Sex Specificities in the Association Between Diet, Physical Activity, and Body Composition Among the Elderly: A Cross-Sectional Study in Florence, Italy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. A Priori Dietary Patterns
2.3. Statistical Analysis
3. Results
3.1. Dietary Patterns and Body Composition
3.2. Physical Activity Levels and Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BIA | Bioelectrical Impedance Analysis |
BMI | Body Mass Index |
DASH | Dietary Approaches to Stop Hypertension |
EPIC | European Prospective Investigation into Cancer and Nutrition |
FCT | Food Composition Tables |
FFQ | Food Frequency Questionnaire |
GMMD | Greek Modified Mediterranean Diet |
IMI | Italian Mediterranean Index |
LSQ | Lifestyle Questionnaire |
MET | Metabolic Equivalent |
PA | Physical Activity |
PPAR-c | Peroxisome Proliferator-Activated Receptor-C |
SD | Standard Deviation |
WC | Waist Circumference |
References
- Khandelwal, S. Obesity in midlife: Lifestyle and dietary strategies. Climacteric 2020, 23, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Guidarelli, G.; Ostan, R.; Giampieri, E.; Fabbri, C.; Bertarelli, C.; Nicoletti, C.; Kadi, F.; de Groot, L.C.; Feskens, E.; et al. Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study. Eur. Radiol. 2019, 29, 4968–4979. [Google Scholar] [CrossRef] [PubMed]
- Nauli, A.M.; Matin, S. Why Do Men Accumulate Abdominal Visceral Fat? Front. Physiol. 2019, 10, 1486. [Google Scholar] [CrossRef] [PubMed]
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Front. Endocrinol. 2020, 10, 861. [Google Scholar] [CrossRef]
- Kim, I.H.; Chun, H.; Kwon, J.W. Gender differences in the effect of obesity on chronic diseases among the elderly Koreans. J. Korean Med. Sci. 2011, 26, 250–257. [Google Scholar] [CrossRef]
- Schorr, M.; Dichtel, L.E.; Gerweck, A.V.; Valera, R.D.; Torriani, M.; Miller, K.K.; Bredella, M.A. Sex differences in body composition and association with cardiometabolic risk. Biol. Sex. Differ. 2018, 9, 28. [Google Scholar] [CrossRef]
- Madden, A.M.; Smith, S. Body composition and morphological assessment of nutritional status in adults: A review of anthropometric variables. J. Hum. Nutr. Diet. 2016, 29, 7–25. [Google Scholar] [CrossRef]
- Woo, J.; Ho, S.C.; Yu, A.L.; Sham, A. Is waist circumference a useful measure in predicting health outcomes in the elderly? Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1349–1355. [Google Scholar] [CrossRef]
- Onat, A.; Avci, G.S.; Barlan, M.M.; Uyarel, H.; Uzunlar, B.; Sansoy, V. Measures of abdominal obesity assessed for visceral adiposity and relation to coronary risk. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 1018–1025. [Google Scholar] [CrossRef]
- Drozdová, D.; Danková, Z.; Čerňanová, V.; Siváková, D. Body composition of Slovak midlife women with cardiovascular complications. Anthropol. Rev. 2016, 79, 169–180. [Google Scholar] [CrossRef]
