Community Engagement Within the Evaluation of Public Policies for Zoonotic Spillover Prevention: A Secondary Matrix Analysis
Abstract
:1. Introduction
2. Materials and Methods
Research Question and Study Design
3. Results
3.1. Platformed Community Consultation in Spillover Prevention Research
3.2. Community Training for Involvement in Spillover Prevention Research
3.3. Cultural and Language Considerations Engaged Within Spillover Prevention Research Activities
3.4. Community Protection and Awareness Programmes for Public Health and Biosecurity
3.5. Community-Centered Data Collection for Spillover Prevention Research
4. Discussion
- Relational community engagement is an approach that conjoins individual and collective awareness and is intentional about processes that facilitate positive connection, belonging, and communication—all of which are needed for meaningful collaboration and co-production [134].
- This approach emphasizes and centers on building nurturing, ongoing, and longstanding relationships between different stakeholders, including community members, organizations, and institutions for improved health outcomes [134].
- Rather than focusing solely on specific projects or outcomes, relational community engagement places a strong emphasis on developing and maintaining long-term connections and trust within communities [134].
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CE | Community engagement |
WHO | World Health Organization |
References
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Worobey, M.; Levy, J.I.; Serrano, L.M.; Crits-Christoph, A.; Pekar, J.E.; Goldstein, S.A.; Rasmussen, A.L.; Kraemer, M.U.G.; Newman, C.; Koopmans, M.P.G.; et al. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 2022, 377, 951–959. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Pandemic Influenza (Flu)-Past Flu Pandemics. Available online: https://www.cdc.gov/flu/pandemic-resources/basics/past-pandemics.html (accessed on 3 November 2024).
- Worobey, M.; Han, G.Z.; Rambaut, A. Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. Proc. Natl. Acad. Sci. USA 2014, 111, 8107–8112. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS Pandemic. Cold Spring Harb. Perspect. Med. 2011, 1, a006841. [Google Scholar] [CrossRef] [PubMed]
- Pekar, J.E.; Magee, A.; Parker, E.; Moshiri, N.; Izhikevich, K.; Havens, J.L.; Gangavarapu, K.; Malpica Serrano, L.M.; Crits-Christoph, A.; Matteson, N.L.; et al. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science 2022, 377, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Mena, I.; Nelson, M.I.; Quezada-Monroy, F.; Dutta, J.; Cortes-Fernández, R.; Lara-Puente, J.H.; Castro-Peralta, F.; Cunha, L.F.; Trovão, N.S.; Lozano-Dubernard, B.; et al. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. eLife 2016, 5, e16777. [Google Scholar] [CrossRef] [PubMed]
- Kawaoka, Y.; Krauss, S.; Webster, R.G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 1989, 63, 4603–4608. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Avian Influenza Current Situation Summary. Available online: https://www.cdc.gov/flu/avianflu/avian-flu-summary.htm (accessed on 3 December 2024).
- Garg, S.; Reinhart, K.; Couture, A.; Kniss, K.; Davis, C.T.; Kirby, M.K.; Murray, E.L.; Zhu, S.; Kraushaar, V.; Wadford, D.A.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus Infections in Humans. N. Engl. J. Med. 2025, 392, 843–854. [Google Scholar] [CrossRef]
- Vora, N.M.; Hassan, L.; Plowright, R.K.; Horton, R.; Cook, S.; Sizer, N.; Berstein, A. The Lancet–PPATS Commission on Prevention of Viral Spillover: Reducing the risk of pandemics through primary prevention. Lancet 2024, 403, 597–599. [Google Scholar] [CrossRef]
- The Independent Panel for Pandemic Preparedness and Response. Social. Costs of the COVID-19 Pandemic. 2021. Available online: https://theindependentpanel.org/wp-content/uploads/2021/05/Background-paper-9-Social-impact.pdf (accessed on 6 January 2025).
- Peng, Y.; Wu, P.; Schartup, A.T.; Zhang, Y. Plastic waste release caused by COVID-19 and its fate in the global ocean. Proc. Natl. Acad. Sci. USA 2021, 118, e2111530118. [Google Scholar] [CrossRef]
- Bernstein, A.S.; Ando, A.W.; Loch-Temzelides, T.; Vale, M.M.; Li, B.V.; Li, H.; Busch, J.; Chapman, C.A.; Kinnaird, M.; Nowak, K.; et al. The costs and benefits of primary prevention of zoonotic pandemics. Sci. Adv. 2022, 8, eabl4183. [Google Scholar] [CrossRef]
- De Oliveira, T.; Tegally, H. Will climate change amplify epidemics and give rise to pandemics? Science 2023, 381, eadk4500. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Wada, O.Z.; Fidelis, S.C.; Oluwole, O.S.; Alisi, C.S.; Orimabuyaku, N.F.; Clement David-Olawade, A. Strengthening Africa’s response to Mpox (monkeypox): Insights from historical outbreaks and the present global spread. Sci. One Health 2024, 3, 100085. [Google Scholar] [CrossRef] [PubMed]
- Eyawo, O.; Viens, A.M. Rethinking the Central Role of Equity in the Global Governance of Pandemic Response. Bioethical Inquiry 2020, 4, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Plamondon, K.M. Equity at a time of pandemic. Health Promot. Int. 2022, 37, daab034. [Google Scholar] [CrossRef]
- Hampton, A.R.; Eccleston-Turner, M.; Rourke, M.; Switzer, S. Equity in the Pandemic Treaty: Access and Benefit-Sharing as a Policy Device or a Rhetorical Device? J. Law. Med. Ethics 2023, 51, 217–220. [Google Scholar] [CrossRef]
- Lancet-PPATS Commission on Prevention of Viral Spillover; Mettenleiter, T.C.; Winkler, A.S. Draft of WHO Pandemic Agreement plays down primary prevention. Lancet 2024, 403, 525–526. [Google Scholar]
- World Health Organization. Intergovernmental Negotiating Body to Draft and Negotiate a WHO Convention, Agreement or Other International Instrument on Pandemic Prevention, Preparedness and Response. 2024. Available online: https://apps.who.int/gb/ebwha/pdf_files/WHA77/A77_10-en.pdf (accessed on 20 February 2025).
