Effectiveness and Efficacy of Long-Lasting Insecticidal Nets for Malaria Control in Africa: Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
1. Plain Language Summary
2. Introduction
The Objectives of This Review
3. Methods
3.1. Literature Search Strategy
3.2. Study Eligibility
3.3. Participants
3.4. Study Design
3.5. Intervention(s)
3.6. Comparator(s)/Control
3.7. Main Outcome(s)
3.8. Operational Definition of Outcomes
3.8.1. Primary Outcome
3.8.2. Malaria Infection Incidence
3.8.3. Secondary Outcomes
3.8.4. Entomological Outcomes
Additional Timepoints
3.9. Setting
3.10. Data Extraction
3.11. Data Synthesis and Statistical Analysis
3.12. Quality Assessment
3.13. Publication Bias
3.14. GRADE Analysis
4. Results
4.1. Selection of Studies
4.2. Study Characteristics
4.2.1. Pooled Baseline Malaria Infection Prevalence in Selected Children Using Different Long-Lasting Insecticidal Nets (LLINs) as Malaria Control in Africa
Pooled Effectiveness and Efficacy of Pyriproxyfen Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs Malaria Infection Reduction
Pooled Prevalence of Malaria Infection Among Children Using Pyriproxyfen Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs
Pooled Effectiveness and Efficacy of Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs Malaria Infection Reduction
Pooled Prevalence of Malaria Infection Among Children Using Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs
Pooled Effectiveness and Efficacy of Piperonyl Butoxide Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs Malaria Infection Reduction
Pooled Prevalence of Malaria Infection Among Children Using Piperonyl Butoxide Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs
Pooled Prevalence of Malaria Infection Among Children Using Pyrethroid-Only Long-Lasting Insecticidal Nets (LLINs)
4.2.2. Pooled Baseline Anemia Prevalence in Children Aged 6 Months to 4 Years Using Different Long-Lasting Insecticidal Nets (LLINs) as Malaria Control in Africa
Pooled Effectiveness and Efficacy of Pyriproxyfen Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs for Anemia Reduction in Children
Pooled Baseline Anemia Prevalence in Children Aged 6 Months to 4 Years Using Pyriproxyfen Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs
Pooled Effectiveness and Efficacy of Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs for Anemia Reduction in Children
Pooled Prevalence of Anemia Among Children Using Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs
Pooled Effectiveness and Efficacy of Piperonyl Butoxide Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs for Anemia Reduction in Children
Pooled Prevalence of Anemia Among Children Using Piperonyl Butoxide Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs
Pooled Prevalence of Anemia Among Children Using Pyrethroid-Only Long-Lasting Insecticidal Nets (LLINs)
Baseline Pooled Mean Indoor Vector Density per Household per Night
Pooled Prevalence of Mean Indoor Vectors Density per Household per Night Using Pyriproxyfen Long-Lasting Insecticidal Nets (LLINs)
Pooled Prevalence of Mean Indoor Vectors Density per Household per Night Using Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs)
Pooled Prevalence of Mean Indoor Vectors Density per Household per Night Using Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs)
Pooled Prevalence of Mean Indoor Vectors Density per Household per Night Using Piperonyl Butoxide LLINs
Pooled Prevalence of Mean Indoor Vectors Density per Household per Night Using Pyrethroid-Only LLINs
4.2.3. Baseline Sporozoite Rate Is the Proportion of Vectors Infected with Malaria Parasite
Pooled Effectiveness and Efficacy of Pyriproxyfen Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs for Sporozoite Rate Reduction
Pooled Prevalence of Sporozoite Rate Among Pyriproxyfen LLINs Intervention
Pooled Effectiveness and Efficacy of Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs for Sporozoite Rate Reduction
Pooled Prevalence of Sporozoite Rate Among Chlorfenapyr LLINs Intervention
Pooled Prevalence of Sporozoite Rate Among Piperonyl Butoxide LLINs Intervention
Pooled Prevalence of Sporozoite Rate Among Piperonyl Butoxide LLINs Intervention
Pooled Prevalence of the Sporozoite Rate Among Pyrethroid-Only LLINs Intervention
Mean Entomological Inoculation Rate per Household per Night (MEIR)
Pooled Post-Intervention Effectiveness and Efficacy of Pyriproxyfen Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs for Malaria Infection Reduction in Africa
Pooled Post-Intervention Malaria Infection Prevalence in Selected Children Using Different Long-Lasting Insecticidal Nets (LLINs) as Malaria Control in Africa
Pooled Post-Intervention Effectiveness and Efficacy of Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs for Malaria Infection Reduction in Africa
Pooled Post-Intervention Malaria Infection Prevalence in Selected Children Using Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) as Malaria Control in Africa
Pooled Post-Intervention Effectiveness and Efficacy of Piperonyl Butoxide Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs for Malaria Infection Reduction in Africa
Pooled Post-Intervention Malaria Infection Prevalence in Selected Children Using Piperonyl Butoxide Long-Lasting Insecticidal Nets (LLINs) in Africa
Pooled Post-Intervention Malaria Infection Prevalence in Selected Children Using Pyrethroid-Only Long-Lasting Insecticidal Nets (LLINs) or Control Group in Africa
Pooled Post-Intervention Effectiveness and Efficacy of Pyriproxyfen Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs Malaria Case Incidence Reduction in Children (Aged 6 Months to 10 Years in Africa
Pooled Post-Intervention Malaria Case Incidence Reduction in Children (Aged 6 Months to 10 Years Using Pyriproxyfen Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs in Africa
Pooled Post-Intervention Effectiveness and Efficacy of Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs Malaria Case Incidence Reduction in Children Aged 6 Months to 10 Years in Africa
Pooled Post-Intervention Effectiveness and Efficacy of Piperonyl Butoxide Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs Malaria Case Incidence Reduction in Children Aged 6 Months to 10 Years in Africa
Post-Intervention: Pooled Mean Indoor Vector Density per Household per Night
Post-Intervention Pooled Mean Indoor Vector Density per Household per Night Among Pyriproxyfen Long-Lasting Insecticidal Nets Intervention
Post-Intervention Pooled Mean Indoor Vector Density per Household per Night Among Chlorfenapyr Long-Lasting Insecticidal Nets
Post-Intervention Pooled Effectiveness and Efficacy of Pyriproxyfen Long-Lasting Insecticidal Nets (LLINs) Versus Pyrethroid-Only LLINs for Sporozoite Rate Reduction
Pooled Prevalence of the Sporozoite Rate Among Pyriproxyfen LLINs Intervention
Post-Intervention Entomological Inoculation Rate Among Different Long-Lasting Insecticidal Nets
Pooled Post-Intervention Effectiveness and Efficacy of Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) Versus Pyriproxyfen LLINs Malaria Infection Reduction in Africa
Malaria Incidence CFP vs. PPF
Malaria Incidence PBO vs. PPF
5. Discussion
6. Conclusions
6.1. Significant Findings (Effectiveness and Efficacy)
- Reducing malaria infection prevalence;
- Lowering malaria case incidence;
- Decreasing anemia in children;
- Reducing indoor vector density;
- Lowering entomological inoculation rate (EIR);
- Reducing sporozoite rate.
