | <0.001 | ** | AENROP | 0.005 | 0.040 | 0.112 | 0.911 | |
lagCI | −0.935 | 0.220 | −4.260 | <0.001 | ** | |||||
40–49 | 0.188 | 14.4 | <0.001 | ** | AENROP | 0.005 | 0.028 | 0.184 | 0.854 | |
lagCI | −0.735 | 0.169 | −4.358 | <0.001 | ** | |||||
50–59 | 0.140 | 11.6 | <0.001 | ** | AENROP | 0.015 | 0.025 | 0.588 | 0.557 | |
lagCI | −0.552 | 0.175 | −3.158 | 0.002 | ** | |||||
60–69 | 0.386 | 40.2 | <0.001 | ** | AENROP | 0.098 | 0.028 | 3.458 | 0.001 | ** |
lagCI | −1.375 | 0.211 | −6.527 | <0.001 | ** |
Employed Males | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age | R2 | F | p | β | SE | T | p | |||
30–39 | 0.744 | 28.6 | 0.000 | ** | Physical | 0.003 | 0.005 | 0.707 | 0.496 | |
Intellectual | −0.081 | 0.035 | −2.349 | 0.041 | * | |||||
Psychiatric | 0.121 | 0.046 | 2.632 | 0.025 | * | |||||
40–49 | 0.819 | 5.6 | 0.013 | * | Physical | −0.200 | 0.220 | −0.909 | 0.385 | |
Intellectual | 0.902 | 1.052 | 0.857 | 0.412 | ||||||
Psychiatric | −0.264 | 0.359 | −0.737 | 0.478 | ||||||
50–59 | 0.549 | 27.2 | 0.000 | ** | Physical | 0.015 | 0.019 | 0.769 | 0.460 | |
Intellectual | −0.362 | 0.573 | −0.632 | 0.542 | ||||||
Psychiatric | 0.234 | 0.350 | 0.670 | 0.518 | ||||||
60–69 | 0.767 | 42.2 | 0.000 | ** | Physical | 0.121 | 0.103 | 1.178 | 0.266 | |
Intellectual | −2.923 | 3.453 | −0.846 | 0.417 | ||||||
Psychiatric | −2.566 | 2.160 | −1.188 | 0.262 | ||||||
Unemployed Males | ||||||||||
Age | R2 | F | p | β | SE | T | p | |||
30–39 | 0.607 | 60.0 | 0.000 | ** | Physical | −0.079 | 0.022 | −3.547 | 0.005 | ** |
Intellectual | −0.632 | 0.121 | −5.236 | 0.000 | ** | |||||
Psychiatric | 0.409 | 0.090 | 4.539 | 0.001 | ** | |||||
40–49 | 0.366 | 28.3 | 0.000 | ** | Physical | −0.338 | 0.105 | −3.229 | 0.009 | ** |
Intellectual | −1.192 | 0.366 | −3.258 | 0.009 | ** | |||||
Psychiatric | 0.806 | 0.295 | 2.733 | 0.021 | * | |||||
50–59 | 0.394 | 22.4 | 0.000 | ** | Physical | 0.151 | 0.072 | 2.093 | 0.063 | |
Intellectual | −2.178 | 0.812 | −2.682 | 0.023 | * | |||||
Psychiatric | 0.830 | 0.320 | 2.590 | 0.027 | * | |||||
60–69 | 0.456 | 1.9 | 0.190 | Physical | 0.159 | 0.109 | 1.461 | 0.175 | ||
Intellectual | −2.170 | 1.043 | −2.081 | 0.064 | ||||||
Psychiatric | 0.697 | 0.249 | 2.803 | 0.019 | * | |||||
Employed Females | ||||||||||
Age | R2 | F | p | β | SE | T | p | |||
30–39 | 0.690 | 45.9 | 0.000 | ** | Physical | −0.002 | 0.002 | −1.244 | 0.242 | |
Intellectual | −0.060 | 0.028 | −2.162 | 0.056 | ||||||
Psychiatric | 0.071 | 0.031 | 2.265 | 0.047 | * | |||||
40–49 | 0.790 | 10.7 | 0.001 | ** | Physical | −0.062 | 0.063 | −0.983 | 0.349 | |