- Vorobeľová, L.; Falbová, D.; Siváková, D. Differences in body composition between metabolically healthy and unhealthy midlife women with respect to obesity status. Anthropol. Rev. 2021, 84, 59–71. [Google Scholar] [CrossRef]
- Kim, S.; Won, C.W. Sex-different changes of body composition in aging: A systemic review. Arch. Gerontol. Geriatr. 2022, 102, 104711. [Google Scholar] [CrossRef] [PubMed]
- Tourlouki, E.; Matalas, A.L.; Panagiotakos, D.B. Dietary habits and cardiovascular disease risk in middle-aged and elderly populations: A review of evidence. Clin. Interv. Aging 2009, 4, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Boushey, C.J.; Shvetsov, Y.B.; Setiawan, V.W.; Paik, H.Y.; Wilkens, L.R.; Le Marchand, L.; Park, S.Y. Changes in Diet Quality over 10 Years and Subsequent Mortality from Cardiovascular Disease in the Multiethnic Cohort Study. Nutrients 2023, 15, 3482. [Google Scholar] [CrossRef]
- Kim, K.; Choi, S.; Hwang, S.E.; Son, J.S.; Lee, J.K.; Oh, J.; Park, S.M. Changes in exercise frequency and cardiovascular outcomes in older adults. Eur. Heart J. 2020, 41, 1490–1499. [Google Scholar] [CrossRef]
- Ciumărnean, L.; Milaciu, M.V.; Negrean, V.; Orășan, O.H.; Vesa, S.C.; Sălăgean, O.; Iluţ, S.; Vlaicu, S.I. Cardiovascular Risk Factors and Physical Activity for the Prevention of Cardiovascular Diseases in the Elderly. Int. J. Environ. Res. Public Health 2021, 19, 207. [Google Scholar] [CrossRef]
- Palli, D.; Berrino, F.; Vineis, P.; Tumino, R.; Panico, S.; Masala, G.; Saieva, C.; Salvini, S.; Ceroti, M.; Pala, V.; et al. A molecular epidemiology project on diet and cancer: The EPIC-Italy Prospective Study. Design and baseline characteristics of participants. Tumori 2003, 89, 586–593. [Google Scholar] [CrossRef]
- Slimani, N.; Kaaks, R.; Ferrari, P.; Casagrande, C.; Clavel-Chapelon, F.; Lotze, G.; Kroke, A.; Trichopoulos, D.; Trichopoulou, A.; Lauria, C.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: Rationale, design and population characteristics. Public Health Nutr. 2002, 5, 1125–1145. [Google Scholar] [CrossRef]
- Food Composition Database for Epidemiological Studies in Italy (Banca Dati di Composizione degli Alimenti per Studi Epidemiologici in Italia, BDA). Available online: https://bda.ieo.it/?page_id=23&lang=en (accessed on 24 February 2025).
- Pols, M.A.; Peeters, P.H.; Ocké, M.C.; Slimani, N.; Bueno-de-Mesquita, H.B.; Collette, H.J. Estimation of reproducibility and relative validity of the questions included in the EPIC Physical Activity Questionnaire. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S181–S189. [Google Scholar] [CrossRef]
- Cust, A.E.; Smith, B.J.; Chau, J.; van der Ploeg, H.P.; Friedenreich, C.M.; Armstrong, B.K.; Bauman, A. Validity and repeatability of the EPIC physical activity questionnaire: A validation study using accelerometers as an objective measure. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 33. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32 (Suppl. S9), S498–S504. [Google Scholar] [CrossRef] [PubMed]