- Gaunt, J. Protect Indigenous Peoples to Stem the Spread of Pandemic Diseases. Tenure Facil. 2021. Available online: https://thetenurefacility.org/article/protect-indigenous-peoples-to-stem-the-spread-of-pandemic-diseases/ (accessed on 3 November 2024).
- Hillier, S.A.; Taleb, A.; Chaccour, E.; Aenishaenslin, C. Examining the concept of One Health for Indigenous communities: A systematic review. One Health 2021, 12, 100248. [Google Scholar] [CrossRef]
- Chaves, L.F.; Friberg, M.D.; Pascual, M.; Calzada, J.E.; Luckhart, S.; Bergmann, L.R. Community-serving research addressing climate change impacts on vector-borne diseases. Lancet Planet. Health 2024, 8, e334-41. [Google Scholar] [CrossRef]
- Clifford Astbury, C.; Lee, K.M.; Mcleod, R.; Aguiar, R.; Atique, A.; Balolong, M.; Clarke, J.; Demeshko, A.; Labonté, R.; Ruckert, A.; et al. Policies to prevent zoonotic spillover: A systematic scoping review of evaluative evidence. Glob. Health 2023, 19, 82. [Google Scholar] [CrossRef]
- Odugleh-Kolev, A.; Alharahsheh, S.; Valentine, N.; Al-Jayyousi, G.; Khattabi, N.; Al-Jayyousi, G.; Al-Mohannadi, A. Relationality in Community Engagement: Its Role in Humanizing Health and Achieving Quality Integrated Health Services. World Health Organization; WISH. 2024. Available online: https://wish.org.qa/wp-content/uploads/2024/09/Relationality-in-Community-Engagement.pdf (accessed on 3 November 2024).
- Kyngäs, H.; Kaakinen, P. Deductive Content Analysis. In The Application of Content Analysis in Nursing Science Research; Kyngäs, H., Mikkonen, K., Kääriäinen, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 23–30. [Google Scholar]
- Vaughn, L.M.; Jacquez, F. Participatory Research Methods—Choice Points in the Research Process. JPRM 2020, 1, 1–14. [Google Scholar] [CrossRef]
- Key, K.D.; Furr-Holden, D.; Lewis, E.Y.; Cunningham, R.; Zimmerman, M.A.; Johnson-Lawrence, V.; Selig, S. The Continuum of Community Engagement in Research: A Roadmap for Understanding and Assessing Progress. Prog. Community Health Partnersh. 2019, 13, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Khodyakov, D.; Stockdale, S.; Jones, F.; Ohito, E.; Jones, A.; Lizaola, E.; Mango, J. An Exploration of the Effect of Community Engagement in Research on Perceived Outcomes of Partnered Mental Health Services Projects. Soc. Ment. Health 2011, 1, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Elo, S.; Kyngäs, H. The qualitative content analysis process. J. Adv. Nursing. 2008, 62, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Abbas, B.; Yousif, M.A.; Nur, H.M. Animal health constraints to livestock exports from the Horn of Africa: -EN- -FR- Restrictions sanitaires imposées aux exportations de bétail à partir de la corne de l’Afrique -ES- Limitaciones zoosanitarias a las exportaciones de ganado desde el Cuerno de África. Rev. Sci. Tech. OIE 2014, 33, 711–721. [Google Scholar]
- Anderson, A.; Shwiff, S.; Gebhardt, K.; Ramírez, A.J.; Shwiff, S.; Kohler, D.; Lecuona, L. Economic evaluation of vampire bat (Desmodus rotundus) rabies prevention in Mexico. Transbound. Emerg. Dis. 2014, 61, 140–146. [Google Scholar] [CrossRef]
- Backer, J.A.; Hagenaars, T.J.; Van Roermund, H.J.W.; De Jong, M.C.M. Modelling the effectiveness and risks of vaccination strategies to control classical swine fever epidemics. J. R. Soc. Interface 2009, 6, 849–861. [Google Scholar] [CrossRef]
- Backer, J.A.; Van Roermund, H.J.W.; Fischer, E.A.J.; Van Asseldonk, M.A.; Bergevoet, R.H. Controlling highly pathogenic avian influenza outbreaks: An epidemiological and economic model analysis. Prev. Vet. Med. 2015, 121, 142–150. [Google Scholar] [CrossRef]
- Basinski, A.J.; Nuismer, S.L.; Remien, C.H. A little goes a long way: Weak vaccine transmission facilitates oral vaccination campaigns against zoonotic pathogens. PLoS Negl. Trop. Dis. 2019, 13, e0007251. [Google Scholar] [CrossRef]
- Berry, K.; Allen, T.; Horan, R.D.; Shogren, J.F.; Finnoff, D.; Daszak, P. The Economic Case for a Pandemic Fund. EcoHealth 2018, 15, 244–258. [Google Scholar] [CrossRef]
- Beyer, H.L.; Hampson, K.; Lembo, T.; Cleaveland, S.; Kaare, M.; Haydon, D.T. Metapopulation dynamics of rabies and the efficacy of vaccination. Proc. R. Soc. B 2011, 278, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Brennan, A.; Cross, P.C.; Portacci, K.; Scurlock, B.M.; Edwards, W.H. Shifting brucellosis risk in livestock coincides with spreading seroprevalence in elk. PLoS ONE 2017, 12, e0178780. [Google Scholar] [CrossRef] [PubMed]
- Busani, L.; Pozza, M.D.; Bonfanti, L.; Toson, M.; Marangon, S. Evaluation of the Efficacy of Intervention Measures and Vaccination for the Control of LPAI Epidemics in Verona Province (Veneto, Italy). Avian Dis. 2007, 51, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Cardador, L.; Tella, J.L.; Anadón, J.D.; Abellán, P.; Carrete, M. The European trade ban on wild birds reduced invasion risks. Conserv. Lett. 2019, 12, e12631. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.; Xu, Z.; Hu, W.; Lu, J. Live poultry market closure and avian influenza A (H7N9) infection in cities of China, 2013–2017: An ecological study. BMC Infect. Dis. 2020, 20, 369. [Google Scholar] [CrossRef]
- Chowell, G.; Simonsen, L.; Towers, S.; Miller, M.A.; Viboud, C. Transmission potential of influenza A/H7N9, February to May 2013, China. BMC Med. 2013, 11, 214. [Google Scholar] [CrossRef]
- Cuthbert, R.; Taggart, M.A.; Prakashm, V.; Sainim, M.; Swarupm, D.; Upreti, S.; Mateo, R.; Chakraborty, S.S.; Deori, P.; Green, R.E. Effectiveness of Action in India to Reduce Exposure of Gyps Vultures to the Toxic Veterinary Drug Diclofenac. PLoS ONE 2011, 6, e19069. [Google Scholar] [CrossRef]
- Davis, A.J.; Nelson, K.M.; Kirby, J.D.; Wallace, R.; Ma, X.; Pepin, K.M.; Chipman, R.B.; Gilbert, A.T. Rabies Surveillance Identifies Potential Risk Corridors and Enables Management Evaluation. Viruses 2019, 11, 1006. [Google Scholar] [CrossRef]
- De Lucca, T.; Rodrigues, R.C.A.; Castagna, C.; Presotto, D.; De Nadai, D.V.; Fagre, A.; Braga, G.B.; Guilloux, A.G.; e Alves, A.J.; Martins, C.M.; et al. Assessing the rabies control and surveillance systems in Brazil: An experience of measures toward bats after the halt of massive vaccination of dogs and cats in Campinas, Sao Paulo. Prev. Vet. Med. 2013, 111, 126–133. [Google Scholar] [CrossRef]
- Fournié, G.; Guitian, F.J.; Mangtani, P.; Ghani, A.C. Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza. J. R. Soc. Interface 2011, 8, 1079–1089. [Google Scholar] [CrossRef]
- García-Díaz, P.; Ross, J.V.; Woolnough, A.P.; Cassey, P. Managing the risk of wildlife disease introduction: Pathway-level biosecurity for preventing the introduction of alien ranaviruses. J. Appl. Ecol. 2017, 54, 234–241. [Google Scholar] [CrossRef]
- Gordon, E.R.; Krebs, J.W.; Rupprecht, C.R.; Real, L.A.; Childs, J.E. Persistence of elevated rabies prevention costs following post-epizootic declines in rates of rabies among raccoons (Procyon lotor). Prev. Vet. Med. 2005, 68, 195–222. [Google Scholar] [CrossRef] [PubMed]
- Graiver, D.A.; Topliff, C.L.; Kelling, C.L.; Bartelt-Hunt, S.L. Survival of the Avian Influenza Virus (H6N2) After Land Disposal. Environ. Sci. Technol. 2009, 43, 4063–4067. [Google Scholar] [CrossRef] [PubMed]
- Häsler, B.; Howe, K.S.; Hauser, R.; Stärk, K.D.C. A qualitative approach to measure the effectiveness of active avian influenza virus surveillance with respect to its cost: A case study from Switzerland. Prev. Vet. Med. 2012, 105, 209–222. [Google Scholar] [CrossRef]
- Hegazy, Y.M.; Ridler, A.L.; Guitian, F.J. Assessment and simulation of the implementation of brucellosis control programme in an endemic area of the Middle East. Epidemiol. Infect. 2009, 137, 1436–1448. [Google Scholar] [CrossRef]
- Huot, C.; De Serres, G.; Duval, B.; Maranda-Aubut, R.; Ouakki, M.; Skowronski, D.M. The cost of preventing rabies at any cost: Post-exposure prophylaxis for occult bat contact. Vaccine 2008, 26, 4446–4450. [Google Scholar] [CrossRef]
- Kangas, S.; Lyytikäinen, T.; Peltola, J.; Ranta, J.; Maijala, R. Costs of two alternative Salmonella control policies in Finnish broiler production. Acta Vet. Scand. 2007, 49, 35. [Google Scholar] [CrossRef]
- Kung, N.Y.; Guan, Y.; Perkins, N.R.; Bissett, L.; Ellis, T.; Sims, L.; Morris, R.S.; Shortridge, K.F.; Peiris, J.S. The Impact of a Monthly Rest Day on Avian Influenza Virus Isolation Rates in Retail Live Poultry Markets in Hong Kong. Avian Dis. 2003, 47, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Fang, C.T. A modeling study of human infections with avian influenza A H7N9 virus in mainland China. J. Glob. Infect. Dis. 2015, 41, 73–78. [Google Scholar] [CrossRef]
- Lu, H.; Ismail, M.M.; Khan, O.A.; Al Hammad, Y.; Rhman, S.S.A.; Al-Blowi, M.H. Epidemic Outbreaks, Diagnostics, and Control Measures of the H5N1 Highly Pathogenic Avian Influenza in the Kingdom of Saudi Arabia, 2007–2008. Avian Dis. 2010, 54, 350–356. [Google Scholar] [CrossRef]
- HuaKun, L.; ZhenYu, G.; JiMin, S.; LingJie, K.; ZhiPing, C. Epidemic characteristics of human infection with avian influenza A (H7N9) virus and influence of closure of live poultry markets on the epidemic in Zhejiang. Dis. Surveill. 2014, 29, 700–703. [Google Scholar]
- Ma, J.; Yang, N.; Gu, H.; Bai, L.; Sun, J.; Gu, S.; Gu, J. Effect of closure of live poultry markets in China on prevention and control of human infection with H7N9 avian influenza: A case study of four cities in Jiangsu Province. J. Public Health Pol. 2019, 40, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Mendez, D.; Buttner, P.; Speare, R. Hendra virus in Queensland, Australia, during the winter of 2011: Veterinarians on the path to better management strategies. Prev. Vet. Med. 2014, 117, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Mroz, C.; Gwida, M.; El-Ashker, M.; Ziegler, U.; Homeier-Bachmann, T.; Eiden, M.; Groschup, M.H. Rift Valley fever virus infections in Egyptian cattle and their prevention. Transbound. Emerg. Dis. 2017, 64, 2049–2058. [Google Scholar] [CrossRef]
- Naletoski, I.; Kirandziski, T.; Mitrov, D.; Krstevski, K.; Dzadzovski, I.; Acevski, S. Gaps in Brucellosis Eradication Campaign in Sheep and Goats in Republic of Macedonia: Lessons Learned. Croat. Med. J. 2010, 51, 351–356. [Google Scholar] [CrossRef]
- Okello, A.; Thomas, L. Human taeniasis: Current insights into prevention and management strategies in endemic countries. Risk Manag. Healthc. Policy 2017, 10, 107–116. [Google Scholar] [CrossRef]
- Pinsent, A.; Pepin, K.M.; Zhu, H.; Guan, Y.; White, M.T.; Riley, S. The persistence of multiple strains of avian influenza in live bird markets. Proc. R. Soc. B 2017, 284, 20170715. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, J.; Holakoui, K.; Forouzanfar, M.H.; Salari, S.; Bahoner; Rashidian, A. Cost Effectiveness of Livestock Vaccination for Brucellosis in West-Azerbayjan Province. Stud. Med. Sci. 2009, 20, 13–20. [Google Scholar]
- Roy, S.; McElwain, T.F.; Wan, Y. A Network Control Theory Approach to Modeling and Optimal Control of Zoonoses: Case Study of Brucellosis Transmission in Sub-Saharan Africa. PLoS Negl. Trop. Dis. 2011, 5, e1259. [Google Scholar] [CrossRef]
- Sanchez, J.N.; Hudgens, B.R. Vaccination and monitoring strategies for epidemic prevention and detection in the Channel Island fox (Urocyon littoralis). PLoS ONE 2020, 15, e0232705. [Google Scholar] [CrossRef]
- Selhorst, T.; Müller, T. An evaluation of the efficiency of rabies control strategies in fox (Vulpes vulpes) populations using a computer simulation program. Ecol. Model. 1999, 124, 221–232. [Google Scholar] [CrossRef]
- Shwiff, S.A.; Sterner, R.T.; Hale, R.; Jay, M.T.; Sun, B.; Slate, D. Benefit Cost Scenarios of Potential Oral Rabies Vaccination for Skunks in California. J. Wildl. Dis. 2009, 45, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Shwiff, S.A.; Hatch, B.; Anderson, A.; Nel, L.H.; Leroux, K.; Stewart, D.; de Scally, M.; Govender, P.; Rupprecht, C.E. Towards Canine Rabies Elimination in KwaZulu-Natal, South Africa: Assessment of Health Economic Data. Transbound. Emerg. Dis. 2016, 63, 408–415. [Google Scholar] [CrossRef]
- Smith, G.C.; Cheeseman, C.L. A mathematical model for the control of diseases in wildlife populations: Culling, vaccination and fertility control. Ecol. Model. 2002, 150, 45–53. [Google Scholar] [CrossRef]
- Teng, Y.; Bi, D.; Guo, X.; Hu, D.; Feng, D.; Tong, Y. Contact reductions from live poultry market closures limit the epidemic of human infections with H7N9 influenza. J. Infect. 2018, 76, 295–304. [Google Scholar] [CrossRef]
- Todd Weaver, J.; Malladi, S.; Bonney, P.J.; Patyk, K.A.; Bergeron, J.G.; Middleton, J.L.; Alexander, C.Y.; Goldsmith, T.J.; Halvorson, D.A. A Simulation-Based Evaluation of Premovement Active Surveillance Protocol Options for the Managed Movement of Turkeys to Slaughter During an Outbreak of Highly Pathogenic Avian Influenza in the United States. Avian Dis. 2016, 60, 132–145. [Google Scholar] [CrossRef]
- Tustin, J.; Laberge, K.; Michel, P.; Reiersen, J.; Dađadóttir, S.; Briem, H.; Harđardóttir, H.; Kristinsson, K.; Gunnarsson, E.; Friđriksdóttir, V.; et al. A National Epidemic of Campylobacteriosis in Iceland, Lessons Learned. Zoonoses Public Health 2011, 58, 440–447. [Google Scholar] [CrossRef]
- Walker, P.G.T.; Cauchemez, S.; Métras, R.; Dung, D.H.; Pfeiffer, D.; Ghani, A.C. A Bayesian Approach to Quantifying the Effects of Mass Poultry Vaccination upon the Spatial and Temporal Dynamics of H5N1 in Northern Vietnam. PLoS Comput. Biol. 2010, 6, e1000683. [Google Scholar] [CrossRef]
- Wang, M.; Mao, Y.X.; Luo, L.; Chen, X.Q.; Li, L. Effects of short-term closing live poultry markets in controlling the H7N9 avian influenza pollution. Chin. J. Zoonoses 2018, 12, 79–84. [Google Scholar]
- Wang, W.; Artois, J.; Wang, X.; Kucharski, A.J.; Pei, Y.; Tong, X.; Virlogeux, V.; Wu, P.; Cowling, B.J.; Gilbert, M.; et al. Effectiveness of Live Poultry Market Interventions on Human Infection with Avian Influenza A(H7N9) Virus, China. Emerg. Infect. Dis. 2020, 26, 891–901. [Google Scholar] [CrossRef]
- Weaver, J.; Punderson, J.; Stratton, J. PVS Evaluation Report: Japan. World Organization for Animal Health. 2016. Available online: https://www.woah.org/app/uploads/2021/03/20180727-final-oie-japan-pvs-report.pdf (accessed on 21 March 2025).
- World Health Organization. Zero by 30: The Global Strategic Plan to End Human Deaths from Dog-Mediated Rabies by 2030. 2018. Available online: https://iris.who.int/handle/10665/272756 (accessed on 15 December 2024).
- Wilson, P.J.; Clark, K.A. Postexposure rabies prophylaxis protocol for domestic animals and epidemiologic characteristics of rabies vaccination failures in Texas: 1995–1999. J. Am. Vet. Med. Assoc. 2001, 218, 522–525. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Perrings, C.; Shang, C.; Collins, J.P.; Daszak, P.; Kinzig, A.; Minteer, B.A. Protection of wetlands as a strategy for reducing the spread of avian influenza from migratory waterfowl. Ambio 2020, 49, 939–949. [Google Scholar] [CrossRef]
- Wu, P.; Jiang, H.; Wu, J.T.; Chen, E.; He, J.; Zhou, H.; Wei, L.; Yang, J.; Yang, B.; Qin, Y.; et al. Poultry Market Closures and Human Infection with Influenza A(H7N9) Virus, China, 2013–2014. Emerg. Infect. Dis. 2014, 20, 1891–1894. [Google Scholar] [CrossRef]
- Xing, Y.; Song, L.; Sun, G.Q.; Jin, Z.; Zhang, J. Assessing reappearance factors of H7N9 avian influenza in China. Appl. Math. Comput. 2017, 309, 192–204. [Google Scholar] [CrossRef]
- Yu, H.; Wu, J.T.; Cowling, B.J.; Liao, Q.; Fang, V.J.; Zhou, S.; Wu, P.; Zhou, H.; Lau, E.H.; Guo, D.; et al. Effect of closure of live poultry markets on poultry-to-person transmission of avian influenza A H7N9 virus: An ecological study. Lancet 2014, 383, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Lau, E.H.Y.; Li, K.; Leung, Y.H.C.; Yang, Z.; Xie, C.; Liu, Y.; Liu, Y.; Ma, X.; Liu, J.; et al. Effect of Live Poultry Market Closure on Avian Influenza A(H7N9) Virus Activity in Guangzhou, China, 2014. Emerg. Infect. Dis. 2015, 21, 1784–1793. [Google Scholar] [CrossRef]
- Zhu, G.; Kang, M.; Wei, X.; Tang, T.; Liu, T.; Xiao, J.; Song, T.; Ma, W. Different intervention strategies toward live poultry markets against avian influenza A (H7N9) virus: Model-based assessment. Environ. Res. 2021, 198, 110465. [Google Scholar] [CrossRef] [PubMed]
- Andronico, A.; Courcoul, A.; Bronner, A.; Scoizec, A.; Lebouquin-Leneveu, S.; Guinat, C.; Paul, M.C.; Durand, B.; Cauchemez, S. Highly pathogenic avian influenza H5N8 in south-west France 2016–2017: A modeling study of control strategies. Epidemics 2019, 28, 100340. [Google Scholar] [CrossRef]
- Hassim, A.; Dekker, E.H.; Byaruhanga, C.; Reardon, T.; Van Heerden, H. A Retrospective Study of Anthrax on the Ghaap Plateau, Northern Cape Province of South Africa, with Special Reference to the 2007–2008 Outbreaks. Onderstepoort J. Vet. Res. 2017, 84, a1414. [Google Scholar] [CrossRef]
- Horigan, V.; Gale, P.; Adkin, A.; Brown, I.; Clark, J.; Kelly, L. A qualitative risk assessment of cleansing and disinfection requirements after an avian influenza outbreak in commercial poultry. Br. Poult. Sci. 2019, 60, 691–699. [Google Scholar] [CrossRef]
- Kang, M.; He, J.; Song, T.; Rutherford, S.; Wu, J.; Lin, J.; Huang, G.; Tan, X.; Zhong, H. Environmental Sampling for Avian Influenza A(H7N9) in Live-Poultry Markets in Guangdong, China. PLoS ONE 2015, 10, e0126335. [Google Scholar] [CrossRef] [PubMed]
- Karabozhilova, I.; Wieland, B.; Alonso, S.; Salonen, L.; Häsler, B. Backyard chicken keeping in the Greater London Urban Area: Welfare status, biosecurity and disease control issues. Br. Poult. Sci. 2012, 53, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Karki, S.; Lupiani, B.; Budke, C.M.; Karki, N.P.; Rushton, J.; Ivanek, R. Cost-benefit analysis of avian influenza control in Nepal. Rev. Sci. Tech. 2015, 34, 813–827. [Google Scholar] [CrossRef] [PubMed]
- Kimani, T.; Schelling, E.; Bett, B.; Ngigi, M.; Randolph, T.; Fuhrimann, S. Public Health Benefits from Livestock Rift Valley Fever Control: A Simulation of Two Epidemics in Kenya. EcoHealth 2016, 13, 729–742. [Google Scholar] [CrossRef]
- Knight-Jones, T.J.D.; Gibbens, J.; Wooldridge, M.; Stärk, K.D.C. Assessment of Farm-Level Biosecurity Measures after an Outbreak of Avian Influenza in the United Kingdom: Biosecurity During an Outbreak of Avian Influenza. Transbound. Emerg. Dis. 2011, 58, 69–75. [Google Scholar] [CrossRef]
- Lauterbach, S.E.; Nelson, S.W.; Martin, A.M.; Spurck, M.M.; Mathys, D.A.; Mollenkopf, D.F.; Nolting, J.M.; Wittum, T.E.; Bowman, A.S. Adoption of recommended hand hygiene practices to limit zoonotic disease transmission at agricultural fairs. Prev. Vet. Med. 2020, 182, 105116. [Google Scholar] [CrossRef]
- Lewis, N.; Dorjee, S.; Dubé, C.; VanLeeuwen, J.; Sanchez, J. Assessment of Effectiveness of Control Strategies Against Simulated Outbreaks of Highly Pathogenic Avian Influenza in Ontario, Canada. Transbound. Emerg. Dis. 2017, 64, 938–950. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Shen, C.; Huang, J.; Kang, J.; Huang, B.; Guo, F.; Edwards, J. Closure of live bird markets leads to the spread of H7N9 influenza in China. PLoS ONE 2018, 13, e0208884. [Google Scholar] [CrossRef]
- Vivancos, R.; Showell, D.; Keeble, B.; Goh, S.; Kroese, M.; Lipp, A.; Battersby, J. Vaccination of Poultry Workers: Delivery and Uptake of Seasonal Influenza Immunization. Zoonoses Public Health 2011, 58, 126–130. [Google Scholar] [CrossRef]
- Akunzule, A.N.; Koney, E.B.M.; Tiongco, M. Economic impact assessment of highly pathogenic avian influenza on the poultry industry in Ghana. World Poult. Sci. J. 2009, 65, 517–528. [Google Scholar] [CrossRef]
- Amparo, A.C.B.; Jayme, S.I.; Roces, M.C.R.; Quizon, M.C.L.; Mercado, M.L.L.; Dela Cruz, M.P.Z.; Licuan, D.A.; Villalon, E.E.S., 3rd; Baquilod, M.S.; Hernandez, L.M. The evaluation of Animal Bite Treatment Centers in the Philippines from a patient perspective. PLoS ONE 2018, 13, e0200873. [Google Scholar] [CrossRef] [PubMed]
- Bonwitt, J.; Dawson, M.; Kandeh, M.; Ansumana, R.; Sahr, F.; Brown, H.; Kelly, A.H. Unintended consequences of the ‘bushmeat ban’ in West Africa during the 2013–2016 Ebola virus disease epidemic. Soc. Sci. Med. 2018, 200, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Brinkley, C.; Kingsley, J.S.; Mench, J. A Method for Guarding Animal Welfare and Public Health: Tracking the Rise of Backyard Poultry Ordinances. J. Community Health 2018, 43, 639–646. [Google Scholar] [CrossRef]
- Brooks-Moizer, F.; Roberton, S.I.; Edmunds, K.; Bell, D. Avian Influenza H5N1 and the Wild Bird Trade in Hanoi, Vietnam. Ecol. Soc. 2008, 14, 28. Available online: https://www.ecologyandsociety.org/vol14/iss1/art28/ (accessed on 15 December 2024). [CrossRef]
- Traffic. Options for Managing and Tracing Wild Animal Trade Chains to Reduce Zoonotic Risk. 2022. Available online: https://www.traffic.org/publications/reports/review-options-for-managing-and-tracing-wild-animal-trade-chains-to-reduce-zoonotic-risk/ (accessed on 21 March 2025).
- De Serres, G.; Skowronski, D.M.; Mimault, P.; Ouakki, M.; Maranda-Aubut, R.; Duval, B. Bats in the Bedroom, Bats in the Belfry: Reanalysis of the Rationale for Rabies Postexposure Prophylaxis. Clin. Infect. Dis. 2009, 48, 1493–1499. [Google Scholar] [CrossRef]
- El Masry, I.; Rijks, J.; Peyre, M.; Taylor, N.; Lubroth, J.; Jobre, Y. Modelling influenza A H5N1 vaccination strategy scenarios in the household poultry sector in Egypt. Trop. Anim. Health Prod. 2014, 46, 57–63. [Google Scholar] [CrossRef]
- Ferguson, E.A.; Hampson, K.; Cleaveland, S.; Consunji, R.; Deray, R.; Friar, J.; Haydon, D.T.; Jimenez, J.; Pancipane, M.; Townsend, S.E. Heterogeneity in the spread and control of infectious disease: Consequences for the elimination of canine rabies. Sci. Rep. 2015, 5, 18232. [Google Scholar] [CrossRef]
- Fournié, G.; Guitian, J.; Desvaux, S.; Cuong, V.C.; Dung, D.H.; Pfeiffer, D.U.; Mangtani, P.; Ghani, A.C. Interventions for avian influenza A (H5N1) risk management in live bird market networks. Proc. Natl. Acad. Sci. USA 2013, 110, 9177–9182. [Google Scholar] [CrossRef]
- Guerrier, G.; Foster, H.; Metge, O.; Chouvin, C.; Tui, M. Cultural contexts of swine-related infections in Polynesia. Clin. Microbiol. Infect. 2013, 19, 595–599. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, J.; Zuo, A. Chinese farmers’ willingness to accept compensation to practice safe disposal of HPAI infected chicken. Prev. Vet. Med. 2017, 139, 67–75. [Google Scholar] [CrossRef]
- Kung, N.; McLaughlin, A.; Taylor, M.; Moloney, B.; Wright, T.; Field, H. Hendra Virus and Horse Owners—Risk Perception and Management. PLoS ONE 2013, 8, e80897. [Google Scholar] [CrossRef] [PubMed]
- Kwan, N.C.L.; Ogawa, H.; Yamada, A.; Sugiura, K. Quantitative risk assessment of the introduction of rabies into Japan through the illegal landing of dogs from Russian fishing boats in the ports of Hokkaido, Japan. Prev. Vet. Med. 2016, 128, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, D.; Wang, X.; Huang, Y.; Du, Z.; Zou, Y.; Lu, J.; Hao, Y. Attitudes of consumers and live-poultry workers to central slaughtering in controlling H7N9: A cross-sectional study. BMC Public Health 2017, 17, 517. [Google Scholar] [CrossRef] [PubMed]
- Manyweathers, J.; Field, H.; Jordan, D.; Longnecker, N.; Agho, K.; Smith, C.; Taylor, M. Risk Mitigation of Emerging Zoonoses: Hendra Virus and Non-Vaccinating Horse Owners. Transbound. Emerg. Dis. 2017, 64, 1898–1911. [Google Scholar] [CrossRef]
- Manyweathers, J.; Field, H.; Longnecker, N.; Agho, K.; Smith, C.; Taylor, M. “Why won’t they just vaccinate?” Horse owner risk perception and uptake of the Hendra virus vaccine. BMC Vet. Res. 2017, 13, 103. [Google Scholar] [CrossRef]
- Oladokun, A.T.; Meseko, C.A.; Ighodalo, E.; John, B.; Ekong, P.S. Effect of intervention on the control of Highly Pathogenic Avian Influenza in Nigeria. Pan Afr. Med. J. 2012, 13, 14. [Google Scholar] [PubMed]
- Roth, F.; Zinsstag, J.; Orkhon, D.; Chimed-Ochir, G.; Hutton, G.; Cosivi, O.; Carrin, G.; Otte, J. Human health benefits from livestock vaccination for brucellosis: Case study. Bull. World Health Organ. 2003, 81, 867–876. [Google Scholar]
- Stewart, R.J.; Rossow, J.; Conover, J.T.; Lobelo, E.E.; Eckel, S.; Signs, K.; Stobierski, M.G.; Trock, S.C.; Fry, A.M.; Olsen, S.J.; et al. Do animal exhibitors support and follow recommendations to prevent transmission of variant influenza at agricultural fairs? A survey of animal exhibitor households after a variant influenza virus outbreak in Michigan. Zoonoses Public Health 2018, 65, 195–201. [Google Scholar] [CrossRef]
- Swayne, D.E.; Pavade, G.; Hamilton, K.; Vallat, B.; Miyagishima, K. Assessment of national strategies for control of high-pathogenicity avian influenza and low pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination. Rev. Sci. Tech. 2011, 30, 839–870. [Google Scholar] [CrossRef]
- Turkson, P.K.; Okike, I. Assessment of practices, capacities and incentives of poultry chain actors in implementation of highly pathogenic avian influenza mitigation measures in Ghana. Vet. Med. Sci. 2016, 2, 23–35. [Google Scholar] [CrossRef]
- Yee, K.S.; Carpenter, T.E.; Mize, S.; Cardona, C.J. The Live Bird Market System and Low-Pathogenic Avian Influenza Prevention in Southern California. Avian Dis. 2008, 52, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Bechir, M.; Schelling, E.; Wyss, K.; Daugla, D.M.; Daoud, S.; Tanner, M.; Zinsstag, J. Approche novatrice des vaccinations en santé publique et en médecine vétérinaire chez les pasteurs nomades au Tchad: Expériences et coûts. Médecine Trop. 2004, 64, 497–502. [Google Scholar]
- Hunter, C.; Birden, H.H.; Toribio, J.A.; Booy, R.; Abdurrahman, M.; Ambarawati, A.I.; Adiputra, N. Community preparedness for highly pathogenic Avian influenza on Bali and Lombok, Indonesia. Rural. Remote Health 2014, 14, 2772. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Agriculture, Livestock, Fisheries and Co-operatives; Ministry of Health. One Health Strategic Plan for the Prevention and Control of Zoonotic Diseases in Kenya (2021–2025). 2022. Nairobi. Available online: https://www.onehealthcommission.org/documents/filelibrary/resources/one_health_strategic_action_plans/OneHealthStrategicPlan_Kenya_202120_8756689A2C54E.pdf (accessed on 11 February 2025).
- Samaan, G.; Hendrawati, F.; Taylor, T.; Pitona, T.; Marmansari, D.; Rahman, R.; Lokuge, K.; Kelly, P.M. Application of a healthy food markets guide to two Indonesian markets to reduce transmission of “avian flu”. Bull. World Health Organ. 2012, 90, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Delgado, A.; Louison, B.; Lefrancois, T.; Shaw, J. Examining dog owners’ beliefs regarding rabies vaccination during government-funded vaccine clinics in Grenada to improve vaccine coverage rates. Prev. Vet. Med. 2013, 110, 563–569. [Google Scholar] [CrossRef]
- Hwang, A. Building Consumer Engagement In Health Care: From Transactional To Transformational. Health Affairs 2019. [Google Scholar] [CrossRef]
- Aguilar-Gaxiola, S.; Ahmed, S.M.; Anise, A.; Azzahir, A.; Baker, K.E.; Cupito, A.; Eder, M.; Everette, T.D.; Erwin, K.; Felzien, M.; et al. Assessing Meaningful Community Engagement: A Conceptual Model to Advance Health Equity through Transformed Systems for Health. NAM Perspect. 2022, 1–12. [Google Scholar] [CrossRef]
- Kilpatrick, S. Multi-level rural community engagement in health. Aust. J. Rural Health 2009, 17, 39–44. [Google Scholar] [CrossRef]
- Andress, L.; Hall, T.; Davis, S.; Levine, J.; Cripps, K.; Guinn, D. Addressing power dynamics in community-engaged research partnerships. J. Patient Rep. Outcomes 2020, 4, 24. [Google Scholar] [CrossRef]
- Redvers, N.; Lokugamage, A.U.; Barreto, J.P.L.; Bajracharya, M.B.; Harris, M. Epistemicide, health systems, and planetary health: Re-centering Indigenous knowledge systems. PLOS Glob. Public Health 2024, 4, e0003634. [Google Scholar] [CrossRef]
- O’Mara-Eves, A.; Brunton, G.; Oliver, S.; Kavanagh, J.; Jamal, F.; Thomas, J. The effectiveness of community engagement in public health interventions for disadvantaged groups: A meta-analysis. BMC Public Health 2015, 15, 129. [Google Scholar] [CrossRef]
- Vora, N.M.; Hannah, L.; Walzer, C.; Vale, M.M.; Lieberman, S.; Emerson, A.; Jennings, J.; Alders, R.; Bonds, M.H.; Evans, J.; et al. Interventions to Reduce Risk for Pathogen Spillover and Early Disease Spread to Prevent Outbreaks, Epidemics, and Pandemics. Emerg. Infect. Dis. 2023, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Redvers, N.; Odugleh-Kolev, A.; Paula Cordero, J.; Zerwas, F.; Zitoun, N.M.; Kamalabadi, Y.M.; Stevens, A.; Nagasivam, A.; Cheh, P.; Callon, E.; et al. Relational community engagement within health interventions at varied outcome scales. PLOS Glob. Public Health 2024, 4, e0003193. [Google Scholar] [CrossRef] [PubMed]
- Durrance-Bagale, A.; Marzouk, M.; Tung, L.S.; Agarwal, S.; Aribou, Z.M.; Ibrahim, N.B.M.; Mkhallalati, H.; Newaz, S.; Omar, M.; Ung, M.; et al. Community engagement in health systems interventions and research in conflict-affected countries: A scoping review of approaches. Glob. Health Action 2022, 15, 2074131. [Google Scholar] [CrossRef] [PubMed]
No Community Involvement Noted | Community Informed: Information Is Provided to Community | Community Consultation: Input Is Obtained from Community | Community Involvement: The Work Is Carried out Directly with Community | CBPR */Community Collaborate: Community Is Partner in the Process | Community Driven/Led: Community Leads Decision Making |
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 |
Score | Frequency n (%) | Articles |
---|---|---|
0 | 55 (57.9) | Abbas et al. [32], Anderson et al. [33], Backer et al. [34], Backer et al. [35], Basinski et al. [36], Berry et al. [37], Beyer et al. [38], Brennan et al. [39], Busani et al. [40], Cardador et al. [41], Chen et al. [42], Chowell et al. [43], Cuthbert et al. [44], Davis et al. [45], De Lucca et al. [46], Fournié et al. [47], García-Díaz et al. [48], Gordon et al. [49], Graiver et al. [50], Häsler et al. [51], Hegazy et al. [52], Huot et al. [53], Kangas et al. [54], Kung et al. [55], Liu et al. [56], Lu et al. [57], HuaKun et al. [58], Ma et al. [59], Mendez et al. [60], Mroz et al. [61], Naletoski et al. [62], Okello et al. [63], Pinsent et al. [64], Rasouli et al. [65], Roy et al. [66], Sanchez et al. [67], Selhorst et al. [68], Shwiff et al. [69], Shwiff et al. [70], Smith et al. [71], Teng et al. [72], Todd Weaver et al. [73], Tustin et al. [74], Walker et al. [75], Wang et al. [76], Wang et al. [77], Weaver et al. [78], World Health Organization [79], Wilson et al. [80], Wu et al. [81], Wu et al. [82], Xing et al. [83], Yu et al. [84], Yuan et al. [85], and Zhu et al. [86] |
1 | 12 (12.6) | Andronico et al. [87], Hassim et al. [88], Horigan et al. [89], Kang et al. [90], Karabozhilova et al. [91], Karki et al. [92], Kimani et al. [93], Knight-Jones et al. [94], Lauterbach et al. [95], Lewis et al. [96], Li et al. [97], and Vivancos et al. [98] |
2 | 23 (24.2) | Akunzule et al. [99], Amparo et al. [100], Bonwitt et al. [101], Brinkley et al. [102], Brooks-Moizer et al. [103], Campbell et al. [104], De Serres et al. [105], El Masry et al. [106], Ferguson et al. [107], Fournié et al. [108], Guerrier et al. [109], Huang et al. [110], Kung et al. [111], Kwan et al. [112], Lin et al. [113], Manyweathers et al. [114], Manyweathers et al. [115], Oladokun et al. [116], Roth et al. [117], Stewart et al. [118], Swayne et al. [119], Turkson et al. [120], and Yee et al. [121] |
3 | 3 (3.1) | Bechir et al. [122], Hunter et al. [123], and Ministry of Agriculture [124] |
4 | 2 (2.1) | Samaan et al. [125], and Thomas et al. [126] |
5 | 0 (0.00) | - |
Themes | Descriptions |
---|---|
Platformed community consultation in spillover prevention research | Studies incorporated processes for seeking insights, specialized knowledge, and feedback from community experts and stakeholders to inform the development, refinement, and validation of research methods and health interventions. This form of engagement better ensured the studies were culturally relevant and aligned with community needs. |
Community training for involvement in spillover prevention research | There were efforts to actively involve community members and local stakeholders by providing education and training that equipped them to participate effectively in the planning, implementation, and evaluation phases of health interventions and research activities. |
Cultural and language considerations engaged within spillover prevention research activities | There were efforts to honour and accommodate cultural diversity in research by using appropriate language and translators, while tailoring communication and data collection tools to reflect the cultural and linguistic preferences of community members. |
Community protection and awareness programmes for public health and biosecurity | There were efforts to implement integrated initiatives that combined education, awareness-raising, and protective measures to strengthen biosecurity and build community resilience against disease transmission. |
Community-centerd data collection for spillover prevention research | Community members were engaged as active participants in data collection, recruitment, and consent processes. In addition, diverse methods were employed to generate datasets for understanding and mitigating spillover risks. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redvers, N.; Kamalabadi, Y.M.; Carroll, D.; Essar, M.Y.; El Omrani, O. Community Engagement Within the Evaluation of Public Policies for Zoonotic Spillover Prevention: A Secondary Matrix Analysis. Int. J. Environ. Res. Public Health 2025, 22, 797. https://doi.org/10.3390/ijerph22050797
Redvers N, Kamalabadi YM, Carroll D, Essar MY, El Omrani O. Community Engagement Within the Evaluation of Public Policies for Zoonotic Spillover Prevention: A Secondary Matrix Analysis. International Journal of Environmental Research and Public Health. 2025; 22(5):797. https://doi.org/10.3390/ijerph22050797
Chicago/Turabian StyleRedvers, Nicole, Yasaman Mohammadi Kamalabadi, Danya Carroll, Mohammad Yasir Essar, and Omnia El Omrani. 2025. "Community Engagement Within the Evaluation of Public Policies for Zoonotic Spillover Prevention: A Secondary Matrix Analysis" International Journal of Environmental Research and Public Health 22, no. 5: 797. https://doi.org/10.3390/ijerph22050797
APA StyleRedvers, N., Kamalabadi, Y. M., Carroll, D., Essar, M. Y., & El Omrani, O. (2025). Community Engagement Within the Evaluation of Public Policies for Zoonotic Spillover Prevention: A Secondary Matrix Analysis. International Journal of Environmental Research and Public Health, 22(5), 797. https://doi.org/10.3390/ijerph22050797