Intellectual | 0.291 | 0.336 | 0.866 | 0.407 | ||||||
Psychiatric | −0.083 | 0.116 | −0.719 | 0.488 | ||||||
50–59 | 0.651 | 7.1 | 0.005 | ** | Physical | 0.003 | 0.003 | 0.988 | 0.347 | |
Intellectual | −0.095 | 0.141 | −0.673 | 0.516 | ||||||
Psychiatric | 0.071 | 0.099 | 0.716 | 0.490 | ||||||
60–69 | 0.789 | 167.2 | 0.000 | ** | Physical | 0.028 | 0.021 | 1.296 | 0.224 | |
Intellectual | −0.908 | 0.742 | −1.223 | 0.249 | ||||||
Psychiatric | −0.547 | 0.436 | −1.254 | 0.239 | ||||||
Unemployed Females | ||||||||||
Age | R2 | F | p | β | SE | T | p | |||
30–39 | 0.614 | 65.1 | 0.000 | ** | Physical | −0.018 | 0.019 | −0.914 | 0.382 | |
Intellectual | −0.328 | 0.103 | −3.187 | 0.010 | * | |||||
Psychiatric | 0.340 | 0.093 | 3.661 | 0.004 | ** | |||||
40–49 | 0.716 | 3.2 | 0.062 | Physical | −0.306 | 0.146 | −2.097 | 0.062 | ||
Intellectual | 1.583 | 0.930 | 1.702 | 0.120 | ||||||
Psychiatric | −0.514 | 0.381 | −1.347 | 0.208 | ||||||
50–59 | 0.365 | 1.5 | 0.269 | Physical | 0.019 | 0.020 | 0.940 | 0.370 | ||
Intellectual | −0.275 | 0.408 | −0.675 | 0.515 | ||||||
Psychiatric | 0.231 | 0.288 | 0.801 | 0.442 | ||||||
60–69 | 0.667 | 1.4 | 0.299 | Physical | 0.247 | 0.357 | 0.691 | 0.505 | ||
Intellectual | −8.901 | 13.050 | −0.682 | 0.511 | ||||||
Psychiatric | −4.390 | 8.184 | −0.536 | 0.603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oka, T.; Matsumoto, R.; Motomura, E.; Okada, M. Suicides Mortality of Unemployed Individuals Becomes a Serious Public Health Concern in Japan in Post-COVID-19 Pandemic Era. Int. J. Environ. Res. Public Health 2025, 22, 1315. https://doi.org/10.3390/ijerph22091315
Oka T, Matsumoto R, Motomura E, Okada M. Suicides Mortality of Unemployed Individuals Becomes a Serious Public Health Concern in Japan in Post-COVID-19 Pandemic Era. International Journal of Environmental Research and Public Health. 2025; 22(9):1315. https://doi.org/10.3390/ijerph22091315
Chicago/Turabian StyleOka, Tomoka, Ryusuke Matsumoto, Eishi Motomura, and Motohiro Okada. 2025. "Suicides Mortality of Unemployed Individuals Becomes a Serious Public Health Concern in Japan in Post-COVID-19 Pandemic Era" International Journal of Environmental Research and Public Health 22, no. 9: 1315. https://doi.org/10.3390/ijerph22091315
APA StyleOka, T., Matsumoto, R., Motomura, E., & Okada, M. (2025). Suicides Mortality of Unemployed Individuals Becomes a Serious Public Health Concern in Japan in Post-COVID-19 Pandemic Era. International Journal of Environmental Research and Public Health, 22(9), 1315. https://doi.org/10.3390/ijerph22091315