The Association of Cardiometabolic Risk Factors in Parent–Child Dyads in Guam: Pacific Islands Cohort on Cardiometabolic Health Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Study Measures
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MetS | Metabolic Syndrome |
CVD | Cardiovascular Disease |
T2DM | Type 2 Diabetes Mellitus |
IDF | International Diabetes Federation |
OWOB | Overweight and Obesity |
WC | Waist Circumference |
NCD | Non-Communicable Disease |
PICCAH | Pacific Islands Cohort on Cardiometabolic Disease |
DASS | Depression, Anxiety, Stress Scales |
USAP | United States-Affiliated Pacific Region |
NHOPI | Native Hawai`ian and other Pacific Islander |
References
- Grundy, S.M. Metabolic Syndrome Pandemic. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.-L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic Distribution of Metabolic Syndrome and Its Components in the General Adult Population: A Meta-Analysis of Global Data from 28 Million Individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Moghadam-Ahmadi, A.; Soltani, N.; Ayoobi, F.; Jamali, Z.; Sadeghi, T.; Jalali, N.; Vakilian, A.; Lotfi, M.A.; Khalili, P. Association between Metabolic Syndrome and Stroke: A Population Based Cohort Study. BMC Endocr. Disord. 2023, 23, 131. [Google Scholar] [CrossRef]
- Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic. Dis. 2017, 14, 160287. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. NHANES Survey Methods and Analytic Guidelines. Available online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx (accessed on 18 January 2025).
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Centers for Disease Control and Prevention. BRFSS Prevalence & Trends Data. Available online: https://www.cdc.gov/brfss/brfssprevalence/ (accessed on 11 July 2024).
- Paulino, Y.C.; Guerrero, R.T.L.; Uncangco, A.A.; Rosadino, M.G.; Quinene, J.C.; Natividad, Z.N. Overweight and Obesity Prevalence among Public School Children in Guam. J. Health Care Poor Underserved 2015, 26, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Leon Guerrero, R.T.; Barber, L.R.; Aflague, T.F.; Paulino, Y.C.; Hattori-Uchima, M.P.; Acosta, M.; Wilkens, L.R.; Novotny, R. Prevalence and Predictors of Overweight and Obesity among Young Children in the Children’s Healthy Living Study on Guam. Nutrients 2020, 12, 2527. [Google Scholar] [CrossRef]
- International Diabetes Federation. The IDF Consensus Definition of the Metabolic Syndrome in Children and Adolescents; International Diabetes Federation: Brussels, Belgium, 2007. [Google Scholar]
- Leon Guerrero, R.T.; Paulino, Y.C.; Novotny, R.; Murphy, S.P. Diet and Obesity among Chamorro and Filipino Adults on Guam. Asia Pac. J. Clin. Nutr. 2008, 17, 216–222. [Google Scholar]
- Dallongeville, J.; Cottel, D.; Ferrières, J.; Arveiler, D.; Bingham, A.; Ruidavets, J.B.; Haas, B.; Ducimetière, P.; Amouyel, P. Household Income Is Associated With the Risk of Metabolic Syndrome in a Sex-Specific Manner. Diabetes Care 2005, 28, 409–415. [Google Scholar] [CrossRef]
- Pobocik, R.S.; Richer, J.J. Estimated Intake and Food Sources of Vitamin A, Folate, Vitamin C, Vitamin E, Calcium, Iron, and Zinc for Guamanian Children Aged 9 to 12. Pac. Health Dialog 2002, 9, 193–202. [Google Scholar]
- Muñoz-Cabrejas, A.; Guallar-Castillón, P.; Laclaustra, M.; Sandoval-Insausti, H.; Moreno-Franco, B. Association between Sugar-Sweetened Beverage Consumption and the Risk of the Metabolic Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 430. [Google Scholar] [CrossRef] [PubMed]
