The Emergence of AI in Public Health Is Calling for Operational Ethics to Foster Responsible Uses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ethics in Public Health and Ethics in Clinical Care or Biomedical Research: Common Principles, Specific Implementation
3.2. The Rise of AI Applications in Public Health, Potential Benefits and Risks
3.3. The Building of Relevant Ethical Norms for Responsible AI in Public Health
4. Discussion
4.1. A New Momentum for Conciliating Individual and Collective Ethical Approaches in the Perspective of International Public Health Actions
4.2. AI Development as an Opportunity to Strenghten Translational Collaborative Research by Improving Innovation Practices and Regulatory Environment
4.3. The Necessity of Strenghtening International Monitoring, of Elaborating Specific Guidelines and Developing Policies to Push Forward Ethics in AI for Public Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HUDERIA | Human rights, democracy and rule of law impact assessment |
COVID-19 | Corona virus disease, SARS-CoV-2 virus |
UNESCO | United Nations Educational, Scientific and Cultural Organisation |
CIOMS | Council for International Organisations on Medical Sciences |
EHDSR | European health data space regulation |
OSAID | Open source artificial intelligence definition |
Art. | Article |
Arts | Articles |
C2PA | Coalition for content provenance and authenticity |
CNIL | Commission nationale pour l’informatique et les libertés |
EHDS | European health data space |
EOSC | European open science cloud |
FAIR | Findable, available, interoperable, reusable |
FRIA | Fundamental right impact assessment |
GDPR | General data protection regulation |
HDAB | Health data access body |
HLEG | High level expert group on AI |
LINC | Laboratoire d’innovation numérique de la CNIL |
LMMs | Large multimodal models |
SNDS | Système national des données de santé |
Rec. | Recital |
AIS | Artificial intelligence system(s) |
AIA | Artificial intelligence act |
ANS | Agence du numérique en santé |
DGA | Data governance act |
HDH | Health data hub |
ICT | Information and communication technology |
IHR | International health regulations |
MDR | Medical device regulations |
NLP | Natural language processing |
RAM | Readiness assessment methodology |
WHO | World health organisation |
AI | Artificial intelligence |
CR | Content credentials |
MS | Member State(s) |
EU | European Union |
Appendix A
Appendix A.1
Application Purposes | Benefits |
---|---|
Improve medical diagnosis |
|
Improve diseases prediction and prevention |
|
Improve epidemiological surveillance and early interventions [128] |
|
Improve management of healthcare resources [134] |
|
Accelerate biomedical research |
|
Facilitate population health education and awareness [136,137] |
|
Contribute to and evaluate the effectiveness of public health policies [140] |
|
Appendix A.2
Risks | Impacts in Public Health |
---|---|
Manipulation and biased interpretation of health data | The use of certain predictive or generative AI models in public health entails risks of manipulating users or biasing health data to support certain political strategies. This concern is amplified by the lack of transparency in AI algorithms, which makes it difficult to understand the mechanisms behind predictions and decisions, particularly where deep learning techniques are used. Poor data management and bias control could lead to unfair or ineffective public health decisions, particularly affecting vulnerable populations [141]. Generative AI models raise additional challenges related to potential hallucinations amplifying bias and producing false results while answering questions [142]. |
Stigmatisation of individuals at risk | AIS models may amplify risks of stigmatisation of individuals identified by AI as being at high risk of developing chronic diseases, in particular if training data are biased and contain societal misrepresentations. AI applications in public health may use sensitive personal data and algorithms that can reinforce existing inequalities, creating discrimination based on medical history or specific ethnical, geographic or demographic characteristics. This could affect access to health insurance [143] or specific treatments, with potentially lasting effects on the health of marginalised populations. |
Lack of privacy and data security | The collection and analysis of health data, including behavioural and medical data, pose privacy risks. In the EU, personal data fall under the GDPR duties and respect for fundamental rights. Any public health AIS should consider privacy-by-design throughout the data lifecycle. Privacy breaches and the possibility of cyberattacks on AIS and health databases are ongoing concerns [141] that can expose personal data to unintended uses compromising patients’ rights and trust in both the technology and public health activities [144]. |