- Brunani, A.; Perna, S.; Soranna, D.; Rondanelli, M.; Zambon, A.; Bertoli, S.; Vinci, C.; Capodaglio, P.; Lukaski, H.; Cancello, R. Body composition assessment using bioelectrical impedance analysis (BIA) in a wide cohort of patients affected with mild to severe obesity. Clin. Nutr. 2021, 40, 3973–3981. [Google Scholar] [CrossRef] [PubMed]
- Pala, V.; Sieri, S.; Palli, D.; Salvini, S.; Berrino, F.; Bellegotti, M.; Frasca, G.; Tumino, R.; Sacerdote, C.; Fiorini, L.; et al. Diet in the Italian EPIC cohorts: Presentation of data and methodological issues. Tumori 2003, 89, 594–607. [Google Scholar] [CrossRef] [PubMed]
- Agnoli, C.; Krogh, V.; Grioni, S.; Sieri, S.; Palli, D.; Masala, G.; Sacerdote, C.; Vineis, P.; Tumino, R.; Frasca, G.; et al. A priori-defined dietary patterns are associated with reduced risk of stroke in a large Italian cohort. J. Nutr. 2011, 141, 1552–1558. [Google Scholar] [CrossRef]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Bamia, C.; Norat, T.; Overvad, K.; Schmidt, E.B.; Tjønneland, A.; Halkjaer, J.; Clavel-Chapelon, F.; Vercambre, M.N.; Boutron-Ruault, M.C.; et al. Modified Mediterranean diet and survival after myocardial infarction: The EPIC-Elderly study. Eur. J. Epidemiol. 2007, 22, 871–881. [Google Scholar] [CrossRef]
- Holtermann, A.; Hansen, J.V.; Burr, H.; Søgaard, K.; Sjøgaard, G. The health paradox of occupational and leisure-time physical activity. Br. J. Sports Med. 2012, 46, 291–295. [Google Scholar] [CrossRef]
- Bendinelli, B.; Pastore, E.; Fontana, M.; Ermini, I.; Assedi, M.; Facchini, L.; Querci, A.; Caini, S.; Masala, G. A Priori Dietary Patterns, Physical Activity Level, and Body Composition in Postmenopausal Women: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 6747. [Google Scholar] [CrossRef]
- Lengelé, L.; de França, N.G.; Rolland, Y.; Guyonnet, S.; de Souto Barreto, P. Body Composition, Physical Function, and Dietary Patterns in People from 20 to Over 80 Years Old. J. Nutr. Health Aging 2023, 27, 1047–1055. [Google Scholar] [CrossRef]
- Anderson, A.L.; Harris, T.B.; Houston, D.K.; Tylavsky, F.A.; Lee, J.S.; Sellmeyer, D.E.; Sahyoun, N.R. Relationships of dietary patterns with body composition in older adults differ by gender and PPAR-γ Pro12Ala genotype. Eur. J. Nutr. 2010, 49, 385–394. [Google Scholar] [CrossRef]
- Newby, P.K.; Muller, D.; Hallfrisch, J.; Andres, R.; Tucker, K.L. Food patterns measured by factor analysis and anthropometric changes in adults. Am. J. Clin. Nutr. 2004, 80, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.; Haan, M.N.; Steinberg, F.M.; Visser, M. Body composition in the elderly: The influence of nutritional factors and physical activity. J. Nutr. Health Aging 2003, 7, 130–139. [Google Scholar] [PubMed]
- Raguso, C.A.; Kyle, U.; Kossovsky, M.P.; Roynette, C.; Paoloni-Giacobino, A.; Hans, D.; Genton, L.; Pichard, C. A 3-year longitudinal study on body composition changes in the elderly: Role of physical exercise. Clin. Nutr. 2006, 25, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Genton, L.; Karsegard, V.L.; Chevalley, T.; Kossovsky, M.P.; Darmon, P.; Pichard, C. Body composition changes over 9 years in healthy elderly subjects and impact of physical activity. Clin. Nutr. 2011, 30, 436–442. [Google Scholar] [CrossRef]