- Piperonyl butoxide (PBO) LLINs were also effective and efficacious in the following ways:
- Reducing malaria case incidence and anemia;
- Significantly lowering indoor vector density, EIR, and sporozoite rate;
- Outperforming pyriproxyfen (PPF) LLINs in entomological outcomes.
- Pyriproxyfen (PPF) LLINs showed significant entomological benefits, including the following:
- Reduced indoor vector density;
- Lower entomological inoculation rate (EIR);
- Decreased sporozoite rate;
- Non-significant findings (effectiveness and efficacy).
- PPF LLINs did not significantly reduce the following:
- Malaria infection prevalence;
- Malaria case incidence;
- Anemia in children, compared to pyrethroid-only LLINs.
6.2. Policy Recommendations
6.3. Evidence-Based Decision Making
6.4. Research Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatt, S.; Weiss, D.; Cameron, E.; Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.; Moyes, C.; Henry, A.; Eckhoff, P. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015, 526, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Maiteki-Sebuguzi, C.; Gonahasa, S.; Kamya, M.R.; Katureebe, A.; Bagala, I.; Lynd, A.; Mutungi, P.; Kigozi, S.P.; Opigo, J.; Hemingway, J.; et al. Effect of long-lasting insecticidal nets with and without piperonyl butoxide on malaria indicators in Uganda (LLINEUP): Final results of a cluster-randomised trial embedded in a national distribution campaign. Lancet. Infect. Dis. 2023, 23, 247–258. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report 2022; World Health Organization: Geneva, Switzerland, 2022. Available online: https://www.who.int/teams/global-malaria-programme (accessed on 3 January 2023).
- World Health Organization. WHO Guidelines for Malaria, 14 March 2023; World Health Organization: Geneva, Switzerland, 2023.
- Yovogan, B.; Sovi, A.; Djènontin, A.; Adoha, C.J.; Akinro, B.; Accrombessi, M.; Dangbénon, E.; Koukpo, C.Z.; Affolabi, Z.-K.; Agboho, P.A. The impact of pyrethroid-pyriproxyfen and pyrethroid-chlorfenapyr long-lasting insecticidal nets on density of primary malaria vectors Anopheles gambiae ss and Anopheles coluzzii in Benin: A secondary analysis of a cluster randomised controlled trial. Parasites Vectors 2024, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Protopopoff, N.; Mosha, J.F.; Messenger, L.A.; Lukole, E.; Charlwood, J.D.; Wright, A.; Kessy, E.; Manjurano, A.; Mosha, F.W.; Kleinschmidt, I.; et al. Effectiveness of piperonyl butoxide and pyrethroid-treated long-lasting insecticidal nets (LLINs) versus pyrethroid-only LLINs with and without indoor residual spray against malaria infection: Third year results of a cluster, randomised controlled, two-by-two factorial design trial in Tanzania. Malar. J. 2023, 22, 294. [Google Scholar] [CrossRef]
- Adoha, C.J.; Sovi, A.; Yovogan, B.; Akinro, B.; Accrombessi, M.; Dangbénon, E.; Odjo, E.M.; Sagbohan, H.W.; Kpanou, C.D.; Padonou, G.G. Efficacy of Pyrethroid–Pyriproxyfen and Pyrethroid–Chlorfenapyr Long-Lasting Insecticidal Nets (LLINs) for the Control of Non-Anopheles Mosquitoes: Secondary Analysis from a Cluster Randomised Controlled Trial (cRCT). Insects 2023, 14, 417. [Google Scholar] [CrossRef]
- Matowo, N.S.; Kulkarni, M.A.; Messenger, L.A.; Jumanne, M.; Martin, J.; Mallya, E.; Lukole, E.; Mosha, J.F.; Moshi, O.; Shirima, B.; et al. Differential impact of dual-active ingredient long-lasting insecticidal nets on primary malaria vectors: A secondary analysis of a 3-year, single-blind, cluster-randomised controlled trial in rural Tanzania. Lancet. Planet. Health 2023, 7, e370–e380. [Google Scholar] [CrossRef]
- Cisse, M.B.M.; Sangare, D.; Oxborough, R.M.; Dicko, A.; Dengela, D.; Sadou, A.; Mihigo, J.; George, K.; Norris, L.; Fornadel, C. A village level cluster-randomized entomological evaluation of combination long-lasting insecticidal nets containing pyrethroid plus PBO synergist in Southern Mali. Malar. J. 2017, 16, 477. [Google Scholar] [CrossRef]
- Accrombessi, M.; Cook, J.; Dangbenon, E.; Yovogan, B.; Akpovi, H.; Sovi, A.; Adoha, C.; Assongba, L.; Sidick, A.; Akinro, B.; et al. Efficacy of pyriproxyfen-pyrethroid long-lasting insecticidal nets (LLINs) and chlorfenapyr-pyrethroid LLINs compared with pyrethroid-only LLINs for malaria control in Benin: A cluster-randomised, superiority trial. Lancet 2023, 401, 435–446. [Google Scholar] [CrossRef]
