Vaping Education: A Two-Year Study Examining Health Literacy and Behaviors in a Southeastern State
Abstract
1. Introduction
1.1. Vaping Prevention Programs
1.2. The Current Study
2. Materials and Methods
2.1. Study Design and Participants
2.1.1. Multi-Study Data Analysis Plan
2.1.2. Study Sample
2.2. Program
2.3. Measures
2.3.1. Health Literacy
2.3.2. Electronic-Cigarette Use
2.4. Statistical Analysis
Study Procedures
3. Results
3.1. Changes in Knowledge
3.2. Predictors of Vaping Behavior
3.2.1. Change in Knowledge About Vaping
3.2.2. Prediction of Vaping Behavior in the Past 30 Days
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morean, M.; Krishnan-Sarin, S.; O’Malley, S.S. Comparing cigarette and e-cigarette dependence and predicting frequency of smoking and e-cigarette use in dual-users of cigarettes and e-cigarettes. Addict. Behav. 2018, 87, 92–96. [Google Scholar] [CrossRef]
- Farsalinos, K.; Barbouni, A.; Niaura, R. Changes from 2017 to 2018 in e-cigarette use and in ever marijuana use with e-cigarettes among US adolescents: Analysis of the National Youth Tobacco Survey. Addiction 2021, 116, 139–149. [Google Scholar] [CrossRef]
- McConnell, R.; Barrington-Trimis, J.L.; Wang, K.; Urman, R.; Hong, H.; Unger, J.; Samet, J.; Leventhal, A.; Berhane, K. Electronic Cigarette Use and Respiratory Symptoms in Adolescents. Am. J. Respir. Crit. Care Med. 2017, 195, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Wills, T.A.; Pagano, I.; Williams, R.J.; Tam, E.K. E-cigarette use and respiratory disorder in an adult sample. Drug Alcohol Depend. 2019, 194, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Leslie, F.M. Unique, long-term effects of nicotine on adolescent brain. Pharmacol. Biochem. Behav. 2020, 197, 173010. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.A.; Kava, C.M.; Afifi, R. High-School Students Rarely Use E-Cigarettes Alone: A Sociodemographic Analysis of Polysubstance Use Among Adolescents in the United States. Nicotine Tob. Res. 2021, 23, 505–510. [Google Scholar] [CrossRef]
- Becker, T.D.; Arnold, M.K.; Ro, V.; Martin, L.; Rice, T.R. Systematic review of electronic cigarette use (vaping) and mental health comorbidity among adolescents and young adults. Nicotine Tob. Res. 2021, 23, 415–425. [Google Scholar] [CrossRef]
- Tully, L. Early Intervention Strategies for Children and Young People 8 to 14 Years: Literature Review; NSW Department of Community Services: Parramatta, Australia, 2007.
- Liu, J.; Gaiha, S.M.; Halpern-Felsher, B. A breath of knowledge: Overview of current adolescent e-cigarette prevention and cessation programs. Curr. Addict. Rep. 2020, 7, 520–532. [Google Scholar] [CrossRef]
- Gaiha, S.M.; Duemler, A.; Silverwood, L.; Razo, A.; Halpern-Felsher, B.; Walley, S.C. School-based e-cigarette education in Alabama: Impact on knowledge of e-cigarettes, perceptions and intent to try. Addict. Behav. 2021, 112, 106519. [Google Scholar] [CrossRef]
- Gaiha, S.M.; Halpern-Felsher, B. Stemming the tide of youth E-cigarette use: Promising progress in the development and evaluation of E-cigarette prevention and cessation programs. Addict. Behav. 2021, 120, 106960. [Google Scholar] [CrossRef]
- McCauley, D.M.; Baiocchi, M.; Cruse, S.; Halpern-Felsher, B. Effects of a short school-based vaping prevention program for high school students. Prev. Med. Rep. 2023, 33, 102184. [Google Scholar] [CrossRef]
- Simpson, E.E.A.; Davison, J.; Doherty, J.; Dunwoody, L.; McDowell, C.; McLaughlin, M.; Butter, S.; Giles, M. Employing the theory of planned behaviour to design an e-cigarette educational resource for use in secondary schools. BMC Public Health 2022, 22, 276. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Truong, A.; Tieu, M.M.; Patel, M. Application of the Theory of Planned Behavior in e-cigarette use prevention among adolescents: A review. Health Promot. Pract. 2021, 22, 666–674. [Google Scholar]
- Zhao, X.; Liu, J.; Yang, H. E-cigarette use among adolescents: A theory of planned behavior perspective. J. Pediatr. Health Care 2022, 36, 45–52. [Google Scholar]
- Atkins, D.C.; Gallop, R.J. Rethinking How Family Researchers Model Infrequent Outcomes: A Tutorial on Count Regression and Zero-Inflated Models. J. Fam. Psychol. 2007, 21, 726–735. [Google Scholar] [CrossRef]
- Bröder, J.; Okan, O.; Bauer, U.; Bruland, D.; Schlupp, S.; Bollweg, T.M.; Saboga-Nunes, L.; Bond, E.; Sørensen, K.; Bitzer, E.-M.; et al. Health literacy in childhood and youth: A systematic review of definitions and models. BMC Public Health 2017, 17, 361. [Google Scholar] [CrossRef]
- Ormshaw, M.J.; Paakkari, L.T.; Kannas, L.K. Measuring child and adolescent health literacy: A systematic review of literature. Health Educ. 2013, 113, 433–455. [Google Scholar] [CrossRef]
- Schmidt, C.O.; Fahland, R.A.; Franze, M.; Splieth, C.; Thyrian, J.R.; Plachta-Danielzik, S.; Hoffmann, W.; Kohlmann, T. Health-related behaviour, knowledge, attitudes, communication and social status in school children in Eastern Germany. Health Educ. Res. 2010, 25, 542–551. [Google Scholar] [CrossRef]
- Vallone, D.M.; Bennett, M.; Xiao, H.; Pitzer, L.; Hair, E.C. Prevalence and correlates of JUUL use among a national sample of youth and young adults. Tob. Control: Int. J. 2019, 28, 603–609. [Google Scholar] [CrossRef]
- Pratt, C.C.; Mcguigan, W.M.; Katzev, A.R. Measuring Program Outcomes: Using Retrospective Pretest Methodology. Am. J. Eval. 2000, 21, 341. [Google Scholar] [CrossRef]
- Sibthorp, J.; Paisley, K.; Gookin, J.; Ward, P. Addressing response-shift bias: Retrospective pretests in recreation research and evaluation. J. Leis. Res. 2007, 39, 295–315. [Google Scholar] [CrossRef]
- Howard, G.; Dailey, P.; Gulanick, N. The Feasibility of Informed Pretests in Attenuating Response-Shift Bias. Appl. Psychol. Meas. 1979, 3, 481–494. [Google Scholar] [CrossRef]
- Miech, R.; Patrick, M.E.; O’Malley, P.M.; Johnston, L.D. What are kids vaping? Results from a national survey of US adolescents. Tob. Control 2017, 26, 386. [Google Scholar] [CrossRef]
- Wang, T.W.; Gentzke, A.S.; Creamer, M.R.; Cullen, K.A.; Holder-Hayes, E.; Sawdey, M.D.; Anic, G.M.; Portnoy, D.B.; Hu, S.; Homa, D.M.; et al. Tobacco Product Use and Associated Factors Among Middle and High School Students—United States, 2019. MMWR Surveill. Summ. 2019, 68, 1–22. [Google Scholar] [CrossRef]
- Lynch, K.B.; Geller, S.R.; Schmidt, M.G. Multi-Year Evaluation of the Effectiveness of a Resilience-Based Prevention Program for Young Children. J. Prim. Prev. 2004, 24, 335–353. [Google Scholar] [CrossRef]
- Bernat, D.; Gasquet, N.; Wilson, K.O.; Porter, L.; Choi, K. Electronic Cigarette Harm and Benefit Perceptions and Use Among Youth. Am. J. Prev. Med. 2018, 55, 361–367. [Google Scholar] [CrossRef]
Study 1 | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1. Days Vaped | - | ||||||
2. Pre-Knowledge | 0.10 ** | - | |||||
3. Change in Knowledge | −0.13 ** | −0.83 ** | - | ||||
4. Race: White vs. Black | 0.17 ** | 0.13 ** | −0.11 ** | - | |||
5. Race: Other vs. Black | −0.05 ** | −0.03 | 0.04 * | −0.47 ** | - | ||
6. Gender | 0.03 | 0.04 * | −0.08 ** | −0.02 | −0.00 | - | |
7. Grade | 0.21 ** | 0.28 ** | −0.25 ** | 0.15 ** | −0.11 ** | −0.01 | - |
N | 4312 | 3875 | 3663 | 4263 | 4263 | 4254 | 4240 |
M | 0.37 | 2.74 | 0.99 | 0.54 | 0.16 | 0.50 | 2.43 |
SD | 0.96 | 0.79 | 0.80 | 0.50 | 0.37 | 0.50 | 0.98 |
Study 2 | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1. Days Vaped | - | ||||||
2. Pre-Knowledge | −0.01 | - | |||||
3. Change in Knowledge | −0.15 ** | −0.68 ** | - | ||||
4. Race: White vs. Black | −0.08 ** | 0.00 | 0.07 * | - | |||
5. Race: Other vs. Black | 0.08 ** | 0.05 * | −0.10 ** | −0.44 ** | - | ||
6. Gender | 0.02 | 0.05 | −0.09 ** | −0.04 | 0.09 ** | - | |
7. Grade | 0.09 ** | 0.00 | −0.01 | 0.01 | −0.06 * | −0.05 | - |
N | 1347 | 1347 | 1347 | 1341 | 1341 | 1281 | 1347 |
M | 0.21 | 3.09 | 0.54 | 0.50 | 0.17 | 0.52 | 2.02 |
SD | 0.74 | 0.66 | 0.68 | 0.50 | 0.37 | 0.50 | 0.82 |
MPre | SDPre | MPost | SDPost | Δ Knowledge | T Value (df) | p | |
---|---|---|---|---|---|---|---|
Study 1 | 2.74 | 0.78 | 3.73 | 0.46 | 0.99 | 76.58 (3820) | <0.001 |
Study 2 | 3.09 | 0.66 | 3.63 | 0.54 | 0.54 | 29.26 (1346) | <0.001 |
Study 1 | Study 2 | |||||||
---|---|---|---|---|---|---|---|---|
Poisson regression | B | 95% CI | β | 95% CI | B | 95% CI | β | 95% CI |
Intercept | 0.30 | [0.16, 0.41] | - | - | 0.46 | [0.26, 0.66] | - | - |
Race (B, W) | 0.31 * | [0.05, 0.57] | 0.42 | [0.07, 0.77] | −0.32 | [−0.71, 0.08] | −0.70 | [−1.26, −0.14] |
Race (B, O) | 0.43 ** | [0.15, 0.72] | 0.43 | [0.16, 0.69] | −0.01 | [−0.47, 0.45] | −0.02 | [−0.77, 0.74] |
Sex (F, M) | 0.04 | [−0.10, 0.18] | 0.06 | [−0.13, 0.24] | 0.17 | [−0.14, 0.49] | 0.38 | [−0.31, 1.07] |
School Grade | 0.19 ** | [0.07, 31] | 0.51 | [0.24, 0.77] | 0.12 | [−0.07, 0.31] | 0.43 | [−0.18, 1.03] |
Pre-Knowledge | −0.11 | [−0.32, 0.09] | −0.24 | [−0.69, 0.22] | 0.06 | [−0.18, 0.31] | 0.18 | [−0.50, 0.87] |
Δ Knowledge | −0.38 *** | [−0.57, −0.20] | −0.83 | [−1.25, −0.40] | −0.08 | [−0.33, 0.17] | −0.24 | [−1.03, 0.55] |
Pre × Δ Knowledge | −0.05 | [−0.21, 0.11] | −0.10 | [−0.41, 0.22] | −0.08 | [−0.28, 0.13] | −0.20 | [−0.77, 0.36] |
Zero-inflated membership | B | 95% CI | β | 95% CI | B | 95% CI | β | 95% CI |
Intercept | 1.45 | [1.30, 1.58] | - | - | 2.14 | [1.88, 2.40] | - | - |
Race (B, W) | −0.96 *** | [−1.26, −0.67] | −0.24 | [−0.32, −0.17] | 0.03 | [−0.48, 0.54] | 0.01 | [−0.13, 0.14] |
Race (B, O) | −0.14 | [−0.51, 0.24] | −0.03 | [−0.10, 0.05] | −0.30 | [−0.87, 0.27] | −0.06 | [−0.17, 0.05] |
Sex (F, M) | −0.15 | [−0.35, 0.04] | −0.04 | [−0.09, 0.01] | 0.27 | [−0.17, 0.71] | 0.07 | [−0.04, 0.18] |
School Grade | −0.55 *** | [−0.68, −0.42] | −0.28 | [−0.34, −0.22] | −0.33 ** | [−0.55, −0.12] | −0.14 | [−0.23, −0.05] |
Pre-Knowledge | 0.40 ** | [0.15, 0.65] | 0.16 | [0.06, 0.26] | 0.88 *** | [0.46, 1.30] | 0.30 | [0.16, 0.44] |
Δ Knowledge | 0.34 ** | [0.11, 0.57] | 0.14 | [0.05, 0.23] | 1.11 *** | [0.59, 1.63] | 0.39 | [0.22, 0.56] |
Pre × Δ Knowledge | 0.07 | [−0.11, 0.25] | 0.03 | [−0.04, 0.09] | 0.08 | [−0.37, 0.53] | 0.02 | [−0.12, 0.17] |
AIC | 54,668.49 | 15,825.96 | ||||||
BIC | 54,995.59 | 16,091.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duke-Marks, A.M.; Hinnant, J.B.; Norton, J.R.; Gibson-Young, L.M. Vaping Education: A Two-Year Study Examining Health Literacy and Behaviors in a Southeastern State. Int. J. Environ. Res. Public Health 2025, 22, 1086. https://doi.org/10.3390/ijerph22071086
Duke-Marks AM, Hinnant JB, Norton JR, Gibson-Young LM. Vaping Education: A Two-Year Study Examining Health Literacy and Behaviors in a Southeastern State. International Journal of Environmental Research and Public Health. 2025; 22(7):1086. https://doi.org/10.3390/ijerph22071086
Chicago/Turabian StyleDuke-Marks, Adrienne M., James Benjamin Hinnant, Jessica R. Norton, and Linda M. Gibson-Young. 2025. "Vaping Education: A Two-Year Study Examining Health Literacy and Behaviors in a Southeastern State" International Journal of Environmental Research and Public Health 22, no. 7: 1086. https://doi.org/10.3390/ijerph22071086
APA StyleDuke-Marks, A. M., Hinnant, J. B., Norton, J. R., & Gibson-Young, L. M. (2025). Vaping Education: A Two-Year Study Examining Health Literacy and Behaviors in a Southeastern State. International Journal of Environmental Research and Public Health, 22(7), 1086. https://doi.org/10.3390/ijerph22071086