- Cárdenas Fuentes, G.; Bawaked, R.A.; Martínez González, M.Á.; Corella, D.; Subirana Cachinero, I.; Salas-Salvadó, J.; Estruch, R.; Serra-Majem, L.; Ros, E.; Lapetra Peralta, J.; et al. Association of physical activity with body mass index, waist circumference and incidence of obesity in older adults. Eur. J. Public Health 2018, 28, 944–950. [Google Scholar] [CrossRef]
- Tannir, H.; Itani, L.; El Masri, D.; Kreidieh, D.; El Ghoch, M. Lifetime Weight Cycling and Central Fat Distribution in Females With Obesity: A Brief Report. Diseases 2020, 8, 8. [Google Scholar] [CrossRef]
- Jaafar, Z.A.; Kreidieh, D.; Itani, L.; Tannir, H.; El Masri, D.; El Ghoch, M. Cross-validation of prediction equations for estimating the body fat percentage in adults with obesity. Clin. Nutr. ESPEN 2021, 41, 346–350. [Google Scholar] [CrossRef]
- Freisling, H.; Arnold, M.; Soerjomataram, I.; O’Doherty, M.G.; Ordóñez-Mena, J.M.; Bamia, C.; Kampman, E.; Leitzmann, M.; Romieu, I.; Kee, F.; et al. Comparison of general obesity and measures of body fat distribution in older adults in relation to cancer risk: Meta-analysis of individual participant data of seven prospective cohorts in Europe. Br. J. Cancer 2017, 116, 1486–1497. [Google Scholar] [CrossRef]
- Hu, T.; Shen, Y.; Cao, W.; Xu, Y.; Wang, Y.; Ma, X.; Bao, Y. Two-year changes in body composition and future cardiovascular events: A longitudinal community-based study. Nutr. Metab. 2023, 20, 4. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Shen, S.; Hong, X.; Zeng, X.; Yang, Y.; Liu, Z.; Chen, L.; Chen, X. Association Between Body Composition and Frailty in Elder Inpatients. Clin. Interv. Aging 2020, 15, 313–320. [Google Scholar] [CrossRef]
- Sedlmeier, A.M.; Baumeister, S.E.; Weber, A.; Fischer, B.; Thorand, B.; Ittermann, T.; Dörr, M.; Felix, S.B.; Völzke, H.; Peters, A.; et al. Relation of body fat mass and fat-free mass to total mortality: Results from 7 prospective cohort studies. Am. J. Clin. Nutr. 2021, 113, 639–646. [Google Scholar] [CrossRef]
Men (n = 142) | Women (n = 183) | p-Value | |||
---|---|---|---|---|---|
N/Mean | %/SD | N/Mean | %/SD | ||
Age, years | 73.2 | 5.7 | 72.8 | 6.4 | 0.509 |
Marital status | |||||
Married/living as married | 109 | 77.9% | 107 | 59.4% | |
Widowed | 13 | 9.3% | 37 | 20.6% | |
Divorced or separated | 11 | 7.9% | 18 | 10.0% | |
Never been married | 7 | 5.0% | 18 | 10.0% | 0.004 |
Education, highest level attained | |||||
None, primary, or lower secondary school | 45 | 31.9% | 50 | 27.6% | |
Professional or upper secondary school | 62 | 44.0% | 79 | 43.6% | |
University degree or above | 34 | 24.1% | 52 | 28.7% | 0.569 |
Smoking status | |||||
Never smoker | 51 | 35.9% | 83 | 45.4% | |
Former smoker | 74 | 52.1% | 85 | 46.4% | |
Current smoker | 17 | 12.0% | 15 | 8.2% | 0.182 |
Occupational physical activity | |||||
Unemployed | 109 | 76.8% | 151 | 83.4% | |
Sedentary occupation | 21 | 14.8% | 21 | 11.6% | |
Standing occupation | 4 | 2.8% | 7 | 3.9% | |
Manual or heavy manual occupation | 8 | 5.6% | 2 | 1.1% | 0.088 |
Men (n = 142) | Women (n = 183) | p-Value | |||
---|---|---|---|---|---|
N/Mean | %/SD | N/mean | %/SD | ||
Physical activity, MET hours/week | |||||
Recreational physical activity | 34.0 | 29.1 | 28.5 | 23.9 | 0.060 |
Walking | 16.9 | 13.6 | 15.1 | 10.5 | 0.167 |
Fitness | 10.4 | 16.0 | 9.7 | 15.2 | 0.687 |
Household physical activity | 19.8 | 23.6 | 57.9 | 37.3 | <0.001 |
Total physical activity | |||||
Inactive | 11 | 7.7% | 21 | 11.5% | |
Moderately inactive | 57 | 40.1% | 114 | 62.3% | |
Moderately active or active | 74 | 52.1% | 48 | 26.2% | <0.001 |
Anthropometry | |||||
Weight (kg) | 80.0 | 12.3 | 64.3 | 11.6 | <0.001 |
Height (cm) | 171.3 | 6.8 | 156.4 | 6.2 | <0.001 |
Body mass index (kg/m2) | 27.3 | 3.9 | 26.3 | 4.6 | 0.047 |
<25 | 39 | 27.5% | 83 | 45.4% | |
≥25–<30 | 71 | 50.0% | 64 | 35.0% | |
≥30 | 32 | 22.5% | 36 | 19.7% | 0.003 |
Waist circumference (cm) | 96.9 | 11.2 | 85.2 | 11.4 | <0.001 |
< 94 (M)/< 80 (F) | 60 | 42.3% | 65 | 35.5% | |
≥94–≤ 102 (M)/≥ 80–≤ 88 (F) | 39 | 27.5% | 56 | 30.6% | |
>102 (M)/> 88 (F) | 43 | 30.3% | 62 | 33.9% | 0.465 |
Hip circumference (cm) | 102.0 | 7.5 | 100.8 | 9.6 | 0.192 |
Body composition (kg) | |||||
Fat mass | 19.4 | 7.3 | 22.6 | 8.0 | <0.001 |
Muscle mass | 57.6 | 6.2 | 39.6 | 4.2 | <0.001 |
Bone mass | 3.0 | 0.3 | 2.1 | 0.2 | <0.001 |
Visceral fat (score) | 14.9 | 3.5 | 9.6 | 2.6 | <0.001 |
Water, total body | 41.8 | 4.8 | 29.2 | 3.2 | <0.001 |
Water, intracellular | 23.2 | 3.1 | 15.4 | 1.7 | <0.001 |
Water, extracellular | 18.6 | 1.7 | 13.9 | 1.7 | <0.001 |
Percent body composition (%) | |||||
Fat mass | 23.5% | 5.9 | 34.1% | 6.7 | <0.001 |
Muscle mass | 72.7% | 5.6 | 62.5% | 6.3 | <0.001 |
Bone | 3.8% | 0.3 | 3.4% | 0.3 | <0.001 |
Water, total body | 52.7% | 4.2 | 46.2% | 4.7 | <0.001 |
Water, intracellular (a) | 55.4% | 1.6 | 52.6% | 1.9 | <0.001 |
Water, extracellular (a) | 44.6% | 1.6 | 47.4% | 1.9 | <0.001 |
Dietary Score | % Participants | Fat Mass, % | Muscle Mass, % | Bone Mass, % | Total Body Water, % | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | ||
Men (n = 142) | |||||||||||||
IMI (ref: 0–2) | 25.4 | ref | ref | ref | ref | ||||||||
3–4 | 35.2 | −0.26% | (−2.76; 2.23) | 0.835 | 0.23% | (−2.11; 2.57) | 0.847 | 0.01% | (−0.12; 0.14) | 0.895 | −0.07% | (−1.79; 1.66) | 0.941 |
5–9 | 39.4 | −0.79% | (−3.29; 1.71) | 0.534 | 0.80% | (−1.54; 3.15) | 0.502 | 0.05% | (−0.07; 0.18) | 0.399 | 0.31% | (−1.42; 2.05) | 0.723 |
DASH (ref: ≤23) | 41.5 | ref | ref | ref | ref | ||||||||
24–27 | 30.3 | 0.27% | (−2.04; 2.58) | 0.818 | −0.19% | (−2.36; 1.98) | 0.863 | 0.01% | (−0.11; 0.13) | 0.852 | −0.08% | (−1.69; 1.52) | 0.919 |
≥28 | 28.2 | −1.51% | (−3.93; 0.91) | 0.221 | 1.44% | (−0.83; 3.71) | 0.215 | 0.09% | (−0.03; 0.22) | 0.138 | 1.05% | (−0.64; 2.74) | 0.222 |