Poor analytical reliability and risks of false or misleading alarms | AI, while effective for the early detection of disease or the prediction of epidemiological trends, is not free from error. Systems can generate false alarms or fail to detect medical errors, which could lead to inappropriate actions or failures in disease prevention and management. These problems are exacerbated by the lack of robustness and transparency of the algorithms [47], increasing concerns about their widespread use in public health. |
Excessive surveillance and infringement of fundamental rights | The use of AIS for constant monitoring of public health raises questions about possible excessive surveillance and overly intrusive government control. Automating public health processes could limit the independence of AI analyses and raise issues about the ethics of decisions based on these systems [145]. It may also create concerns about the use of data for purposes other than those originally intended, such as commercial profit or political surveillance [146]. |
Inequitable access to quality care or preventive measures | As AIS rely on internet and modern data processing infrastructures coverage, they will not be uniformly deployed in all countries, nor in all healthcare systems, and some institutions may not have the resources to integrate these technologies. This disparity in access to medical AI could widen inequalities in care, particularly in disadvantaged regions [147] and create disadvantages for public health outcomes. Digital exclusion of vulnerable populations, such as the elderly or individuals with low connectivity, is also a concern. |
Loss of human control, dehumanisation of care and reductionism | The risk of over-reliance on AIS for public health intervention design and implementation could lead to a dehumanisation of care, with less direct contact between public health professionals, carers and patients. AI could be perceived as an intermediary that reduces the importance of social skills such as collaboration, empathy and compassion, in particular in the carer-patient relationship. Moreover, the increasing automation of tasks could transform medicine into a purely technical process, distancing healthcare professionals from their traditional clinical expertise [148] and increasing reductionism perceptions of populations, health determinants, affecting then the moral acceptability of public health interventions based on AIS and aggregated data. Human oversight of AIS processes, autonomy of the various users and concerned persons’ responsibilities in case of damage due to erroneous results or misuse of AIS are crucial topics to address for acquiring and keeping confidence in those systems, in particular in critical public health decision-making processes. |
References
- WHO. Leading the Future of Global Health with Responsible Artificial Intelligence; WHO: Geneva, Switzerland, 2024.
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Fuso Nerini, F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Health Regulations (IHR), 2nd ed.; WHO: Geneva, Switzerland, 2005; p. 1.
- Treaty on the Functioning of the European Union (TFEU). Off. J. C 2012, 326, 0001–0390.
- European Commission. EU4Health Programme 2021–2027—A Vision for a Healthier European Union. Available online: https://health.ec.europa.eu/funding/eu4health-programme-2021-2027-vision-healthier-european-union_en (accessed on 23 January 2025).
- European Commission. EU Health Policy, Overview. Available online: https://health.ec.europa.eu/eu-health-policy/overview_en (accessed on 23 January 2025).
- Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) OJL, 2024/1689. 12 July 2024. Available online: https://eur-lex.europa.eu/eli/reg/2024/1689/oj/eng (accessed on 23 January 2025).
- Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices, OJL 117, 5 May 2017. Regulation (EU) 2017/746 of the European Parliament and of the Council of 5 April 2017 on in vitro Diagnostic Medical Devices, OJL 117. 5 May 2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32017R0745 (accessed on 23 January 2025).
- Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation), OJL119. 4 May 2016. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng (accessed on 23 January 2025).
- Beauchamp, T.-L.; Childress, J. Principles of Biomedical Ethics, 8th ed.; Oxford University Press: Oxford, UK, 2019; ISBN 9780190640873. [Google Scholar]
- Nyrup, R. From General Principles to Procedural Values: Responsible Digital Health Meets Public Health Ethics. Front. Digit. Health 2021, 3, 690417. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Ethical Guidelines for Epidemiological Studies; WHO: Geneva, Switzerland, 2009; ISBN 929036081X.
- Council for International Organizations of Medical Sciences (CIOMS). International Ethical Guidelines for Health-Related Research Involving Humans, 4th ed.; Council for International Organizations of Medical Sciences (CIOMS): Geneva, Switzerland, 2016. [Google Scholar] [CrossRef]
- Thomas, J.-C.; Sage, M.; Dillenberg, J.; Guillory, V.-J. A code of ethics for public health. Am. J. Public Health 2002, 92, 1057–1059. [Google Scholar] [CrossRef]
- American Public Health Association. Public Health Code of Ethics. 2019. Available online: https://www.apha.org/-/media/files/pdf/membergroups/ethics/code_of_ethics.ashx (accessed on 29 January 2025).
- Thomas, J.C.; Schröder-Bäck, P.; Czabanowska, K.; Athanasopoulos, P.; Mfutso-Bengo, J.; Baldwin-SoRelle, C.; Strohmeier, L.; Tahzib, F. Creating codes of ethics for public health professionals and institutions. J. Public Health 2025, fdae308. [Google Scholar] [CrossRef]
- Framework For Ethical Deliberation and Decision-Making In Public Health—A Tool For Public Health Practitioners, Policy Makers and Decision-Makers. 2017. Available online: https://publications.gc.ca/collections/collection_2017/aspc-phac/HP5-119-2017-eng.pdf (accessed on 29 January 2025).
- Royo-Bordonada, M.-Á.; Román-Maestre, B. Towards public health ethics. Public Health Rev. 2015, 36, 3. [Google Scholar] [CrossRef]
- Brocher Foundation. Ethique Clinique et Ethique en Santé Publique: Quelles Différences? Fondation-brocher.ch. Available online: https://fondation-brocher.ch/fr/ethique-clinique-et-ethique-en-sante-publique-quelles-differences/ (accessed on 23 January 2025).
- Pedone, F.; Vaur, P.; Deschamps, L.; De Lacoste Lareymondie, G. Le Management Ethique: La Santé Hors-Limites; Liberté Politique; de Guibert, F.-X., Ed.; Association Pour la Fondation de Service Politique: Versailles, France, 2004; 236p, n°27; ISBN 2-86839-978-9. [Google Scholar]
- Who.int. Available online: https://www.who.int/teams/health-promotion/public-health-law-and-policies (accessed on 8 January 2025).
- Marks-Sultan, G.; Tsai, F.-J.; Anderson, E.; Kastler, F.; Sprumont, D.; Burris, S. National public health law: A role for WHO in capacity-building and promoting transparency. Bull. World Health Organ. 2016, 94, 534–539. [Google Scholar] [CrossRef]
- Beck, J.R. Medical decision making: 20 years of advancing the field. Med. Decis. Mak. 2001, 21, 73–75. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Heal. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef]
- Akhtar, N.; Khan, N.; Qayyum, S.; Qureshi, M.I.; Hishan, S.S. Efficacy and pitfalls of digital technologies in healthcare services: A systematic review of two decades. Front. Public Health 2022, 10, 869793. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.; Rosella, L.C. Priorities for successful use of artificial intelligence by public health organizations: A literature review. BMC Public Health 2022, 22, 2146. [Google Scholar] [CrossRef]
- Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- WHO. Guidance on the Ethics and Governance of Large Multi-Modal Models (LMMs); WHO: Geneva, Switzerland, 2024; ISBN 978-92-4-008475-9.
- Haltaufderheide, J.; Ranisch, R. The ethics of ChatGPT in medicine and healthcare: A systematic review on Large Language Models (LLMs). NPJ Digit. Med. 2024, 7, 183. [Google Scholar] [CrossRef] [PubMed]
- Al-Hwsali, A.; Alsaadi, B.; Abdi, N.; Khatab, S.; Alzubaidi, M.; Solaiman, B.; Househ, M. Scoping Review: Legal and Ethical Principles of Artificial Intelligence in Public Health. Stud. Health Technol. Inform. 2023, 305, 640–643. [Google Scholar] [CrossRef]
- UNESCO. Recommendation on the Ethics of Artificial Intelligence; SHS/BIO/PI/2021/1; UNESCO: Paris, France, 2022. [Google Scholar]
- WHO. Guidance on Ethics & Governance of Artificial Intelligence for Health; WHO: Geneva, Switzerland, 2021; ISBN 9789240029200.
- High Level Expert Group on AI (HLEG). Ethical Guidelines for Trustworthy AI; HLEG: Brussels, Belgium, 2019. [Google Scholar]
- Charter of Fundamental Rights of the European Union (2000/C 364/01) JOC 364/1. 18 December 2000. Available online: https://www.europarl.europa.eu/charter/pdf/text_en.pdf (accessed on 23 January 2025).
- UNESCO. Readiness Assessment Methodology: A tool of the Recommendation on the Ethics of Artificial Intelligence; SHS/REI/BIO/REC-AIETHICS-TOOL/2023 Rev; UNESCO: Paris, France, 2023. [Google Scholar] [CrossRef]
- UNESCO. Ethical Impact Assessment: A Tool of the Recommendation on the Ethics of Artificial Intelligence; UNESCO: Paris, France, 2023. [Google Scholar] [CrossRef]
- HLEG. Assessment List for Trustworthy Artificial Intelligence (ALTAI) for Self-Assessment; HLEG: Brussels, Belgium, 2020. [Google Scholar]
- Brey, P.; Dainow, B. Ethics by design for artificial intelligence. AI Ethics 2024, 4, 1265–1277. [Google Scholar] [CrossRef]
- European Commission. Ethics By Design and Ethics of Use Approaches for Artificial Intelligence, V.1. 2021. Available online: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ethics-by-design-and-ethics-of-use-approaches-for-artificial-intelligence_he_en.pdf (accessed on 23 January 2025).
- Ministère Français des Solidarités et de la Santé, CENS. Recommandations de Bonnes Pratiques Pour Intégrer L’éthique dès le Développement des Solutions d’Intelligence Artificielle en Santé: Mise en Œuvre de « L’éthique by Design ». Avril 2022. Available online: https://esante.gouv.fr/sites/default/files/media_entity/documents/ethic_by_design_guide_vf.pdf (accessed on 23 January 2025).
- Council of Europe; Committee on Artificial Intelligence (CAI). Methodology for the Risk and Impact Assessment of Artificial Intelligence Systems from the Point of View of Human Rights, Democracy and the Rule of Law (HUDERIA Methodology), CAI(2024)16rev2. 28 November 2024. Available online: https://rm.coe.int/cai-2024-16rev2-methodology-for-the-risk-and-impact-assessment-of-arti/1680b2a09f (accessed on 23 January 2025).
- Zicari, R.-V.; Brodersen, J.; Brusseau, J.; Düdder, B.; Eichhorn, T.; Ivanov, T.; Kararigas, G.; Kringen, P.; McCullough, M.; Moslein, F.; et al. Z-Inspection®: A Process to Assess Trustworthy AI. IEEE Trans. Technol. Soc. 2021, 2, 83–97. [Google Scholar] [CrossRef]
- Allahabadi, H.; Amann, J.; Balot, I.; Beretta, A.; Binkley, C.; Bozenhard, J.; Bruneault, F.; Brusseau, J.; Candemir, S.; Cappellini, L.A.; et al. Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients. IEEE Trans. Technol. Soc. 2022, 3, 272–289. [Google Scholar] [CrossRef]
- Whittlestone, J.; Nyrup, R.; Alexandrova, A.; Dihal, K.; Cave, S. Ethical and Societal Implications of Algorithms, Data, and Artificial Intelligence: A Roadmap for Research; Nuffield Foundation: London, UK, 2019. [Google Scholar]
- Allistene—Alliance des Sciences et Technologies du Numérique. Éthique de la Recherche en Robotique. Rapport n°1 de la CERNA, Commission de Réflexion sur L’éthique de la Recherche en Sciences et Technologies du Numérique d’Allistene. 2014. Available online: http://cerna-ethics-allistene.org/digitalAssets/38/38704_Avis_robotique_livret.pdf (accessed on 23 January 2025).
- Selbst, A.-D.; Barocas, S. The Intuitive Appeal of Explainable Machines. Fordham Law Rev. 2018, 87, 1085–1139. [Google Scholar] [CrossRef]
- CNIL Comment Permettre à L’homme de Garder la Main? Les Enjeux Ethiques des Algorithmes et de l’IA. Synthèse du Débat Public Animé par la CNIL Dans le Cadre de la Mission de Réflexion Confiée par la loi Pour une République Numérique. 2017. Available online: https://www.cnil.fr/sites/cnil/files/atoms/files/cnil_rapport_garder_la_main_web.pdf (accessed on 23 January 2025).
- Villani, C.; Schoenauer, M.; Bonnet, Y.; Berthet, C.; Cornut, A.C.; Levin, F.; Rondepierre, B. Donner un sens à l’IA. Pour une Stratégie Nationale et Européenne; Mission Parlementaire; HAL: Bengaluru, India, 2018. [Google Scholar]
- Laurentys, P. The AI VALUE CHAIN: A Comprehensive End-to-End Framework. 14 October 2024. Available online: https://medium.com/@paulomla/the-ai-value-chain-a-comprehensive-end-to-end-framework-e49f4a10a247 (accessed on 24 January 2025).
- Directive (EU) 2024/2853 of the European Parliament and of the Council of 23 October 2024 on Liability for Defective Products and Repealing Council Directive 85/374/EEC, JOL. 12 November 2024. Available online: https://eur-lex.europa.eu/eli/dir/2024/2853/oj/eng (accessed on 23 January 2025).
- Wachter, S.; Mittelstadt, B.; Russell, C. Bias Preservation in Machine Learning: The Legality of Fairness Metrics Under EU Non-Discrimination Law. West Va. Law Rev. 2020, 123, 735. [Google Scholar] [CrossRef]
- Madiega, T. Generative AI and Watermarking. EPRS European Parliamentary Research Service PE 757.583. December 2023. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/757583/EPRS_BRI(2023)757583_EN.pdf (accessed on 24 January 2025).
- Sala, A. AI Watermarking: A Watershed for Multimedia Authenticity; News; UN Agency for Digital Technologies: Geneva, Switzerland, 27 May 2024. [Google Scholar]
- David, E. Adobe Created a Symbol to Encourage Tagging AI-Generated Content. 10 October 2023. Available online: https://www.theverge.com/2023/10/10/23911381/adobe-ai-generated-content-symbol-watermark (accessed on 24 January 2025).
- Heikkilä, M. It’s easy to tamper with watermarks from AI-generated text. MIT Technol. Rev. 2024. Available online: https://www.technologyreview.com/2024/03/29/1090310/its-easy-to-tamper-with-watermarks-from-ai-generated-text/ (accessed on 30 January 2025).
- Open Source AIDefinition (OSAID), V.1.0.; Corresponding, F.A.Q. Available online: https://opensource.org/ai/open-source-ai-definition#398e6e4c-5d98-4796-8bda-5bf97dc04a76 (accessed on 9 December 2024).
- Lahlou, S. Identity, Social Status, Privacy and Face-Keeping in Digital Society. Soc. Sci. Inf. 2008, 47, 299–330. [Google Scholar] [CrossRef]
- Azencott, C.-A. Machine learning and genomics: Precision medicine versus patient privacy. Philos. Trans. R. Soc. 2018, 376, 20170350. [Google Scholar]
- Stahl, W. Ethics and Privacy in AI and Big Data: Implementing Responsible Research and Innovation. IEEE Secur. Priv. 2018, 16, 26–33. [Google Scholar]
- EDPB Opinion 28/2024 on Certain Data Protection Aspects Related to the Processing of Personal Data in the Context of AI Models. 2024. Available online: https://www.edpb.europa.eu/system/files/2024-12/edpb_opinion_202428_ai-models_en.pdf (accessed on 24 January 2025).
- Sridhar, G.R.; Lakshmi, G. Ethical Issues of Artificial Intelligence in Diabetes Mellitus. Med. Res. Arch. 2023, 11, 1–8. [Google Scholar] [CrossRef]
- Delfin-Rossaro, A.; Chassang, G.; Rial-Sebbag, E. Outils algorithmiques et crises sanitaires Enjeux éthico-juridiques et recommandations. Droit Santé Et Société 2022, 2–3, 61–68. [Google Scholar]
- EDPB. Guidelines 04/2020 on the Use of Location Data and Contact Tracing Tools in the Context of the COVID-19 Outbreak; European Data Protection Board: Brussels, Belgium, 2020. [Google Scholar]
- Amnesty International. Contact Tracing Apps: A Test for privacy in Europe. 24 April 2020. Available online: https://www.amnesty.org/en/latest/news/2020/04/contact-tracing-apps-privacy-in-europe/ (accessed on 24 January 2025).
- Bradford, L.; Aboy, M.; Liddell, K. COVID-19 contact tracing apps: A stress test for privacy, the GDPR, and data protection regimes. J. Law Biosci. 2020, 7, lsaa034. [Google Scholar] [CrossRef]
- Study on lessons learned, best practices and epidemiological impact of the common European approach on digital contact tracing to combat and exit the COVID-19 pandemic. In A Study Prepared for the European Commission DG Communications Networks, Content & Technology by Empirica; Oxford Economics: Sydney, Australia, 2022; pp. 42–44. ISBN 978-92-76-58985-3.
- European Parliament, Briefing. National COVID-19 Contact Tracing Apps; EPRS: Brussels, Belgium, 2020; PE 652.711. [Google Scholar]
- Seto, E.; Challa, P.; Ware, P. Adoption of COVID-19 Contact Tracing Apps: A Balance Between Privacy and Effectiveness. J. Med. Internet Res. 2021, 23, e25726. [Google Scholar] [CrossRef]
- Elmokashfi, A.; Sundnes, J.; Kvalbein, A.; Naumova, V.; Reinemo, S.A.; Florvaag, P.M.; Stensland, H.K.; Lysne, O. Nationwide rollout reveals efficacy of epidemic control through digital contact tracing. Nat. Commun. 2021, 12, 5918. [Google Scholar] [CrossRef]
- Chang, Z.; Zhan, Z.; Zhao, Z.; You, Z.; Liu, Y.; Yan, Z.; Fu, Y.; Liang, W.; Zhao, L. Application of artificial intelligence in COVID-19 medical area: A systematic review. J. Thorac. Dis. 2021, 13, 7034–7053. [Google Scholar] [CrossRef]
- Jiao, Z.; Ji, H.; Yan, J.; Qi, X. Application of big data and artificial intelligence in epidemic surveillance and containment. Intell. Med. 2023, 3, 36–43. [Google Scholar] [CrossRef]
- Tang, G.; Westover, K.; Jiang, S. Contact Tracing in Healthcare Settings During the COVID-19 Pandemic Using Bluetooth Low Energy and Artificial Intelligence-A Viewpoint. Front. Artif. Intell. 2021, 4, 666599. [Google Scholar] [CrossRef] [PubMed]
- Syrowatka, A.; Kuznetsova, M.; Alsubai, A.; Beckman, A.L.; Bain, P.A.; Craig, K.J.T.; Hu, J.; Jackson, G.P.; Rhee, K.; Bates, D.W. Leveraging artificial intelligence for pandemic preparedness and response: A scoping review to identify key use cases. NPJ Digit. Med. 2021, 4, 96. [Google Scholar] [CrossRef] [PubMed]
- Haneef, R.; Fuentes, S.; Hrzic, R.; Fosse-Edorh, S.; Kab, S.; Gallay, A.; Cosson, E. Use of artificial intelligence to estimate population health indicators in France. Eur. J. Public Health 2020, 30 (Suppl. S5), ckaa165.267. [Google Scholar] [CrossRef]
- Europa.eu. Available online: https://research-and-innovation.ec.europa.eu/strategy/strategy-research-and-innovation/our-digital-future/open-science/european-open-science-cloud-eosc_en (accessed on 12 December 2024).
- Regulation (EU) 2025/327 of the European Parliament and of the Council of 11 February 2025 on the European Health Data Space and amending Directive 2011/24/EU and Regulation (EU) 2024/2847. OJEU, L Series. 5 March 2025. Available online: https://eur-lex.europa.eu/eli/reg/2025/327/oj/eng (accessed on 12 December 2024).
- Regulation (EU) 2022/868 of the European Parliament and of the Council of 30 May 2022 on European Data Governance and Amending Regulation (EU) 2018/1724 (Data Governance Act), OJEU L 152. 3 June 2022, pp. 1–44. Available online: https://eur-lex.europa.eu/eli/reg/2022/868/oj/eng (accessed on 12 December 2024).
- Health Data Hub, Bibliothèque Ouverte d’Algorithmes en Santé (BOAS). Available online: https://www.health-data-hub.fr/bibliotheque-ouverte-algorithmes-sante (accessed on 16 December 2024).
- RDA Artificial Intelligence Data Visitation (AIDV) Working Group. Outputs, Definition Included in Each of the WG Recommendations. 2024. Available online: https://www.rd-alliance.org/groups/artificial-intelligence-and-data-visitation-aidv-wg/outputs/ (accessed on 30 January 2025).
- Micheli, M.; Farrell, E.; Carballa Smichowski, B.; Posada Sanchez, M.; Signorelli, S.; Vespe, M. Mapping the Landscape of Data Intermediaries; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Chassang, G.; Fériol, L. Data Altruism, Personal Health Data and the Consent Challenge in Scientific Research. Eur. Data Prot. Law Rev. 2024, 10, 57–68. [Google Scholar] [CrossRef]
- RDA Artificial Intelligence Data Visitation (AIDV) Working Group. Guidance for Informed Consent in the Context of Artificial Intelligence and Data Visitation. 2024. Available online: https://www.rd-alliance.org/wp-content/uploads/2024/10/AIDV-WG-D3-Guidance-on-Informed-Consent-in-AIDV-2.pdf (accessed on 30 January 2025).
- CNIL. La Base Légale de L’intérêt Légitime: Fiche Focus sur les Mesures à Prendre en cas de Collecte des Données par Moissonnage (Web Scraping). 10 June 2024. Available online: https://www.cnil.fr/fr/focus-interet-legitime-collecte-par-moissonnage (accessed on 30 January 2025).
- Joshi, I.; Grimmer, M.; Rathgeb, C.; Busch, C.; Bremond, F.; Dantcheva, A. Synthetic Data in Human Analysis: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 4957–4976. [Google Scholar] [CrossRef]
- Katsoulakis, E.; Wang, Q.; Wu, H.; Shahriyari, L.; Fletcher, R.; Liu, J.; Achenie, L.; Liu, H.; Jackson, P.; Xiao, Y.; et al. Digital twins for health: A scoping review. NPJ Digit. Med. 2024, 7, 77. [Google Scholar] [CrossRef]
- Project ICI (INRIA—Collaboration—IGN). Official Website. Available online: https://x-ngilet.gitlabpages.inria.fr/html_covici/index.html (accessed on 14 March 2025).
- Lajonchère, P. Le rôle des Méga données dans l’évolution de la pratique médicale. Bull. Acad. Natl. Méd. 2018, 202, 225–240. [Google Scholar] [CrossRef]
- Buijink, A.W.G.; Visser, B.J.; Marshall, L. Medical apps for smartphones: Lack of evidence undermines quality and safety. Evid. Based Med. 2013, 18, 90–92. [Google Scholar] [CrossRef]
- OWASP Definition, ML04:2023 Membership Inference Attack. Available online: https://owasp.org/www-project-machine-learning-security-top-10/docs/ML04_2023-Membership_Inference_Attack (accessed on 9 January 2025).
- Trevethan, R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front. Public Health 2017, 5, 307. [Google Scholar] [CrossRef]
- Marin-Rodriguez, J.-A.; Rodriguez, M.; Leyva, L.; Torralba, C.; Agustin, F.; Enriquez, F. Evaluating Accuracy of AI-Generated Travel Vaccine Recommendations: GPTs in Public Health. Eur. J. Public Health 2024, 34 (Suppl. S3), ckae144.1197. [Google Scholar] [CrossRef]
- KoBolt Metals, Mining Start-up Backed by Bill Gates and Jeff Bezos Valued at $2.96bn. 1 January 2025. Available online: https://www.ft.com/content/9602467d-f5d7-40eb-af5a-f1fbf1ccfcd7 (accessed on 8 January 2025).
- Zhuk, A. Artificial Intelligence Impact on the Environment: Hidden Ecological Costs and Ethical-Legal Issues. J. Digit. Technol. Law 2023, 1, 932–954. [Google Scholar] [CrossRef]
- Chen, S. How much energy will AI really consume? The good, the bad and the unknown. