Assessing the Physiochemical Parameters and Reduction Efficiency from Two Typical Wastewater Treatment Plants in the Vhembe District in South Africa
Abstract
1. Introduction
2. Methods and Materials
2.1. Study Area Description
2.2. Collection of Water Samples
2.3. Physicochemical Analysis of Samples
2.4. Wastewater Treatment Efficiency for WWTPs A and B
3. Results and Discussion
3.1. Physicochemical Parameters of the Samples
Month | Sampling Point | Temp °C | pH | DO (ppm) | TDSs (mg/L) | EC (μs/cm) | Turbidity (NTU) | Ammonia (mg/L) | Nitrate (mg/L) | Nitrite (mg/L) | Phosphate (mg/L) | Sulphates (mg/L) | RC (mg/L) | TC (mg/L) | Chloride (mg/L) | Alkalinity (mg/L) | COD (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
June | IN | 20.75 | 7.24 | 0.00 | 314.5 | 491 | 19.5 | 67.2 | 12.50 | 12.5 | 17.4 | 39.0 | 0.22 | 0.01 | 22.0 | 342.5 | 638 |
FE | 20.2 | 7.40 | 2.16 | 197.8 | 309 | 13.2 | 30.00 | 2.00 | 2.00 | 11.15 | 31.0 | 0.04 | 0.05 | 20.0 | 206.5 | 63.0 | |
UP | 17 | 7.50 | 5.25 | 57.35 | 89.6 | 5.60 | 1.83 | 0.00 | 0.00 | 0.80 | 16.0 | 0.18 | 0.11 | 7.00 | 173 | 11.0 | |
DS | 17.1 | 7.48 | 4.70 | 89.3 | 138.4 | 6.73 | 3.40 | 0.00 | 0.00 | 2.70 | 2.00 | 0.05 | 0.03 | 18.0 | 705 | 20.0 | |
July | IN | 18.8 | 7.53 | 3.06 | 371.5 | 493 | 53.55 | 72.0 | 11.85 | 25.5 | 15.1 | 42.5 | 0.05 | 0.06 | 20.0 | 285 | 410 |
FE | 18.23 | 7.53 | 3.15 | 278 | 309 | 12.05 | 34.65 | 2.75 | 4.00 | 11.0 | 36.0 | 0.11 | 0.03 | 19.6 | 215 | 99.0 | |
UP | 20.03 | 7.42 | 4.48 | 286.5 | 89.6 | 1.57 | 0.25 | 5.85 | 0.00 | 0.04 | 1.50 | 0.08 | 0.07 | 6.00 | 200 | 16.5 | |
DS | 21.3 | 7.61 | 0.00 | 289 | 138.9 | 2.08 | 3.60 | 5.15 | 0.00 | 0.95 | 2.00 | 0.06 | 0.11 | 16.8 | 214 | 13.5 | |
August | IN | 18.16 | 7.77 | 0.00 | 313.5 | 627 | 1.32 | 38.6 | 5.70 | 21.5 | 15.5 | 54.0 | 0.03 | 0.06 | 20.0 | 310 | 508 |
FE | 20.39 | 7.97 | 0.93 | 352 | 703.5 | 3.9 | 39.2 | 0.00 | 5.50 | 13.15 | 37.5 | 0.065 | 0.25 | 18.5 | 232 | 196 | |
UP | 16.29 | 7.78 | 1.94 | 208.5 | 419 | 0.99 | 6.40 | 6.25 | 0.00 | 0.00 | 0.50 | 0.00 | 0.00 | 5.8 | 774 | 18.0 | |
DS | 19.0 | 7.75 | 1.59 | 144 | 286.5 | 0.47 | 1.25 | 5.25 | 0.00 | 13.1 | 2.00 | 0.00 | 0.00 | 9.95 | 183.5 | 7.00 | |
September | IN | 19.44 | 8.15 | 0.00 | 443.5 | 887.5 | 13.0 | 47.8 | 30.0 | 0.00 | 15.7 | 74.5 | 0.61 | 0.68 | 20.0 | 316.5 | 601.5 |
FE | 13.31 | 7.78 | 18.86 | 339 | 678 | 5.85 | 35.7 | 0.00 | 3.00 | 0.00 | 0.00 | 0.15 | 0.00 | 20.0 | 238.5 | 139.5 | |
UP | 15.55 | 7.80 | 2.45 | 307 | 615.5 | 6.19 | 10.6 | 6.95 | 0.00 | 0.65 | 21.5 | 0.12 | 0.21 | 20.0 | 184 | 54.5 | |
DS | 13.99 | 7.94 | 2.38 | 320 | 641.5 | 7.19 | 1.75 | 4.55 | 0.00 | 13.7 | 46.5 | 0.03 | 0.02 | 16.5 | 204.5 | 6.00 | |
October | IN | 14.75 | 7.60 | 1.3 | 382.5 | 765.5 | 149 | 46.5 | 30.4 | 0.00 | 22.0 | 66.0 | 1.48 | 0.89 | 14.5 | 316 | 702.5 |
FE | 15.32 | 7.49 | 16.9 | 254 | 508 | 10.79 | 23.5 | 0.00 | 5.50 | 0.00 | 0.00 | 0.59 | 0.49 | 17.65 | 128.5 | 144 | |
UP | 13.99 | 7.62 | 20.25 | 68.0 | 136 | 50.35 | 9.50 | 16.9 | 0.00 | 0.00 | 27.5 | 0.00 | 0.00 | 5.55 | 42.5 | 22.5 | |
DS | 14.01 | 7.55 | 21.5 | 121.5 | 243 | 24.05 | 2.05 | 15.7 | 0.00 | 12.0 | 36.0 | 0.04 | 0.06 | 13.2 | 66.5 | 27.5 | |
DWAF [30,41] guidelines | 35 °C | 5.5–9.5 | 6.5–8.0 ppm | 450 mg/L | 70 μs/cm | 10–20 NTU for river water containing sediment | 3 mg/L | 15.0 mg/L | 15.0 mg/L | 10 mg/L | 200 mg/L | 0.25 mg/L | 0.25 mg/L | 100 mg/L | 20–200 mg/L | 75 mg/L |
Month | Sampling Point | Temp °C | pH | DO (ppm) | TDSs (mg/L) | EC (uS/cm) | Turbidity (NTU) | Ammonia (mg/L) | Nitrate (mg/L) | Nitrite (mg/L) | Phosphate (mg/L) | Sulphates (mg/L) | RC (mg/L) | TC (mg/L) | Chloride (mg/L) | Alkalinity (mg/L) | COD (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
June | IN | 21.9 | 7.64 | 0.00 | 365 | 570 | 15.3 | 68.2 | 26.5 | 26.5 | 10.8 | 19.5 | 0.01 | 0.00 | 23.6 | 130 | 713 |
FE | 18.8 | 7.54 | 2.15 | 200 | 312 | 14.3 | 9.80 | 1.00 | 1.00 | 9.80 | 38.5 | 0.25 | 0.18 | 21.2 | 165 | 48.0 | |
UP | 18.9 | 7.45 | 5.25 | 56.9 | 88.3 | 5.88 | 1.60 | 0.00 | 0.00 | 2.05 | 3.00 | 0.23 | 0.03 | 10.1 | 59.5 | 7.00 | |
DS | 18.5 | 7.44 | 4.70 | 83.5 | 129 | 6.87 | 1.22 | 0.00 | 0.00 | 2.30 | 4.60 | 0.25 | 0.29 | 19.5 | 16.6 | 26 | |
July | IN | 20.9 | 7.36 | 0.00 | 408 | 580 | 28.1 | 56.3 | 30.0 | 59.1 | 12.3 | 54.0 | 0.66 | 0.69 | 25.6 | 241 | 759.5 |
FE | 20.6 | 7.47 | 1.06 | 320 | 312 | 23.0 | 58.3 | 9.15 | 13.0 | 15.03 | 45.5 | 0.50 | 5.00 | 22.5 | 182 | 121.5 | |
UP | 21.8 | 7.31 | 6.67 | 81.5 | 88.3 | 5.55 | 1.50 | 5.50 | 7.05 | 0.00 | 1.00 | 0.24 | 0.06 | 10.1 | 68.0 | 4.00 | |
DS | 22.6 | 7.50 | 5.25 | 130 | 129 | 8.17 | 8.17 | 6.45 | 4.00 | 2.04 | 8.00 | 0.69 | 0.41 | 17.8 | 91.0 | 23.0 | |
August | IN | 22.8 | 7.76 | 0.00 | 360 | 720 | 2.17 | 40.0 | 30.0 | 4.00 | 26.2 | 68.5 | 0.78 | 0.85 | 21.8 | 256 | 797 |
FE | 21.1 | 7.94 | 0.00 | 220 | 546 | 4.79 | 24.3 | 0.00 | 25.7 | 11.2 | 42.0 | 0.00 | 0.00 | 19.7 | 168 | 130 | |
UP | 20.0 | 7.78 | 1.67 | 72.0 | 144 | 5.89 | 25.3 | 3.20 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 5.10 | 38.5 | 9.00 | |
DS | 21.7 | 7.67 | 2.42 | 56.5 | 114 | 5.58 | 0.85 | 5.05 | 0.00 | 12.0 | 2.00 | 0.00 | 0.00 | 11.9 | 43.5 | 57.0 | |
September | IN | 14.8 | 7.78 | 0.00 | 357 | 714 | 89.1 | 44.9 | 27.8 | 0.00 | 21.4 | 56.5 | 2.00 | 0.83 | 20.0 | 315 | 800 |
FE | 15.3 | 7.77 | 18.9 | 123 | 446 | 44.6 | 18.8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.10 | 20.0 | 129 | 84.5 | |
UP | 14.0 | 7.63 | 2.45 | 76.5 | 153 | 1.91 | 5.75 | 3.60 | 0.00 | 0.00 | 27.0 | 0.00 | 0.04 | 20.0 | 41.5 | 22.5 | |
DS | 14.4 | 7.65 | 2.38 | 96.0 | 192 | 2.01 | 1.35 | 4.40 | 0.00 | 0.50 | 4.00 | 0.04 | 0.07 | 17.7 | 66.0 | 18.0 | |
October | IN | 19.4 | 7.78 | 0.00 | 356 | 713 | 125 | 50.4 | 32.5 | 0.00 | 19.0 | 82.5 | 1.61 | 0.64 | 20.0 | 317.5 | 629 |
FE | 13.3 | 8.35 | 28.4 | 354 | 708 | 30.9 | 35.5 | 7.63 | 8.50 | 0.00 | 0.00 | 4.38 | 5.09 | 14.2 | 242 | 138 | |
UP | 15.6 | 7.86 | 29.1 | 315 | 629 | 14.5 | 12.0 | 13.3 | 0.00 | 0.18 | 28.0 | 0.14 | 0.18 | 2.95 | 187 | 58.0 | |
DS | 14.0 | 7.81 | 22.6 | 234 | 467 | 5.13 | 3.15 | 22.5 | 0.00 | 16.75 | 47.0 | 1.18 | 1.21 | 12.15 | 212.5 | 56.5 | |
DWAF [30,41] guidelines | 35 °C | 5.5–9.5 | 6.5–8.0 ppm | 450 mg/L | 70 μs/cm | 10–20 NTU for river water containing sediment | 3 mg/L | 15 mg/L | 15 mg/L | 10 mg/L | 200 mg/L | 0.25 mg/L | 0.25 mg/L | 100 mg/L | 20–200 mg/L | 75.0 mg/L |
3.2. Efficiency of the Two WWTPs
3.3. Limitations of This Study
3.4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Hannah, D.; Frei, R.; Minaudo, C.; Chapin, F.S.; Krause, S.; Conner, L.; Ellison, D.; et al. A water cycle for the Anthropocene. Hydrol. Process. 2019, 33, 3046–3052. [Google Scholar] [CrossRef]
- Pereira, M.A.; Marques, R.C. Sustainable water and sanitation for all: Are we there yet? Water Res. 2021, 207, 117765. [Google Scholar] [CrossRef] [PubMed]
- Hokkanen, S.; Bhatnagar, A.; Srivastava, V.; Suorsa, V.; Sillanpää, M. Removal of Cd2+, Ni2+ and PO43− from aqueous solution by hydroxyapatite-bentonite clay-nanocellulose composite. Int. J. Bio. Macromol. 2018, 118, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Aniyikaiye, T.E.; Oluseyi, T.; Odiyo, J.O.; Edokpayi, J.N. Physico-chemical analysis of Wastewater discharge from selected paint industries in Lagos, Nigeria. Int. J. Environ. Res. Public Health 2019, 16, 1235. [Google Scholar] [CrossRef]
- Olabode, G.S.; Olorundare, O.F.; Somerset, V.S. Physicochemical properties of wastewater effluent from two selected wastewater treatment plants (Cape Town) for water quality improvement. Int. J. Environ. Sci. Technol. 2020, 17, 4745–4758. [Google Scholar] [CrossRef]
- Bănăduc, D.; Simić, V.; Cianfaglione, K.; Barinova, S.; Afanasyev, S.; Öktener, A.; McCall, G.; Simić, S.; Curtean-Bănăduc, A. Freshwater as a sustainable resource and generator of secondary resources in the 21st century: Stressors, threats, risks, management and protection strategies, and conservation approaches. Int. J. Environ. Res. Public Health 2022, 19, 16570. [Google Scholar] [CrossRef]
- Mishra, R.K. Fresh water availability and its global challenge. Br. J. Multidiscip. Adv. Stud. 2023, 4, 1–78. [Google Scholar] [CrossRef]
- du Plessis, A. South Africa’s Impending Freshwater Crises. In South Africa’s Water Predicament; Springer: Cham, Switzerland, 2023; pp. 41–65. [Google Scholar]
- Gholami-Shabani, M.; Nematpour, K. Reuse of Wastewater as Non-Conventional Water: A Way to Reduce Water Scarcity Crisis. 2024. Available online: https://www.intechopen.com/chapters/1175702 (accessed on 25 May 2025).
- Agoro, M.A.; Okoh, O.O.; Adefisoye, M.A.; Okoh, A.I. Physicochemical properties of wastewater in three typical South African sewage works. Pol. J. Environ. Stud. 2018, 27, 491–499. [Google Scholar] [CrossRef]
- Gökçekuş, H.; Kassem, Y.; George, A.G.; Morrison, R.F. Physicochemical properties of wastewater effluents from selected wastewater treatment plants. Future Technol. 2023, 2, 62–70. [Google Scholar] [CrossRef]
- Tariq, A.; Mushtaq, A. Untreated wastewater reasons and causes: A review of most affected areas and cities. Int. J. Chem. Biochem. Sci. 2023, 23, 121–143. [Google Scholar]
- Naidoo, S.; Olaniran, A.O. Treated wastewater effluent as a source of microbial pollution of surface water resources. Int. J. Environ. Res. Public Health 2023, 11, 249. [Google Scholar] [CrossRef] [PubMed]
- Abdel-raouf, N.; AL-homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Bio. Sci. 2012, 19, 257. [Google Scholar] [CrossRef] [PubMed]
- Mbalassa, M.; Bagalwa, M.; Nshombo, M.; Kateyo, M. Assessment of physicochemical parameters in relation to fish ecology in Ishasha River and Lake Edward, Albertine Rift Valley, East Africa. Int. J. Curr. Appl. Microbiol. 2014, 3, 230. [Google Scholar]
- Benit, N.; Roslin, A.S. Physicochemical properties of wastewater collected from different sewage sources. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 1–6. [Google Scholar]
- Khan, M.N.; Mohammad, F. Eutrophication: Challenges and solutions. Eutrophication Causes Conseq. Control. 2014, 2, 1–15. [Google Scholar]
- Mishra, R.K. The effect of eutrophication on drinking water. Br. J. Multidiscip. Adv. Stud. 2023, 4, 7–20. [Google Scholar] [CrossRef]
- Adamu, B. Evaluation of Current Issues in Water Supply Systems and Implications for Sustainable Urban Water Management in Limbe, Southwest Region of Cameroon. Curr. J. Appl. Sci. Technol. 2020, 39, 52–74. [Google Scholar] [CrossRef]
- Akpor, O.B.; Muchie, M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. Phys. Sci. Int. J. 2010, 5, 1807. [Google Scholar]
- Dixit, R.; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; Lade, H.; et al. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 2015, 7, 2189. [Google Scholar] [CrossRef]
- Patil, P.; Sawant, D.; Deshmukh, R. Physicochemical parameters for testing of water—A review. Int. J. Environ. Sci. 2012, 3, 1194–1207. [Google Scholar]
- Zabir, A.; Al Zaman, M.; Hossen, M.Z.; Uddin, M.N.; Biswas, M.J.H.; Asif, A.A.l. Impact of wastewater irrigation on major nutrient status in soil near Bhaluka industrial area of Bangladesh. Asian J. Med. Biol. Res. 2016, 2, 131–137. [Google Scholar] [CrossRef]
- Koopaei, N.N.; Abdollahi, M. Health risks associated with the pharmaceuticals in wastewater. J. Pharm. Sci. 2013, 25, 9. [Google Scholar]
- Edokpayi, J.N.; Odiyo, J.O.; Olasoji, S.O. Assessment of heavy metal contamination of Dzindi river, in Limpopo Province, South Africa. Int. J. Nat. Sci. Res. 2014, 2, 185–194. [Google Scholar]
- Department of Water and Sanitation. Green Drop Watch Report. DWS. Available online: https://ws.dws.gov.za/iris/releases/GDPAT_2023_Report.pdf (accessed on 30 November 2024).
- Kumar, V.; Chopra, A.K. Fertigation effect of distillery effluent on agronomical practices of Trigonella foenumgraecum L. (Fenugreek). Environ. Monit. Assess. 2012, 184, 1207. [Google Scholar] [CrossRef]
- Lokhande, R.S.; Singare, P.U.; Pimple, D.S. Study on Physicochemical parameters of wastewater effluents from Taloja industrial area of Mumbai, India. Int. J. Ecosyst. 2011, 1, 1–9. [Google Scholar] [CrossRef]
- Iram, S.; Kanwal, S.; Ahmad, I.; Tabassam, T.; Suthar, V.; Mahmood-ul-Hassan, M. Assessment of physicochemical parameters of wastewater samples. Environ. Monit. Assess. 2013, 185, 2503–2515. [Google Scholar] [CrossRef]
- DWAF (Department of Water Affairs and Forestry). South African Water Quality Management Series. Procedures to Assess Effluent Discharge Impacts; WRC Report No TT 64/94; Department of Water Affairs and Forestry and Water Research Commission: Pretoria, South Africa, 2010; pp. 1–42. [Google Scholar]
- Tikariha, A.; Sahu, O. Study of characteristics and treatments of dairy industry wastewater. J. Appl. Environ. Microbiol. 2014, 2, 16–22. [Google Scholar]
- Osode, A.N.; Okoh, A.I. Impact of discharged wastewater final effluent on the physicochemical qualities of a receiving watershed in a suburban community of the Eastern Cape Province. Clean-Soil Air Water 2009, 37, 938. [Google Scholar] [CrossRef]
- Mugwanya, M.; Dawood, M.A.; Kimera, F.; Sewilam, H. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. Aquac. Fish. 2022, 7, 223–243. [Google Scholar] [CrossRef]
- Mahananda, M.R.; Mohanty, B.P.; Behera, N.R. Physicochemical Analysis of Surface and Ground Water of Bargarh District; Sambalpur University: Jyoti-Vihar, India, 2010. [Google Scholar]
- Qadir, I.; Chhipa, R.C. Comparative studies of some physicochemical characteristics of raw water and effluents of textile industries of Sitapura, Jaipur. Int. J. Adv. Res. 2015, 3, 2444–2449. [Google Scholar]
- Mamba, B.B.; Dlamini, N.P.; Nyembe, D.W.; Mulaba-Bafubiandi, A.F. Metal adsorption capabilities of clinoptilolite and selected strains of bacteria from mine water. Phys. Chem. Earth Parts A/B/C 2009, 34, 830. [Google Scholar] [CrossRef]
- Singh, G.; Joyce, E.M.; Beddow, J.; Mason, T.J. Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. J. Microbiol. Biotechnol. Food Sci. 2012, 2, 106. [Google Scholar]
- Ewemoje, O.E.; Ihuoma, S.O. Physicochemical changes in the quality of surface water due to sewage discharge in Ibadan, South-Western Nigeria. Energy Environ. Res. 2014, 4, 55. [Google Scholar] [CrossRef]
- Odjadjare, E.E.; Okoh, A.I. Physicochemical quality of urban municipal wastewater effluent and its impact on the receiving environment. Environ. Monit. Assess. 2010, 170, 383. [Google Scholar] [CrossRef]
- Chaurasia, M.; Pandey, G.C. Study of physico-chemical characteristics of some water ponds of ayodhya-faizabad. Indian J. Environ. Prot. 2007, 27, 1019. [Google Scholar]
- DWAF (Department of Water Affairs and Forestry). South African Water Quality Guidelines, Vol. 7. Aquatic Ecosystems; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996. [Google Scholar]
- Steadmon, M.; Ngiraklang, K.; Nagata, M.; Masga, K.; Frank, K.L. Effects of water turbidity on the survival of Staphylococcus aureus in environmental fresh and brackish waters. Water Environ. Res. 2023, 95, 10923. [Google Scholar] [CrossRef]
- Makarovsky, I.; Markel, G.; Dushnitsky, T.; Eisenkraft, A. Ammonia—When something smells wrong. Isr. Med. Assoc. J. 2008, 10, 537–543. [Google Scholar]
- Mook, W.T.; Chakrabarti, M.H.; Aroua, M.K.; Khan, G.M.A.; Ali, B.S.; Islam, M.S.; Hassan, M.A. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination 2012, 285, 1–13. [Google Scholar] [CrossRef]
- Ragheb, S.M. Phosphate removal from aqueous solution using slag and fly ash. HBRC J. 2013, 9, 270–275. [Google Scholar] [CrossRef]
- Majumder, S.; Gupta, S.; Saha, R.N.; Datta, J.K.; Mondal, N. Eutrophication potential of municipal sewage of Burdwan Town, West Bengal, India. Pollut. Res. 2006, 25, 299–302. [Google Scholar]
- Banerjee, P.; Garai, P.; Saha, N.C.; Saha, S.; Sharma, P.; Maiti, A.K. A critical review on the effect of nitrate pollution in aquatic invertebrates and fish. Water Air Soil Pol. 2023, 234, 333. [Google Scholar] [CrossRef]
- Shrestha, A.M.; Neupane, S.; Bisht, G. An assessment of physicochemical parameters of selected industrial effluents in Nepal. J. Chem. 2017, 1, 3659561. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, Y.; Han, S.H.; Hwang, S.J. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour. Technol. 2013, 130, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Paltahe, A.; Cornelius, T.; Wahabou, A. Study on physico-chemical parameters of wastewater effluents from cotton development plant of Maroua-Cameroon. J. Pure Appl. Chem. Res. 2018, 7, 230–238. [Google Scholar] [CrossRef]
- Njoku, O.E.; Agwa, O.K.; Ibiene, A.A. An investigation of the microbiological and physicochemical profile of some fish-pond water within the Niger Delta region of Nigeria. Afr. J. Food Sci. 2015, 9, 155. [Google Scholar] [CrossRef]
- Karikari, A.Y.; Ampofo, J.A. Chlorine treatment effectiveness and physicochemical and bacteriological characteristics of treated water supplies in distribution networks of Accra-Tema Metropolis, Ghana. Appl. Water Sci. 2013, 3, 535–543. [Google Scholar] [CrossRef]
- Mothetha, M.L. Evaluation of the Impacts of Municipal Wastewater Treatment on the Receiving Environment: A Case Study of the Olifantsvlei Wastewater Treatment Plant in the Gauteng Province, South Africa. Ph.D. Dissertation, University of South Africa, Pretoria, South Africa, 2016. [Google Scholar]
- Crockett, C.S. The role of wastewater treatment in protecting water supplies against emerging pathogens. Water Environ. Res. 2007, 79, 221–232. [Google Scholar] [CrossRef]
- Chigor, V.N.; Sibanda, T.; Okoh, A.I. Variations in the physicochemical characteristics of the Buffalo River in the Eastern Cape Province of South Africa. Environ. Monit. Assess. 2013, 185, 8733. [Google Scholar] [CrossRef]
- Patil, V.T.; Patil, P.R. Physicochemical analysis of selected groundwater samples of Amalner Town in Jalgaon District, Maharashtra, India. J. Chem. 2010, 7, 111–116. [Google Scholar] [CrossRef]
- Gitari, W.M.; Tshikovi, F.P.; Akinyemi, S.A. Physicochemical Appraisal of Effluents Receiving Streams: A Case Study of Mvudi River, South Africa. J. Environ. Sci. Allied Res. 2017, 2017, 25–31. [Google Scholar]
- Morrison, G.; Fatoki, O.S.; Persson, L.; Ekberg, A. Assessment of the impact of point source pollution from the Keiskammahoek Sewage Treatment Plant on the Keiskamma River-pH, electrical conductivity, oxygen-demanding substance (COD) and nutrients. Water SA 2001, 27, 475–480. [Google Scholar] [CrossRef]
- Chatla, A.; Almanassra, I.W.; Abushawish, A.; Laoui, T.; Alawadhi, H.; Atieh, M.A.; Ghaffour, N. Sulphate removal from aqueous solutions: State-of-the-art technologies and future research trends. Desalination 2023, 558, 116615. [Google Scholar] [CrossRef]
- Boyd, L.A.; Mbelu, A.M. Guideline for the Inspection of Wastewater Treatment Works. Water Research Commission. 2009. Available online: https://www.wrc.org.za/wp-content/uploads/mdocs/TT-375-08.pdf (accessed on 25 May 2025).
- Tadda, M.A.; Shitu, A.; Gouda, M.; Danhassan, U.A.; Muhammad, A.I.; Lawan, I.; Maina, M.M.; Zhu, S. Biological processes for industrial effluent treatment in a biorefinery. In Biorefinery of Industrial Effluents for a Sustainable Circular Economy; Elsevier: Amsterdam, The Netherlands, 2025; pp. 255–273. [Google Scholar]
- Qadir, M.; Wichelns, D.; Raschid-Sally, L.; McCornick, P.G.; Drechsel, P.; Bahri, A.; Minhas, P.S. The challenges of wastewater irrigation in developing countries. J. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef]
- Ouali, N.; Belabed, B.E.; Chenchouni, H. Modelling environment contamination with heavy metals in flathead grey mullet Mugil cephalus and upper sediments from north African coasts of the Mediterranean Sea. Sci. Total Environ. 2018, 639, 156–174. [Google Scholar] [CrossRef]
- Murei, A.; Mogane, B.; Mothiba, D.P.; Mochware, P.T.; Sekgobela, J.M.; Mudau, M.; Musumuvhi, N.; Khabo-Mmekoa, C.M.; Moropeng, R.C.; Momba, M.N.B. Barriers to Water and Sanitation Safety Plans in Rural Areas of South Africa—A Case Study in the Vhembe District, Limpopo Province. Water 2020, 14, 1244. [Google Scholar] [CrossRef]
- Haldar, K.; Kujawa-Roeleeld, K.; Schoesmakers, M.; Datta, D.K.; Rijnaarts, H.; Vos, J. Institutional challenges and stakeholder perceptions towards planned water re-use in peri-urban agriculture of the Bengal delta. J. Environ. Manage 2021, 283, 111974. [Google Scholar] [CrossRef]
- Mabadahanye, K.; Dalu, M.T.; Munyai, L.F.; Dondofema, F.; Dalu, T. Institutional arrangements and roles within water and wastewater treatments in the Vhembe District, South Africa. Sustainability 2024, 16, 8362. [Google Scholar] [CrossRef]
- Malakane, K.C.; Maphanga, T. An assessment of the quality of effluent discharged from several wastewater treatment plants into the Crocodile River of Mpumalanga, South Africa. J. Appl. Res. Water Wastewater 2024, 11, 15–23. [Google Scholar]
- Burgan, H.İ.; İçağa, Y.; Bostanoğlu, Y.; Kilit, M. Water quality trend of Akarçay Stream during 2006–2011 period. Pamukkale Univ. J. Eng. Sci. 2013, 19, 2006–2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kachienga, L.O.; Ndou, T.; Rikhotso, M.C.; Traore, A.N.; Potgieter, N. Assessing the Physiochemical Parameters and Reduction Efficiency from Two Typical Wastewater Treatment Plants in the Vhembe District in South Africa. Int. J. Environ. Res. Public Health 2025, 22, 856. https://doi.org/10.3390/ijerph22060856
Kachienga LO, Ndou T, Rikhotso MC, Traore AN, Potgieter N. Assessing the Physiochemical Parameters and Reduction Efficiency from Two Typical Wastewater Treatment Plants in the Vhembe District in South Africa. International Journal of Environmental Research and Public Health. 2025; 22(6):856. https://doi.org/10.3390/ijerph22060856
Chicago/Turabian StyleKachienga, Leonard Owino, Thendo Ndou, Mpumelelo Casper Rikhotso, Afsatou Ndama Traore, and Natasha Potgieter. 2025. "Assessing the Physiochemical Parameters and Reduction Efficiency from Two Typical Wastewater Treatment Plants in the Vhembe District in South Africa" International Journal of Environmental Research and Public Health 22, no. 6: 856. https://doi.org/10.3390/ijerph22060856
APA StyleKachienga, L. O., Ndou, T., Rikhotso, M. C., Traore, A. N., & Potgieter, N. (2025). Assessing the Physiochemical Parameters and Reduction Efficiency from Two Typical Wastewater Treatment Plants in the Vhembe District in South Africa. International Journal of Environmental Research and Public Health, 22(6), 856. https://doi.org/10.3390/ijerph22060856