GMMD (ref: 0–3) | 26.1 | ref | ref | ref | ref | ||||||||
4–5 | 40.8 | 0.62% | (−1.78; 3.02) | 0.612 | −0.54% | (−2.80; 1.71) | 0.636 | −0.01% | (−0.13; 0.11) | 0.882 | −0.52% | (−2.19; 1.15) | 0.540 |
6–8 | 33.1 | −0.46% | (−3.07; 2.14) | 0.728 | 0.48% | (−1.97; 2.93) | 0.701 | 0.06% | (−0.08; 0.19) | 0.417 | 0.31% | (−1.49; −1.49) | 0.733 |
Women (n = 183) | |||||||||||||
IMI (ref: 0–2) | 20.8 | ref | ref | ref | ref | ||||||||
3–4 | 38.8 | −1.99% | (−4.58; 0.60) | 0.132 | 1.84% | (−0.60; 4.27) | 0.139 | 0.10% | (−0.03; 0.23) | 0.130 | 1.32% | (−0.43; 3.06) | 0.139 |
5–9 | 40.4 | −1.51% | (−4.13; 1.11) | 0.260 | 1.38% | (−1.08; 3.84) | 0.271 | 0.08% | (−0.05; 0.21) | 0.243 | 0.93% | (−0.82; 2.68) | 0.299 |
DASH (ref: ≤23) | 53.5 | ref | ref | ref | ref | ||||||||
24–27 | 29.0 | −1.37% | (−3.63; 0.89) | 0.234 | 1.22% | (−0.90; 3.34) | 0.260 | 0.08% | (−0.04; 0.19) | 0.181 | 0.78% | (−0.74; 2.31) | 0.315 |
≥28 | 17.5 | −3.65% | (−6.22; −1.07) | 0.006 | 3.42% | (0.98; 5.85) | 0.006 | 0.17% | (0.04; 0.31) | 0.010 | 2.39% | (0.61; 4.16) | 0.008 |
GMMD (ref: 0–3) | 31.1 | ref | ref | ref | ref | ||||||||
4–5 | 42.1 | 1.32% | (−1.03; 3.67) | 0.270 | −1.26% | (−3.47; 0.96) | 0.265 | −0.08% | (−0.20; 0.04) | 0.175 | −0.91% | (−2.50; 0.68) | 0.263 |
6–8 | 26.8 | −0.05% | (−2.81; 2.72) | 0.974 | −0.01% | (−2.62; 2.60) | 0.996 | −0.01% | (−0.15; 0.13) | 0.901 | −0.08% | (−1.96; 1.80) | 0.933 |
Increase by +1 MET Hours/Week | Highest vs. Lowest Quantile (a) | ||||||
---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | p-Value for Trend | |
Walking | |||||||
Fat mass, % | −0.03% | (−0.10; 0.04) | 0.472 | −2.40% | (−5.94; 1.13) | 0.182 | 0.569 |
Muscle mass, % | 0.02% | (−0.04; 0.09) | 0.479 | 2.30% | (−0.99; 5.59) | 0.171 | 0.558 |
Bone mass, % | 0.002% | (−0.002; 0.006) | 0.262 | 0.191% | (0.020; 0.362) | 0.029 | 0.247 |
Visceral fat, score | −0.02 | (−0.06; 0.02) | 0.378 | −1.93 | (−3.94; 0.09) | 0.061 | 0.320 |
Total body water, % | 0.03% | (−0.02; 0.08) | 0.230 | 2.29% | (−0.08; 4.66) | 0.058 | 0.282 |
Body mass index, kg/m2 | −0.02 | (−0.06; 0.03) | 0.536 | −1.57 | (−3.96; 0.83) | 0.198 | 0.474 |
Waist circumference, cm | −0.09 | (−0.23; 0.05) | 0.192 | −6.69 | (−13.57; 0.18) | 0.056 | 0.128 |
Fitness | |||||||
Fat mass, % | −0.08% | (−0.14; −0.02) | 0.014 | −3.29% | (−5.65; −0.93) | 0.006 | 0.008 |
Muscle mass, % | 0.07% | (0.02; 0.13) | 0.013 | 3.10% | (0.89; 5.32) | 0.006 | 0.007 |
Bone mass, % | 0.004% | (0.001; 0.007) | 0.010 | 0.176% | (0.055; 0.297) | 0.004 | 0.004 |
Visceral fat, score | −0.04 | (−0.08; −0.01) | 0.014 | −1.99 | (−3.37; −0.61) | 0.005 | 0.004 |
Total body water, % | 0.05% | (0.01; 0.10) | 0.010 | 2.11% | (0.47; 3.75) | 0.012 | 0.014 |
Body mass index, kg/m2 | −0.05 | (−0.09; −0.01) | 0.024 | −2.31 | (−3.94; −0.69) | 0.006 | 0.004 |
Waist circumference, cm | −0.16 | (−0.28; −0.05) | 0.007 | −7.24 | (−11.92; −2.56) | 0.003 | 0.002 |
Recreational physical activity | |||||||
Fat mass, % | −0.04% | (−0.07; −0.01) | 0.029 | −2.09% | (−4.87; 0.70) | 0.142 | 0.065 |
Muscle mass, % | 0.03% | (0.00; 0.07) | 0.028 | 1.97% | (−0.64; 4.57) | 0.139 | 0.067 |
Bone mass, % | 0.002% | (0.000; 0.004) | 0.014 | 0.133% | (−0.008; 0.273) | 0.065 | 0.039 |
Visceral fat, score | −0.02 | (−0.04; −0.00) | 0.030 | −1.34 | (−2.97; 0.29) | 0.107 | 0.049 |
Total body water, % | 0.03% | (0.01; 0.05) | 0.012 | 1.45% | (−0.46; 3.36) | 0.138 | 0.078 |
Body mass index, kg/m2 | −0.02 | (−0.05; −0.00) | 0.042 | −1.58 | (−3.49; 0.034) | 0.105 | 0.046 |
Waist circumference, cm | −0.09 | (−0.16; −0.03) | 0.004 | −5.36 | (−10.87; 0.16) | 0.057 | 0.025 |
Household physical activity | |||||||
Fat mass, % | −0.01% | (−0.05; 0.03) | 0.624 | −0.74% | (−3.51; 2.04) | 0.604 | 0.402 |
Muscle mass, % | 0.01% | (−0.03; 0.05) | 0.587 | 0.80% | (−1.80; 3.40) | 0.547 | 0.363 |
Bone mass, % | 0.000% | (−0.002; 0.003) | 0.697 | 0.045% | (−0.096; 0.186) | 0.532 | 0.384 |
Visceral fat, score | 0.00 | (−0.03; 0.02) | 0.782 | −0.57 | (−2.20; 1.06) | 0.487 | 0.371 |
Total body water, % | 0.01% | (−0.02; 0.04) | 0.350 | 0.83% | (−1.07; 2.73) | 0.393 | 0.249 |
Body mass index, kg/m2 | 0.00 | (−0.03; 0.03) | 0.817 | −0.24 | (−2.16; 1.68) | 0.803 | 0.648 |
Waist circumference, cm | −0.04 | (−0.13; 0.04) | 0.339 | −1.23 | (−6.76; 4.30) | 0.660 | 0.452 |
Increase by +1 MET Hours/Week | Highest vs. Lowest Quantile (a) | ||||||
---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | p-Value for Trend | |
Walking | |||||||
Fat mass, % | −0.04% | (−0.13; 0.05) | 0.378 | −1.69% | (−4.48; 1.10) | 0.236 | 0.374 |
Muscle mass, % | 0.04% | (−0.05; 0.13) | 0.377 | 1.62% | (−1.01; 4.25) | 0.227 | 0.362 |
Bone mass, % | 0.002% | (−0.003; 0.006) | 0.456 | 0.091% | (−0.049; 0.231) | 0.203 | 0.344 |
Visceral fat, score | −0.02 | (−0.05; 0.01) | 0.251 | −0.10 | (−1.97; 0.08) | 0.071 | 0.144 |
Total body water, % | 0.03% | (−0.03; 0.09) | 0.380 | 1.23% | (−0.66; 3.11) | 0.202 | 0.322 |
Body mass index, kg/m2 | −0.05 | (−0.11; 0.02) | 0.182 | −2.01 | (−4.04; 0.01) | 0.051 | 0.118 |
Waist circumference, cm | −0.10 | (−0.26; 0.07) | 0.245 | −4.32 | (−9.28; 0.64) | 0.088 | 0.227 |
Fitness | |||||||
Fat mass, % | −0.12% | (−0.18; −0.05) | 0.000 | −3.72% | (−6.02; −1.41) | 0.002 | 0.001 |
Muscle mass, % | 0.11% | (0.05; 0.17) | 0.000 | 3.50% | (1.33; 5.67) | 0.002 | 0.001 |
Bone mass, % | 0.006% | (0.003; 0.009) | 0.000 | 0.201% | (0.083; 0.318) | 0.001 | 0.001 |
Visceral fat, score | −0.04 | (−0.06; −0.02) | 0.001 | −1.43 | (−2.28; −0.58) | 0.001 | 0.001 |
Total body water, % | 0.08% | (0.03; 0.12) | 0.000 | 2.54% | (0.97; 4.11) | 0.002 | 0.001 |
Body mass index, kg/m2 | −0.08 | (−0.12; −0.03) | 0.001 | −2.85 | (−4.53; −1.17) | 0.001 | 0.001 |
Waist circumference, cm | −0.15 | (−0.26; −0.03) | 0.012 | −6.02 | (−10.17; −1.87) | 0.005 | 0.004 |
Recreational physical activity | |||||||
Fat mass, % | −0.08% | (−0.13; −0.04) | 0.000 | −3.59% | (−6.37; −0.81) | 0.011 | 0.004 |
Muscle mass, % | 0.08% | (0.04; 0.12) | 0.000 | 3.43% | (0.82; 6.05) | 0.010 | 0.004 |
Bone mass, % | 0.004% | (0.002; 0.006) | 0.000 | 0.180% | (0.039; 0.321) | 0.012 | 0.005 |
Visceral fat, score | −0.03 | (−0.04; −0.01) | 0.000 | −1.57 | (−2.59; −0.54) | 0.003 | 0.001 |
Total body water, % | 0.06% | (0.03; 0.08) | 0.000 | 2.57% | (0.68; 4.45) | 0.008 | 0.003 |
Body mass index, kg/m2 | −0.05 | (−0.08; −0.02) | 0.000 | −2.80 | (−4.81; −0.79) | 0.007 | 0.001 |
Waist circumference, cm | −0.09 | (−0.17; −0.02) | 0.010 | −5.27 | (−10.30; −0.24) | 0.040 | 0.017 |
Household physical activity | |||||||
Fat mass, % | −0.01% | (−0.04; 0.02) | 0.465 | 0.18% | (−2.66; 3.01) | 0.903 | 0.990 |
Muscle mass, % | 0.01% | (−0.02; 0.03) | 0.476 | −0.17% | (−2.84; 2.50) | 0.900 | 0.990 |
Bone mass, % | 0.000% | (−0.001; 0.002) | 0.465 | −0.008% | (−0.151; 0.135) | 0.912 | 0.924 |
Visceral fat, score | 0.00 | (−0.01; 0.01) | 0.569 | −0.08 | (−1.13; 0.98) | 0.885 | 0.747 |
Total body water, % | 0.01% | (−0.01; 0.02) | 0.503 | −0.12% | (−2.04; 1.80) | 0.902 | 0.998 |
Body mass index, kg/m2 | 0.00 | (−0.02; 0.02) | 0.667 | −0.18 | (−2.26; 1.90) | 0.866 | 0.696 |
Waist circumference, cm | −0.01 | (−0.06; 0.03) | 0.583 | 0.10 | (−4.98; 5.18) | 0.969 | 0.850 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Bonfioli Cavalcabo’, N.; Facchini, L.; Assedi, M.; Ermini, I.; Cozzolino, F.; Bortolotti, E.; Saieva, C.; Biagiotti, D.; Pastore, E.; Bendinelli, B.; et al. Sex Specificities in the Association Between Diet, Physical Activity, and Body Composition Among the Elderly: A Cross-Sectional Study in Florence, Italy. Int. J. Environ. Res. Public Health 2025, 22, 975. https://doi.org/10.3390/ijerph22070975
de Bonfioli Cavalcabo’ N, Facchini L, Assedi M, Ermini I, Cozzolino F, Bortolotti E, Saieva C, Biagiotti D, Pastore E, Bendinelli B, et al. Sex Specificities in the Association Between Diet, Physical Activity, and Body Composition Among the Elderly: A Cross-Sectional Study in Florence, Italy. International Journal of Environmental Research and Public Health. 2025; 22(7):975. https://doi.org/10.3390/ijerph22070975
Chicago/Turabian Stylede Bonfioli Cavalcabo’, Nora, Luigi Facchini, Melania Assedi, Ilaria Ermini, Flavia Cozzolino, Emma Bortolotti, Calogero Saieva, Davide Biagiotti, Elisa Pastore, Benedetta Bendinelli, and et al. 2025. "Sex Specificities in the Association Between Diet, Physical Activity, and Body Composition Among the Elderly: A Cross-Sectional Study in Florence, Italy" International Journal of Environmental Research and Public Health 22, no. 7: 975. https://doi.org/10.3390/ijerph22070975
APA Stylede Bonfioli Cavalcabo’, N., Facchini, L., Assedi, M., Ermini, I., Cozzolino, F., Bortolotti, E., Saieva, C., Biagiotti, D., Pastore, E., Bendinelli, B., Masala, G., & Caini, S. (2025). Sex Specificities in the Association Between Diet, Physical Activity, and Body Composition Among the Elderly: A Cross-Sectional Study in Florence, Italy. International Journal of Environmental Research and Public Health, 22(7), 975. https://doi.org/10.3390/ijerph22070975