- Accrombessi, M.; Cook, J.; Dangbenon, E.; Sovi, A.; Yovogan, B.; Assongba, L.; Adoha, C.J.; Akinro, B.; Affoukou, C.; Padonou, G.G. Effectiveness of pyriproxyfen-pyrethroid and chlorfenapyr-pyrethroid long-lasting insecticidal nets (LLINs) compared with pyrethroid-only LLINs for malaria control in the third year post-distribution: A secondary analysis of a cluster-randomised controlled trial in Benin. Lancet Infect. Dis. 2024, 401, 435–446. [Google Scholar]
- Lukole, E.; Cook, J.; Mosha, J.F.; Mallya, E.; Aziz, T.; Kulkarni, M.A.; Matowo, N.S.; Martin, J.; Rowland, M.; Kleinschmidt, I. Will a lack of fabric durability be their downfall? Impact of textile durability on the efficacy of three types of dual-active-ingredient long-lasting insecticidal nets: A secondary analysis on malaria prevalence and incidence from a cluster-randomized trial in north-west Tanzania. Malar. J. 2024, 23, 199. [Google Scholar]
- Barker, T.H.; Stone, J.C.; Hasanoff, S.; Price, C.; Kabaghe, A.; Munn, Z. Effectiveness of dual active ingredient insecticide-treated nets in preventing malaria: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0289469. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P. Cochrane handbook for systematic reviews of interventions version 6.2. Cochrane Database Syst. Rev. 2021. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Mosha, J.F.; Kulkarni, M.A.; Lukole, E.; Matowo, N.S.; Pitt, C.; Messenger, L.A.; Mallya, E.; Jumanne, M.; Aziz, T.; Kaaya, R.; et al. Effectiveness and cost-effectiveness against malaria of three types of dual-active-ingredient long-lasting insecticidal nets (LLINs) compared with pyrethroid-only LLINs in Tanzania: A four-arm, cluster-randomised trial. Lancet 2022, 399, 1227–1241. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Barker, T.H.; Stone, J.C.; Sears, K.; Klugar, M.; Tufanaru, C.; Leonardi-Bee, J.; Aromataris, E.; Munn, Z. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evid. Synth. 2023, 21, 494–506. [Google Scholar] [CrossRef]
- Lin, L.; Chu, H. Quantifying publication bias in meta-analysis. Biometrics 2018, 74, 785–794. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 2000, 95, 89–98. [Google Scholar]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Harbord, R.M.; Egger, M.; Sterne, J.A. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat. Med. 2006, 25, 3443–3457. [Google Scholar] [CrossRef]
- Rosenthal, R. Meta-analysis: A review. Psychosom. Med. 1991, 53, 247–271. [Google Scholar] [CrossRef]
- Dijkers, M. Introducing GRADE: A systematic approach to rating evidence in systematic reviews and to guideline development. KT Update 2013, 1, 1–9. [Google Scholar]
- Messenger, L.A.; Matowo, N.S.; Cross, C.L.; Jumanne, M.; Portwood, N.M.; Martin, J.; Lukole, E.; Mallya, E.; Mosha, J.F.; Kaaya, R.; et al. Effects of next-generation, dual-active-ingredient, long-lasting insecticidal net deployment on insecticide resistance in malaria vectors in Tanzania: An analysis of a 3-year, cluster-randomised controlled trial. Lancet Planet. Health 2023, 7, e673–e683. [Google Scholar] [CrossRef]
- Minakawa, N.; Kongere, J.O.; Sonye, G.O.; Lutiali, P.A.; Awuor, B.; Kawada, H.; Isozumi, R.; Futami, K. Long-Lasting Insecticidal Nets Incorporating Piperonyl Butoxide Reduce the Risk of Malaria in Children in Western Kenya: A Cluster Randomized Controlled Trial. Am. J. Trop. Med. Hyg. 2021, 105, 461–471. [Google Scholar] [CrossRef]
- Mosha, J.F.; Matowo, N.S.; Kulkarni, M.A.; Messenger, L.A.; Lukole, E.; Mallya, E.; Aziz, T.; Kaaya, R.; Shirima, B.A.; Isaya, G.; et al. Effectiveness of long-lasting insecticidal nets with pyriproxyfen-pyrethroid, chlorfenapyr-pyrethroid, or piperonyl butoxide-pyrethroid versus pyrethroid only against malaria in Tanzania: Final-year results of a four-arm, single-blind, cluster-randomised trial. Lancet. Infect. Dis. 2024, 24, 87–97. [Google Scholar] [CrossRef]
- Protopopoff, N.; Mosha, J.F.; Lukole, E.; Charlwood, J.D.; Wright, A.; Mwalimu, C.D.; Manjurano, A.; Mosha, F.W.; Kisinza, W.; Kleinschmidt, I.; et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: A cluster, randomised controlled, two-by-two factorial design trial. Lancet 2018, 391, 1577–1588. [Google Scholar] [CrossRef]
- Staedke, S.G.; Gonahasa, S.; Dorsey, G.; Kamya, M.R.; Maiteki-Sebuguzi, C.; Lynd, A.; Katureebe, A.; Kyohere, M.; Mutungi, P.; Kigozi, S.P.; et al. Effect of long-lasting insecticidal nets with and without piperonyl butoxide on malaria indicators in Uganda (LLINEUP): A pragmatic, cluster-randomised trial embedded in a national LLIN distribution campaign. Lancet 2020, 395, 1292–1303. [Google Scholar] [CrossRef]
- Bhatt, R.M.; Sharma, S.N.; Uragayala, S.; Dash, A.P.; Kamaraju, R. Effectiveness and durability of Interceptor® long-lasting insecticidal nets in a malaria endemic area of central India. Malar. J. 2012, 11, 189. [Google Scholar] [CrossRef]
- Brake, S.; Gomez-Maldonado, D.; Hummel, M.; Zohdy, S.; Peresin, M.S. Understanding the current state-of-the-art of long-lasting insecticide nets and potential for sustainable alternatives. Curr. Res. Parasitol. Vector-Borne Dis. 2022, 2, 100101. [Google Scholar] [CrossRef]
- Chaumeau, V.; Kajeechiwa, L.; Kulabkeeree, T.; Sawasdichai, S.; Haohankhunnatham, W.; Inta, A.; Phanaphadungtham, M.; Girond, F.; Herbreteau, V.; Delmas, G.; et al. Outdoor residual spraying for malaria vector-control in Kayin (Karen) state, Myanmar: A cluster randomized controlled trial. PLoS ONE 2022, 17, e0274320. [Google Scholar] [CrossRef]
- Chisanga, B.; Bulte, E.; Kassie, M.; Mutero, C.; Masaninga, F.; Sangoro, O.P. The economic impacts of house screening against malaria transmission: Experimental evidence from eastern Zambia. Soc. Sci. Med. 2023, 321, 115778. [Google Scholar] [CrossRef]
- Corbel, V.; Akogbeto, M.; Damien, G.B.; Djenontin, A.; Chandre, F.; Rogier, C.; Moiroux, N.; Chabi, J.; Banganna, B.; Padonou, G.G.; et al. Combination of malaria vector control interventions in pyrethroid resistance area in Benin: A cluster randomised controlled trial. Lancet. Infect. Dis. 2012, 12, 617–626. [Google Scholar] [CrossRef]
- Deressa, W.; Loha, E.; Balkew, M.; Hailu, A.; Gari, T.; Kenea, O.; Overgaard, H.J.; Gebremichael, T.; Robberstad, B.; Lindtjørn, B. Combining long-lasting insecticidal nets and indoor residual spraying for malaria prevention in Ethiopia: Study protocol for a cluster randomized controlled trial. Trials 2016, 17, 20. [Google Scholar] [CrossRef]
- Deressa, W.; Yihdego, Y.Y.; Kebede, Z.; Batisso, E.; Tekalegne, A.; Dagne, G.A. Effect of combining mosquito repellent and insecticide treated net on malaria prevalence in Southern Ethiopia: A cluster-randomised trial. Parasites Vectors 2014, 7, 132. [Google Scholar] [CrossRef]
- Djènontin, A.; Alfa, D.; Bouraima, A.; Soares, C.; Dahounto, A.; Cornélie, S.; Egrot, M.; Damien, G.; Remoué, F.; Sagna, A.B.; et al. Durability of the deltamethrin-treated polypropylene long-lasting net LifeNet® in a pyrethroid resistance area in south western Benin: A phase III trial. PLoS ONE 2023, 18, e0291755. [Google Scholar] [CrossRef]
- Feachem, R.G.A.; Chen, I.; Akbari, O.; Bertozzi-Villa, A.; Bhatt, S.; Binka, F.; Boni, M.F.; Buckee, C.; Dieleman, J.; Dondorp, A.; et al. Malaria eradication within a generation: Ambitious, achievable, and necessary. Lancet 2019, 394, 1056–1112. [Google Scholar] [CrossRef]
- Gichuki, P.M.; Kamau, L.; Njagi, K.; Karoki, S.; Muigai, N.; Matoke-Muhia, D.; Bayoh, N.; Mathenge, E.; Yadav, R.S. Bioefficacy and durability of Olyset(®) Plus, a permethrin and piperonyl butoxide-treated insecticidal net in a 3-year long trial in Kenya. Infect. Dis. Poverty 2021, 10, 135. [Google Scholar] [CrossRef]
- Giesbrecht, D.; Belleh, T.G.; Pontarollo, J.; Hinneh, V.S.; Pratt, O.; Kamal, S.; Allan, R. Durable wall lining for malaria control in Liberia: Results of a cluster randomized trial. Malar. J. 2023, 22, 15. [Google Scholar] [CrossRef]
- Hill, N.; Zhou, H.N.; Wang, P.; Guo, X.; Carneiro, I.; Moore, S.J. A household randomized, controlled trial of the efficacy of 0.03% transfluthrin coils alone and in combination with long-lasting insecticidal nets on the incidence of Plasmodium falciparum and Plasmodium vivax malaria in Western Yunnan Province, China. Malar. J. 2014, 13, 208. [Google Scholar] [CrossRef]
- Kenea, O.; Balkew, M.; Tekie, H.; Deressa, W.; Loha, E.; Lindtjørn, B.; Overgaard, H.J. Impact of combining indoor residual spraying and long-lasting insecticidal nets on Anopheles arabiensis in Ethiopia: Results from a cluster randomized controlled trial. Malar. J. 2019, 18, 182. [Google Scholar] [CrossRef]
- Loha, E.; Deressa, W.; Gari, T.; Balkew, M.; Kenea, O.; Solomon, T.; Hailu, A.; Robberstad, B.; Assegid, M.; Overgaard, H.J.; et al. Long-lasting insecticidal nets and indoor residual spraying may not be sufficient to eliminate malaria in a low malaria incidence area: Results from a cluster randomized controlled trial in Ethiopia. Malar. J. 2019, 18, 141. [Google Scholar] [CrossRef]
- Lorenz, L.M.; Bradley, J.; Yukich, J.; Massue, D.J.; Mageni Mboma, Z.; Pigeon, O.; Moore, J.; Kilian, A.; Lines, J.; Kisinza, W.; et al. Comparative functional survival and equivalent annual cost of 3 long-lasting insecticidal net (LLIN) products in Tanzania: A randomised trial with 3-year follow up. PLoS Med. 2020, 17, e1003248. [Google Scholar] [CrossRef]
- Martin, J.L.; Messenger, L.A.; Mosha, F.W.; Lukole, E.; Mosha, J.F.; Kulkarni, M.; Churcher, T.S.; Sherrard-Smith, E.; Manjurano, A.; Protopopoff, N.; et al. Durability of three types of dual active ingredient long-lasting insecticidal net compared to a pyrethroid-only LLIN in Tanzania: Methodology for a prospective cohort study nested in a cluster randomized controlled trial. Malar. J. 2022, 21, 96. [Google Scholar] [CrossRef]
- Matowo, J.; Weetman, D.; Pignatelli, P.; Wright, A.; Charlwood, J.D.; Kaaya, R.; Shirima, B.; Moshi, O.; Lukole, E.; Mosha, J.; et al. Expression of pyrethroid metabolizing P450 enzymes characterizes highly resistant Anopheles vector species targeted by successful deployment of PBO-treated bednets in Tanzania. PLoS ONE 2022, 17, e0249440. [Google Scholar] [CrossRef]
- Mawejje, H.D.; Weetman, D.; Epstein, A.; Lynd, A.; Opigo, J.; Maiteki-Sebuguzi, C.; Lines, J.; Kamya, M.R.; Rosenthal, P.J.; Donnelly, M.J.; et al. Characterizing pyrethroid resistance and mechanisms in Anopheles gambiae (s.s.) and Anopheles arabiensis from 11 districts in Uganda. Curr. Res. Parasitol. Vector-Borne Dis. 2023, 3, 100106. [Google Scholar] [CrossRef]
- Mpangala, K.R.; Halasa-Rappel, Y.A.; Mohamed, M.S.; Mnzava, R.C.; Mkuza, K.J.; Mangesho, P.E.; Kisinza, W.N.; Mugasa, J.P.; Messenger, L.A.; Mtove, G.; et al. On the cost-effectiveness of insecticide-treated wall liner and indoor residual spraying as additions to insecticide treated bed nets to prevent malaria: Findings from cluster randomized trials in Tanzania. BMC Public Health 2021, 21, 1666. [Google Scholar] [CrossRef]
- Mtove, G.; Mugasa, J.P.; Messenger, L.A.; Malima, R.C.; Mangesho, P.; Magogo, F.; Plucinski, M.; Hashimu, R.; Matowo, J.; Shepard, D.; et al. The effectiveness of non-pyrethroid insecticide-treated durable wall lining to control malaria in rural Tanzania: Study protocol for a two-armed cluster randomized trial. BMC Public Health 2016, 16, 633. [Google Scholar] [CrossRef]
- Ngufor, C.; Fongnikin, A.; Fagbohoun, J.; Agbevo, A.; Syme, T.; Ahoga, J.; Accrombessi, M.; Protopopoff, N.; Cook, J.; Churcher, T.S.; et al. Evaluating the attrition, fabric integrity and insecticidal durability of two dual active ingredient nets (Interceptor® G2 and Royal® Guard): Methodology for a prospective study embedded in a cluster randomized controlled trial in Benin. Malar. J. 2023, 22, 276. [Google Scholar] [CrossRef]
- Ngufor, C.; Govoetchan, R.; Fongnikin, A.; Hueha, C.; Ahoga, J.; Syme, T.; Agbevo, A.; Daleb, A.; Small, G.; Nimmo, D.; et al. Community evaluation of VECTRON™ T500, a broflanilide insecticide, for indoor residual spraying for malaria vector control in central Benin; a two arm non-inferiority cluster randomised trial. Sci. Rep. 2023, 13, 17852. [Google Scholar] [CrossRef]
- Ntuku, H.; Smith-Gueye, C.; Scott, V.; Njau, J.; Whittemore, B.; Zelman, B.; Tambo, M.; Prach, L.M.; Wu, L.; Schrubbe, L.; et al. Cost and cost effectiveness of reactive case detection (RACD), reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) to reduce malaria in the low endemic setting of Namibia: An analysis alongside a 2 × 2 factorial design cluster randomised controlled trial. BMJ Open 2022, 12, e049050. [Google Scholar] [CrossRef]
- Pinder, M.; Jawara, M.; Jarju, L.B.; Salami, K.; Jeffries, D.; Adiamoh, M.; Bojang, K.; Correa, S.; Kandeh, B.; Kaur, H.; et al. Efficacy of indoor residual spraying with dichlorodiphenyltrichloroethane against malaria in Gambian communities with high usage of long-lasting insecticidal mosquito nets: A cluster-randomised controlled trial. Lancet 2015, 385, 1436–1446. [Google Scholar] [CrossRef]
- Protopopoff, N.; Wright, A.; West, P.A.; Tigererwa, R.; Mosha, F.W.; Kisinza, W.; Kleinschmidt, I.; Rowland, M. Combination of Insecticide Treated Nets and Indoor Residual Spraying in Northern Tanzania Provides Additional Reduction in Vector Population Density and Malaria Transmission Rates Compared to Insecticide Treated Nets Alone: A Randomised Control Trial. PLoS ONE 2015, 10, e0142671. [Google Scholar] [CrossRef]
- Sagna, A.B.; Zéla, L.; Ouedraogo, C.O.W.; Pooda, S.H.; Porciani, A.; Furnival-Adams, J.; Lado, P.; Somé, A.F.; Pennetier, C.; Chaccour, C.J.; et al. Ivermectin as a novel malaria control tool: Getting ahead of the resistance curse. Acta Trop. 2023, 245, 106973. [Google Scholar] [CrossRef]
- Sagnon, N.; Pinder, M.; Tchicaya, E.F.; Tiono, A.B.; Faragher, B.; Ranson, H.; Lindsay, S.W. To assess whether addition of pyriproxyfen to long-lasting insecticidal mosquito nets increases their durability compared to standard long-lasting insecticidal mosquito nets: Study protocol for a randomised controlled trial. Trials 2015, 16, 195. [Google Scholar] [CrossRef]
- Sangoro, O.; Turner, E.; Simfukwe, E.; Miller, J.E.; Moore, S.J. A cluster-randomized controlled trial to assess the effectiveness of using 15% DEET topical repellent with long-lasting insecticidal nets (LLINs) compared to a placebo lotion on malaria transmission. Malar. J. 2014, 13, 324. [Google Scholar] [CrossRef]
- Sluydts, V.; Durnez, L.; Heng, S.; Gryseels, C.; Canier, L.; Kim, S.; Van Roey, K.; Kerkhof, K.; Khim, N.; Mao, S.; et al. Efficacy of topical mosquito repellent (picaridin) plus long-lasting insecticidal nets versus long-lasting insecticidal nets alone for control of malaria: A cluster randomised controlled trial. Lancet. Infect. Dis. 2016, 16, 1169–1177. [Google Scholar] [CrossRef]
- Sternberg, E.D.; Cook, J.; Ahoua Alou, L.P.; Aoura, C.J.; Assi, S.B.; Doudou, D.T.; Koffi, A.A.; N’Guessan, R.; Oumbouke, W.A.; Smith, R.A.; et al. Evaluating the impact of screening plus eave tubes on malaria transmission compared to current best practice in central Côte d’Ivoire: A two armed cluster randomized controlled trial. BMC Public Health 2018, 18, 894. [Google Scholar] [CrossRef]
- Tiono, A.B.; Ouédraogo, A.; Ouattara, D.; Bougouma, E.C.; Coulibaly, S.; Diarra, A.; Faragher, B.; Guelbeogo, M.W.; Grisales, N.; Ouédraogo, I.N.; et al. Efficacy of Olyset Duo, a bednet containing pyriproxyfen and permethrin, versus a permethrin-only net against clinical malaria in an area with highly pyrethroid-resistant vectors in rural Burkina Faso: A cluster-randomised controlled trial. Lancet 2018, 392, 569–580. [Google Scholar] [CrossRef]
- Tiono, A.B.; Pinder, M.; N’Fale, S.; Faragher, B.; Smith, T.; Silkey, M.; Ranson, H.; Lindsay, S.W. The AvecNet Trial to assess whether addition of pyriproxyfen, an insect juvenile hormone mimic, to long-lasting insecticidal mosquito nets provides additional protection against clinical malaria over current best practice in an area with pyrethroid-resistant vectors in rural Burkina Faso: Study protocol for a randomised controlled trial. Trials 2015, 16, 113. [Google Scholar] [CrossRef]
- Toé, K.H.; Mechan, F.; Tangena, J.A.; Morris, M.; Solino, J.; Tchicaya, E.F.S.; Traoré, A.; Ismail, H.; Maas, J.; Lissenden, N.; et al. Assessing the impact of the addition of pyriproxyfen on the durability of permethrin-treated bed nets in Burkina Faso: A compound-randomized controlled trial. Malar. J. 2019, 18, 383. [Google Scholar] [CrossRef]
- Tungu, P.K.; Michael, E.; Sudi, W.; Kisinza, W.W.; Rowland, M. Efficacy of interceptor® G2, a long-lasting insecticide mixture net treated with chlorfenapyr and alpha-cypermethrin against Anopheles funestus: Experimental hut trials in north-eastern Tanzania. Malar. J. 2021, 20, 180. [Google Scholar] [CrossRef]
- Vontas, J.; Moore, S.; Kleinschmidt, I.; Ranson, H.; Lindsay, S.; Lengeler, C.; Hamon, N.; McLean, T.; Hemingway, J. Framework for rapid assessment and adoption of new vector control tools. Trends Parasitol. 2014, 30, 191–204. [Google Scholar] [CrossRef]
- Wagman, J.M.; Varela, K.; Zulliger, R.; Saifodine, A.; Muthoni, R.; Magesa, S.; Chaccour, C.; Gogue, C.; Tynuv, K.; Seyoum, A.; et al. Reduced exposure to malaria vectors following indoor residual spraying of pirimiphos-methyl in a high-burden district of rural Mozambique with high ownership of long-lasting insecticidal nets: Entomological surveillance results from a cluster-randomized trial. Malar. J. 2021, 20, 54. [Google Scholar] [CrossRef]
- West, P.A.; Protopopoff, N.; Wright, A.; Kivaju, Z.; Tigererwa, R.; Mosha, F.W.; Kisinza, W.; Rowland, M.; Kleinschmidt, I. Indoor residual spraying in combination with insecticide-treated nets compared to insecticide-treated nets alone for protection against malaria: A cluster randomised trial in Tanzania. PLoS Med. 2014, 11, e1001630. [Google Scholar] [CrossRef]
- West, P.A.; Protopopoff, N.; Wright, A.; Kivaju, Z.; Tigererwa, R.; Mosha, F.W.; Kisinza, W.; Rowland, M.; Kleinschmidt, I. Enhanced protection against malaria by indoor residual spraying in addition to insecticide treated nets: Is it dependent on transmission intensity or net usage? PLoS ONE 2015, 10, e0115661. [Google Scholar] [CrossRef]
- Wolie, R.Z.; Koffi, A.A.; Ayuk-Taylor, L.; Alou, L.P.A.; Sternberg, E.D.; N’Nan-Alla, O.; N’Guessan, Y.; Dahounto, A.; Oumbouke, W.A.; Tia, I.Z.; et al. Entomological indicators of malaria transmission prior to a cluster-randomized controlled trial of a ’lethal house lure’ intervention in central Côte d’Ivoire. Malar. J. 2022, 21, 188. [Google Scholar] [CrossRef]
- Yovogan, B.; Adoha, C.J.; Akinro, B.; Accrombessi, M.; Dangbénon, E.; Sidick, A.; Ossè, R.; Padonou, G.G.; Messenger, L.A.; Fassinou, A.; et al. Field performance of three mosquito collection methods for assessing the entomological efficacy of dual-active ingredient long-lasting insecticidal nets. Sci. Rep. 2023, 13, 12263. [Google Scholar] [CrossRef]
- Yovogan, B.; Sovi, A.; Padonou, G.G.; Adoha, C.J.; Akinro, B.; Chitou, S.; Accrombessi, M.; Dangbénon, E.; Akpovi, H.; Messenger, L.A.; et al. Pre-intervention characteristics of the mosquito species in Benin in preparation for a randomized controlled trial assessing the efficacy of dual active-ingredient long-lasting insecticidal nets for controlling insecticide-resistant malaria vectors. PLoS ONE 2021, 16, e0251742. [Google Scholar] [CrossRef]
- Yukich, J.O.; Hutchinson, P.; Candrinho, B.; Butts, J.; Murimirgua, F.; Eisele, T.P.; Zulliger, R. Ideational factors and their association with insecticide treated net use in Magoe District, Mozambique. Malar. J. 2022, 21, 387. [Google Scholar] [CrossRef]
- Lindsay, S.W.; Thomas, M.B.; Kleinschmidt, I. Threats to the effectiveness of insecticide-treated bednets for malaria control: Thinking beyond insecticide resistance. Lancet Glob. Health 2021, 9, e1325–e1331. [Google Scholar] [CrossRef]
- Nkumama, I.N.; O’meara, W.P.; Osier, F.H. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 2017, 33, 128–140. [Google Scholar] [CrossRef]
- Mboma, Z.M.; Festo, C.; Lorenz, L.M.; Massue, D.J.; Kisinza, W.N.; Bradley, J.; Moore, J.D.; Mandike, R.; Akim, I.; Lines, J. The consequences of declining population access to insecticide-treated nets (ITNs) on net use patterns and physical degradation of nets after 22 months of ownership. Malar. J. 2021, 20, 171. [Google Scholar] [CrossRef]
- Gleave, K.; Lissenden, N.; Chaplin, M.; Choi, L.; Ranson, H. Piperonyl butoxide (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria in Africa. Cochrane Database Syst. Rev. 2021, 5, CD012776. [Google Scholar] [CrossRef]
- Oxborough, R.M. Trends in US President’s Malaria Initiative-funded indoor residual spray coverage and insecticide choice in sub-Saharan Africa (2008–2015): Urgent need for affordable, long-lasting insecticides. Malar. J. 2016, 15, 146. [Google Scholar] [CrossRef]
- Balakrishnan, V.S. A new strategy is required for malaria elimination in Africa. Lancet Infect. Dis. 2022, 22, 170–171. [Google Scholar] [CrossRef]
People | All ages, adult or mixed (children and adults), included studies | ||||
Settings | Africa | ||||
Intervention | Effectiveness or efficacy of long-lasting insecticidal nets (LLINs) of pyriproxyfen, chlorfenapyr, and piperonyl butoxide | ||||
Comparison | Pyrethroid-only long-lasting insecticidal nets (LLINs) | ||||
Outcomes | Pyriproxyfen LLINs | Piperonyl butoxide LLINs | Chlorfenapyr LLINs | Pyrethroid-only long-lasting insecticidal nets (LLINs) | Certainty of the evidence (GRADE) |
Malaria infection (9) | Pooled prevalence | Pooled prevalence | Pooled prevalence | 40.84 Per 100 children (32.45%, 49.22%) | |
33.70 per 100 children (95% CI: 28.03–39.37%) | 32.38 per 100 children (95% CI: 25.27–39.50%) | 25.58 per 100 children (95% CI: 19.52–31.64%) | High: | ||
Anemia (8), | Pooled prevalence | Pooled prevalence | Pooled prevalence | 25.18 Per 100 children (12.78%, 37.58%) | |
29.28 per 100 children (95% CI: 5.81–52.75%) | 14.31 per 100 children (95% CI: 6.11%, 22.52%) | 29.28 per 100 children (95% CI: 5.81–52.75%) | High: | ||
Malaria case incidence per children years (4) | Pooled malaria case incidence | Pooled malaria case incidence | Pooled malaria case incidence | 46 Per 100 children years (0.28, 0.63) | |
69 per 100 children years (95% CI: 0.46, 0.89) | 31 per 100 children years (95% CI: 0.19, 0.43) | 46 per 100 children years (95% CI: 0.28, 0.63) | High: | ||
Mean indoor vectors/ vector density per household per night (8) | Pooled mean indoor vectors density | Pooled mean indoor vectors density | Pooled mean indoor vectors density | 8.04 Per 100 Household (4.28%, 11.81%) | |
7.74 per 100 household (95% CI: 4.71, 10.78%) | 1.9 per 100 household per night (95% CI: 1.15, 2.66%) | 5.53 per 100 household per night (95% CI: 2.82, 8.15%) | High: | ||
Mean entomological inoculation rate per household per night (6) | Pooled mean Inoculation Rate | Pooled mean MEIR | Pooled mean Inoculation rate | 7 Per 100 Household (0.03, 0.12%) | |
4 per 100 household (95% CI: (−0.00, 0.08%) | 3 per 100 household per night (95% CI: 0.00, 0.06%) | 4 per 100 household (95% CI: (−0.00, 0.08%) | High: | ||
Sporozoite rate per mosquitoes (7). | Pooled sporozoite rate | Pooled sporozoite rate | Pooled sporozoite rate | 227 Per 100 anopheles (1.59, 2.95%) | |
165 per 100 anopheles (95% CI: 1.13, 2.18%) | 172 per 100 anopheles (95% CI: 1.06, 2.38%) | 79 per 100 anopheles (95% CI: 0.49, 1.09%) | High: |
People | All ages, adult or mixed (children and adults) included studies | |||
Settings | Africa | |||
Intervention | Effectiveness or efficacy of long-lasting insecticidal nets (LLINs) of pyriproxyfen, chlorfenapyr, and piperonyl butoxide | |||
Comparison | Pyrethroid-only long-lasting insecticidal nets (LLINs) | |||
Outcomes | Pyriproxyfen LLINs Relative effect (95% CI) | Piperonyl butoxide LLINs Relative effect (95% CI) | Chlorfenapyr LLINs Relative effect (95% CI) | Certainty of the evidence (GRADE) |
Malaria infection (9) | 0.0% no difference | 1% less | −1% le S | |
(−0.03,0.02%) | (−0.02, 0.01%) | (−0.04 to 0.02%) | High: | |
Anemia (8), | 0.0% no difference | 2% le S | 1% le S | |
(−0.05 to 0.05%) | (−0.07 to 0.04%) | (−0.05 to 0.03%) | High: | |
Malaria case incidence per children years (4) | 0.0% no difference | −3% le S | −4% le S | |
(−0.11 to 0.12%) | (−0.57, 0.5%) | (−0.33, 0.26%) | High: | |
Mean indoor vectors/vector density per household per night (8) | −1% le S | −3% le S | −4% le S | |
(−0.05, 0.08%) | (−0.19 to 0.13%) | (−0.15 to 0.06%) | High: | |
Mean entomological inoculation rate per household per night (6) | −7% le S | −12% le S | −23% le S | |
(−1.00 to 0.85%) | (−0.97, 0.73) | (−1.16 to 0.70%) | High: | |
Sporozoite rate per mosquitoes (7). | 15% le S | 10% le S | 9% le S | |
(−0.08, 0.37%) | (−0.09, 0.29%) | (−0.16, 0.35%) | High: |
People | All ages, adult or mixed (children and adults) included studies | ||
Settings | Africa | ||
Intervention | Effectivenessor efficacy of long-lasting insecticidal nets (LLINs) of chlorfenapyr, and piperonyl butoxide | ||
Comparison | Pyriproxyfen long-lasting insecticidal nets (LLINs) | ||
Outcomes | piperonyl butoxide LLINs Relative effect (95% CI) | Chlorfenapyr LLINs Relative effect (95% CI) | Certainty of the evidence (GRADE) |
Malaria infection (9) | 0.0% no difference | −1% le S | |
(−0.04,0.04%) | (−0.04 to 0.03%) | High: | |
Malaria case incidence per children years (4) | −2% le S | −1% le S | |
(−0.57, 0.54%) | (−0.19, 0.17%) | High: | |
Mean indoor vector density per household per night (8) | −4% le S | −1% le S | |
(−0.24 to 0.16%) | (−0.08 to 0.06%) | High: | |
Mean entomological inoculationrate per household per night (6) | −5% le S | −15% le S | |
(−1.38, 1.48) | (−1.18, 0.88%) | High: | |
Sporozoite rate per mosquitoes (7). | −1 le S | −7% le S | |
(−0.28, 0.26%) | (−0.35, 0.21%) | High: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demissie, D.B.; Fetensa, G.; Desta, T.; Tiyare, F.T. Effectiveness and Efficacy of Long-Lasting Insecticidal Nets for Malaria Control in Africa: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2025, 22, 1045. https://doi.org/10.3390/ijerph22071045
Demissie DB, Fetensa G, Desta T, Tiyare FT. Effectiveness and Efficacy of Long-Lasting Insecticidal Nets for Malaria Control in Africa: Systematic Review and Meta-Analysis of Randomized Controlled Trials. International Journal of Environmental Research and Public Health. 2025; 22(7):1045. https://doi.org/10.3390/ijerph22071045
Chicago/Turabian StyleDemissie, Dereje Bayisa, Getahun Fetensa, Tilahun Desta, and Firew Tiruneh Tiyare. 2025. "Effectiveness and Efficacy of Long-Lasting Insecticidal Nets for Malaria Control in Africa: Systematic Review and Meta-Analysis of Randomized Controlled Trials" International Journal of Environmental Research and Public Health 22, no. 7: 1045. https://doi.org/10.3390/ijerph22071045
APA StyleDemissie, D. B., Fetensa, G., Desta, T., & Tiyare, F. T. (2025). Effectiveness and Efficacy of Long-Lasting Insecticidal Nets for Malaria Control in Africa: Systematic Review and Meta-Analysis of Randomized Controlled Trials. International Journal of Environmental Research and Public Health, 22(7), 1045. https://doi.org/10.3390/ijerph22071045