- Morenga, L.T.; Montez, J.M. Health Effects of Saturated and Trans-Fatty Acid Intake in Children and Adolescents: Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0186672. [Google Scholar] [CrossRef]
- Liang, X.; Or, B.; Tsoi, M.F.; Cheung, C.L.; Cheung, B.M.Y. Prevalence of Metabolic Syndrome in the United States National Health and Nutrition Examination Survey 2011–18. Postgrad. Med. J. 2023, 99, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Hostinar, C.E.; Ross, K.M.; Chen, E.; Miller, G.E. Early-Life Socioeconomic Disadvantage and Metabolic Health Disparities. Psychosom. Med. 2017, 79, 514–523. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Lin, W.-T.; Tsai, S.; Hung, Y.-C.; Wu, P.-W.; Yang, Y.-C.; Chan, T.-F.; Huang, H.-L.; Weng, Y.-L.; Chiu, Y.-W.; et al. Association of Parental Overweight and Cardiometabolic Diseases and Pediatric Adiposity and Lifestyle Factors with Cardiovascular Risk Factor Clustering in Adolescents. Nutrients 2016, 8, 567. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, Y.; Dong, B.; Gao, D.; Wen, B.; Ma, J. Relationship between Parental Overweight and Obesity and Childhood Metabolic Syndrome in Their Offspring: Result from a Cross-Sectional Analysis of Parent–Offspring Trios in China. BMJ Open 2020, 10, e036332. [Google Scholar] [CrossRef]
- Yoo, E.-G.; Park, S.S.; Oh, S.W.; Nam, G.-B.; Park, M.J. Strong Parent–Offspring Association of Metabolic Syndrome in Korean Families. Diabetes Care 2012, 35, 293–295. [Google Scholar] [CrossRef]
- Villamor, E.; Finan, C.C.; Ramirez-Zea, M.; Roman, A.V.; Nine Mesoamerican Countries Metabolic Syndrome Study (NiMeCoMeS) Group. Prevalence and Sociodemographic Correlates of Metabolic Syndrome in School-Aged Children and Their Parents in Nine Mesoamerican Countries. Public Health Nutr. 2017, 20, 255–265. [Google Scholar] [CrossRef]
- Morrison, J.A.; Friedman, L.A.; Wang, P.; Glueck, C.J. Metabolic Syndrome in Childhood Predicts Adult Metabolic Syndrome and Type 2 Diabetes Mellitus 25 to 30 Years Later. J. Pediatr. 2008, 152, 201–206. [Google Scholar] [CrossRef]
- Pollock, N.J. Food Habits in Guam Over 500 Years. Pac. Viewp. 1986, 27, 120–143. [Google Scholar] [CrossRef]
- Guerrero, R.T.L.; Hattori-Uchima, M.P.; Badowski, G.; Aflague, T.F.; Wood, K.; Hammond, K.; Perez, R. Pacific Islands Cohort on Cardiometabolic Health Study: Rationale and Design. BMC Public Health 2022, 22, 1428. [Google Scholar] [CrossRef] [PubMed]
- The Children’s Healthy Living (CHL) Program. CHL Data Collection Forms Vol. 1 Individual-Level Data for the CHL Community Randomized Trial and FAS Prevalence Study. Available online: https://chl-pacific.org/wp-content/uploads/2019/08/Collection-Forms-Time-1-English.pdf (accessed on 20 September 2024).
- Kaholokula, J.K.; Iwane, M.K.; Nacapoy, A.H. Effects of Perceived Racism and Acculturation on Hypertension in Native Hawaiians. Hawaii Med. J. 2010, 69 (Suppl. 2), 11–15. [Google Scholar]
- Coleman-Jensen, A.; Gregory, C.; Singh, A. Household Food Security in the United States in 2013. SSRN Electron. J. 2014. [Google Scholar] [CrossRef]
- Florindo, A.A.; de Oliveira Latorre, M.D.R.D. Validation and Reliability of the Baecke Questionnaire for the Evaluation of Habitual Physical Activity in Adult Men. Rev. Bras. Med. Esporte 2003, 9, 129–135. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. About Sleep. Available online: https://www.cdc.gov/sleep/about/index.html (accessed on 22 September 2024).
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome; International Diabetes Federation: Brussels, Belgium, 2023; Available online: https://idf.org/media/uploads/2023/05/attachments-30.pdf (accessed on 20 September 2024).
- Fryar, C.D.; Carroll, M.D.; Gu, Q.; Afful, J.; Ogden, C.L. Anthropometric Reference Data for Children and Adults: United States 2015–2018; Vital and Health Statistics (3) 46; National Center for Health Statistics: Hyattsville, MD, USA, 2021. [Google Scholar]
- Gurka, M.J.; Ice, C.L.; Sun, S.S.; DeBoer, M.D. A Confirmatory Factor Analysis of the Metabolic Syndrome in Adolescents: An Examination of Sex and Racial/Ethnic Differences. Cardiovasc. Diabetol. 2012, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Gurka, M.J.; Lilly, C.L.; Oliver, M.N.; DeBoer, M.D. An Examination of Sex and Racial/Ethnic Differences in the Metabolic Syndrome among Adults: A Confirmatory Factor Analysis and a Resulting Continuous Severity Score. Metabolism 2014, 63, 218–225. [Google Scholar] [CrossRef]
- DeBoer, M.D.; Gurka, M.J. Clinical Utility of Metabolic Syndrome Severity Scores: Considerations for Practitioners. Diabetes Metab. Syndr. Obes. Targets Ther. 2017, 10, 65–72. [Google Scholar] [CrossRef]
- Zhu, L.; Spence, C.; Yang, W.J.; Ma, G.X. The IDF Definition Is Better Suited for Screening Metabolic Syndrome and Estimating Risks of Diabetes in Asian American Adults: Evidence from NHANES 2011–2016. J. Clin. Med. 2020, 9, 3871. [Google Scholar] [CrossRef]
- Office of Management and Budget (OMB). (2024, March 28). Statistical Policy Directive No. 15 (SPD 15). Available online: https://www.federalregister.gov/documents/2024/03/29/2024-06469/revisions-to-ombs-statistical-policy-directive-no-15-standards-for-maintaining-collecting-and (accessed on 29 December 2024).
- Mau, M.K.; Sinclair, K.; Saito, E.P.; Baumhofer, K.N.; Kaholokula, J.K. Cardiometabolic health disparities in native Hawaiians and other Pacific Islanders. Epidemiol. Rev. 2009, 31, 113–129. [Google Scholar] [CrossRef]
- Leon Guerrero, R.T.; Novotny, R.; Wilkens, L.R.; Chong, M.; White, K.K.; Shvetsov, Y.B.; Buyum, A.; Badowski, G.; Blas-Laguaña, M. Risk Factors for Breast Cancer in the Breast Cancer Risk Model Study of Guam and Saipan. Cancer Epidemiol. 2017, 50, 221–233. [Google Scholar] [CrossRef]
- Yamanaka, A.B.; Davis, J.D.; Wilkens, L.R.; Hurwitz, E.L.; Fialkowski, M.K.; Deenik, J.; Leon Guerrero, R.T.; Novotny, R. Determination of Child Waist Circumference Cut Points for Metabolic Risk Based on Acanthosis Nigricans, the Children’s Healthy Living Program. Prev. Chronic. Dis. 2021, 18, E64. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Diet and Lifestyle Influences on Risk of Coronary Heart Disease. Curr. Atheroscler. Rep. 2009, 11, 257–263. [Google Scholar] [CrossRef]
- Stamler, J.; Vaccaro, O.; Neaton, J.D.; Wentworth, D.; The Multiple Risk Factor Intervention Trial Research Group. Diabetes, Other Risk Factors, and 12-Yr Cardiovascular Mortality for Men Screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 1993, 16, 434–444. [Google Scholar] [CrossRef]
- Ahmed, A.; Akhter, J.; Iqbal, R.; Jabbar, A.; Mawani, M.; Awan, S.; Samad, Z.; Shaikh, P.A.; Salik, M.; Tuomilehto, J. Prevalence and Associations of Metabolic Syndrome in an Urban High Diabetes Risk Population in a Low/Middle-Income Country. Metab. Syndr. Relat. Disord. 2020, 18, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Paulino, Y.C.; Leon Guerrero, R.T.; Aguon, C.M. Nutritional Analysis of a Fiesta on Guam. Micronesica 2008, 40, 233–244. [Google Scholar]
- LeonGuerrero, R.T.; Workman, R.L. Physical Activity and Nutritional Status of Adolescents on Guam. Pac. Health Dialog 2002, 9, 177–185. [Google Scholar]
- Renall, N.; Merz, B.; Douwes, J.; Corbin, M.; Slater, J.; Tannock, G.W.; Firestone, R.; Kruger, R.; Te Morenga, L. Dietary Fibre Intake, Adiposity, and Metabolic Disease Risk in Pacific and New Zealand European Women. Nutrients 2024, 16, 3399. [Google Scholar] [CrossRef]
- Hughes, R.G.; Marks, G.C. Against the tide of change: Diet and health in the Pacific islands. J. Am. Diet. Assoc. 2009, 109, 1700–1703. [Google Scholar] [CrossRef] [PubMed]
- Torsch, V. Living the health transition among the Chamorros of Guam. Pac. Health Dialog 2002, 9, 263–274. [Google Scholar]
- Snowdon, W.; Raj, A.; Reeve, E.; Guerrero, R.L.T.; Fesaitu, J.; Cateine, K.; Guignet, C. Processed foods available in the Pacific Islands. Glob. Health 2013, 9, 53. [Google Scholar] [CrossRef]
- Shintani, T.T.; Hughes, C.K. Traditional diets of the Pacific and coronary heart disease. J. Cardiovasc. Risk 1994, 1, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Fialkowski, M.K.; Matanane, L.; Gibson, W.J.; Yiu, E.; Hollyer, J.; Kolasa, K.; Novotny, R. Pacific food guide. Nutr. Today 2016, 51, 72–81. [Google Scholar] [CrossRef]
- Irakoze, L.; Manirakiza, A.; Zhang, Y.; Liu, J.; Li, J.; Nkengurutse, L.; Deng, S.; Xiao, X. Metabolic Syndrome in Offspring of Parents with Metabolic Syndrome: A Meta-Analysis. Obes. Facts 2021, 14, 148–162. [Google Scholar] [CrossRef]
- Xi, B.; Mi, J.; Zhao, M.; Zhang, T.; Jia, C.; Li, J.; Zeng, T.; Steffen, L.M. Trends in Abdominal Obesity Among US Children and Adolescents. Pediatrics 2014, 134, e334–e339. [Google Scholar] [CrossRef]
- Matanane, L.; Fialkowski, M.K.; Silva, J.; Li, F.; Nigg, C.; Leon Guerrero, R.T.; Novotny, R. Para I Famagu’on-Ta: Fruit and Vegetable Intake, Food Store Environment, and Childhood Overweight/Obesity in the Children’s Healthy Living Program on Guam. Hawaii J. Med. Public Health 2017, 76, 225–233. [Google Scholar]
- Enright, G.; Allman-Farinelli, M.; Redfern, J. Effectiveness of Family-Based Behavior Change Interventions on Obesity-Related Behavior Change in Children: A Realist Synthesis. Int. J. Environ. Res. Public Health 2020, 17, 4099. [Google Scholar] [CrossRef]
- Fulkerson, J.A.; Friend, S.; Horning, M.; Flattum, C.; Draxten, M.; Neumark-Sztainer, D.; Gurvich, O.; Garwick, A.; Story, M.; Kubik, M.Y. Family Home Food Environment and Nutrition-Related Parent and Child Personal and Behavioral Outcomes of the Healthy Home Offerings via the Mealtime Environment (HOME) Plus Program: A Randomized Controlled Trial. J. Acad. Nutr. Diet 2018, 118, 240–251. [Google Scholar] [CrossRef]
- De Villa, B.D.M.; Domingo, T.M.M.; Ramirez, R.J.C.; Mercado, J.M.T. Explicating the Culinary Heritage Significance of Filipino Kakanin Using Bibliometrics (1934–2018). Int. J. Gastron. Food Sci. 2022, 28, 100522. [Google Scholar] [CrossRef]
- Pobutsky, A.M. Economics and Fertility: Changing Family Structure among Chamorros on the Island of Guam. Hist. Fam. 2001, 6, 95–123. [Google Scholar] [CrossRef]
- Novotny, R.; Li, F.; Fialkowski, M.K.; Bersamin, A.; Tufa, A.; Deenik, J.; Coleman, P.; Guerrero, R.L.; Wilkens, L.R.; Children’s Healthy Living (CHL) Program. Prevalence of Obesity and Acanthosis Nigricans among Young Children in the Children’s Healthy Living Program in the United States Affiliated Pacific. Medicine 2016, 95, e4711. [Google Scholar] [CrossRef]
- Ahrens, W.; Moreno, L.A.; Mårild, S.; Molnár, D.; Siani, A.; De Henauw, S.; Böhmann, J.; Günther, K.; Hadjigeorgiou, C.; Iacoviello, L.; et al. Metabolic Syndrome in Young Children: Definitions and Results of the IDEFICS Study. Int. J. Obes. 2014, 38, S4–S14. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.W. Prevention of Obesity and Metabolic Syndrome in Children. Front. Endocrinol. 2019, 10, 669. [Google Scholar] [CrossRef]
- Mohamed, S.M.; Shalaby, M.A.; El-Shiekh, R.A.; El-Banna, H.A.; Emam, S.R.; Bakr, A.F. Metabolic Syndrome: Risk Factors, Diagnosis, Pathogenesis, and Management with Natural Approaches. Food Chem. Adv. 2023, 3, 100335. [Google Scholar] [CrossRef]
- Park, Y.S.; Kang, S.H.; Jang, S.-I.; Park, E.-C. Association between Lifestyle Factors and the Risk of Metabolic Syndrome in the South Korea. Sci. Rep. 2022, 12, 13356. [Google Scholar] [CrossRef]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.-P.; Willett, W.C.; Hu, F.B. Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Fornari, E.; Maffeis, C. Treatment of Metabolic Syndrome in Children. Front. Endocrinol. 2019, 10, 702. [Google Scholar] [CrossRef]
- DeBoer, M.D. Assessing and Managing the Metabolic Syndrome in Children and Adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef]
IDF Criteria 1 | MetS (Adult) | At Risk for MetS (Child, 6–<10 y) |
---|---|---|
Waist Circumference (WC) 2 | Male: >94 cm | >90th percentile, males 6 y: >68 cm 7 y: >72.5 cm 8 y: >77.4 cm 9 y: >85.3 cm |
Female: >80 cm | >90th percentile, females 6 y: >68 cm 7 y: >73.5 cm 8 y: >78.0 cm 9 y: >77.3 cm | |
Plus any 2 of these 4 factors: | None established for this age group. | |
Triglycerides | ≥150 mg/dL Or receiving treatment for dyslipidemia | |
HDL 3 Cholesterol | Males (all): <40 mg/dL Or receiving treatment for dyslipidemia | |
Females (all): <50 mg/dL Or receiving treatment for dyslipidemia | ||
Blood Pressure | Systolic ≥ 130 mm Hg Diastolic ≥ 85 mm Hg Or receiving treatment for hypertension | |
Fasting Blood Glucose | ≥100 mg/dL Or diagnosed T2DM |
Adult Characteristics | Total N | MetS 1 n (%) | No MetS 1 n (%) | p-Value * | |
---|---|---|---|---|---|
Age group (years) | 0.107 | ||||
18–24 | 13 | 3 (23.1) | 10 (76.9) | ||
25–35 | 118 | 40 (33.9) | 78 (66.1) | ||
35–44 | 100 | 42 (42.0) | 58 (58.0) | ||
45–54 | 25 | 14 (56.0) | 11 (44.0) | ||
Ethnicity | 0.005 | ||||
CHamoru | 174 | 82 * (47.1) | 92 * (52.9) | ||
Filipino | 55 | 13 * (23.6) | 42 * (76.4) | ||
Other Micronesian | 89 | 28 * (31.5) | 61 * (68.5) | ||
Other Race/Ethnicity 2 | 10 | 5 * (50.0) | 5 * (50.0) | ||
Household income (USD) | 0.692 | ||||
<USD 20,000 | 80 | 29 (36.3) | 51 (63.8) | ||
USD 20,000–USD 34,999 | 67 | 30 (44.8) | 37 (55.2) | ||
USD 35,000–USD 59,999 | 46 | 17 (37.0) | 29 (63.0) | ||
>USD 60,000 | 66 | 24 (36.4) | 42 (63.6) | ||
Education level | 0.095 | ||||
Less than high school | 10 | 6 (60.0) | 4 (40.0) | ||
High school | 164 | 72 (43.9) | 92 (56.1) | ||
College (1–3 years) | 65 | 21 (32.3) | 64 (67.4) | ||
College (4+ years) | 95 | 31 (32.6) | 64 (67.4) | ||
Food-secure 3 | 0.753 | ||||
Yes | 161 | 67 (41.6) | 94 (58.4) | ||
No | 153 | 61 (39.9) | 92 (60.1) |
MetS Indicators 1 | Adult (Parent) | Child | |||||
---|---|---|---|---|---|---|---|
n | % | 95% CI | n | % | 95% CI | ||
Central Obesity 2 | 312 a | 92.31 | (89.47, 95.15) | 15 | 7.69 | (3.95, 11.43) | |
Lipid Profile | |||||||
Low HDL | 205 a | 60.65 | (55.44, 65.86) | 33 d | 15.42 | (10.54, 20.30) | |
High Triglycerides | 64 a | 18.93 | (14.76, 23.11) | 5 d | 2.34 | (0.30, 4.38) | |
Glucose | |||||||
Hyperglycemia | 86 a | 25.44 | (20.80, 30.09) | 2 d | 0.93 | (0.00, 2.22) | |
High Hemoglobin A1c | 50 b | 15.02 | (11.18, 18.85) | 1 e | 0.47 | (0.00, 1.39) | |
High Blood Pressure | 107 a | 31.66 | (26.70, 36.62) | 1 f | 0.47 | (0.00, 1.38) | |
MetS (Adults) 2 | 132 a | 39.05 | (33.85, 44.25) | - | - | - | |
At Risk for MetS (Child) 3 | - | - | - | 15 c | 7.69 | (3.95, 11.43) | |
Z-Score (Mean) | 0.48 a | (0.31, 0.65) | −0.52 d | (−0.62, −0.43) |
MetS Indicators | ||||||
---|---|---|---|---|---|---|
MetS Z-Score | Waist Circumference (cm) | Triglycerides (mg/dL) | HDL Cholesterol (mg/dL) | Fasting Blood Glucose (mg/dL) | ||
Adult Behaviors (Mean ± SD) | ||||||
Physical Activity 1 (h/day) | ||||||
Less active | 0.15 ± 1.17 | 101.24 ± 16.09 | 107.11 ± 58.35 | 48.50 ± 11.62 | 95.21 ± 37.69 | |
More active | 0.54 ± 1.64 | 103.19 ± 16.48 | 109.87 ± 76.67 | 48.61 ± 12.06 | 107.54 ± 60.89 | |
Sedentary 2 (hrs/day) | ||||||
Less sedentary | 0.44 ± 1.51 | 102.33 ± 17.22 | 111.81 ± 67.91 | 49.85 ± 12.31 | 105.09 ± 56.08 | |
More sedentary | 0.27 ± 1.33 | 102.09 ± 15.62 | 103.21 ± 59.13 | 52.56 ± 10.85 | 97.88 ± 43.64 | |
Sleep | ||||||
<8 h | 0.46 ± 1.52 | 102.27 ± 17.26 | 108.52 ± 74.71 | 48.06 ± 11.32 | 105.21 ± 58.10 | |
>8 h | 0.63 ± 1.74 | 103.98 ± 16.47 | 110.02 ± 74.73 | 48.87 ± 12.67 | 111.70 ± 64.28 | |
Stress 3 | ||||||
Less stress | 0.44 ± 1.50 | 102.82 ± 15.98 | 108.95 ± 70.18 | 48.75 ± 11.99 | 104.18 ± 52.95 | |
More stress | 0.87 ± 2.27 | 103.71 ± 20.80 | 116.06 ± 109.01 | 47.94 ± 12.25 | 123.44 ± 94.91 | |
Child Behaviors (Mean ± SD) | ||||||
Physical Activity 4 | ||||||
Less active | −0.56 ± 0.74 | 58.25 ± 13.37 | 68.95 ± 34.89 | 49.60 ± 11.47 | 79.26 ± 9.53 | |
More active | −0.48 ± 0.65 | 57.90 ± 8.25 | 63.58 ± 25.85 | 52.10 ± 12.70 | 81.58 ± 8.29 | |
Screen Time (hrs/day) | ||||||
<2 h | −0.32 ± 0.76 | 57.76 ± 10.12 | 75.36 ± 45.74 | 47.77 ± 8.30 | 79.36 ± 11.46 | |
2+ h | −0.54 ± 0.69 | 58.15 ± 11.64 | 66.73 ± 30.06 | 50.67 ± 12.25 | 80.14 ± 8.71 | |
Sleep Recommendation 5 | ||||||
Met | −0.53 ± 0.69 | 57.64 ± 7.10 | 66.87 ± 32.26 | 50.17 ± 10.48 | 78.43 ± 8.81 | |
Not met | −0.51 ± 0.71 | 58.34 ± 13.64 | 68.37 ± 31.46 | 50.43 ± 13.04 | 81.42 ± 9.27 |
Unadjusted Linear Regression | Adjusted Linear Regression * | |||||||
---|---|---|---|---|---|---|---|---|
B | 95% CI | p-Value | R | B | 95% CI | p-Value | R | |
Adult MetS Z-score | 0.128 | (0.068, 0.188) | <0.001 | 0.288 | 0.126 | (0.065, 0.186) | 0.001 | 0.297 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aflague, T.F.; Badowski, G.; Bacalia, K.M.A.; Manibusan, J.R.; Dominguez, R.-M.; Wood, K.; Hattori-Uchima, M.; Leon Guerrero, R.T. The Association of Cardiometabolic Risk Factors in Parent–Child Dyads in Guam: Pacific Islands Cohort on Cardiometabolic Health Study. Int. J. Environ. Res. Public Health 2025, 22, 611. https://doi.org/10.3390/ijerph22040611
Aflague TF, Badowski G, Bacalia KMA, Manibusan JR, Dominguez R-M, Wood K, Hattori-Uchima M, Leon Guerrero RT. The Association of Cardiometabolic Risk Factors in Parent–Child Dyads in Guam: Pacific Islands Cohort on Cardiometabolic Health Study. International Journal of Environmental Research and Public Health. 2025; 22(4):611. https://doi.org/10.3390/ijerph22040611
Chicago/Turabian StyleAflague, Tanisha F., Grazyna Badowski, Karen Mae A. Bacalia, Jaelene Renae Manibusan, Regina-Mae Dominguez, Kathryn Wood, Margaret Hattori-Uchima, and Rachael T. Leon Guerrero. 2025. "The Association of Cardiometabolic Risk Factors in Parent–Child Dyads in Guam: Pacific Islands Cohort on Cardiometabolic Health Study" International Journal of Environmental Research and Public Health 22, no. 4: 611. https://doi.org/10.3390/ijerph22040611
APA StyleAflague, T. F., Badowski, G., Bacalia, K. M. A., Manibusan, J. R., Dominguez, R.-M., Wood, K., Hattori-Uchima, M., & Leon Guerrero, R. T. (2025). The Association of Cardiometabolic Risk Factors in Parent–Child Dyads in Guam: Pacific Islands Cohort on Cardiometabolic Health Study. International Journal of Environmental Research and Public Health, 22(4), 611. https://doi.org/10.3390/ijerph22040611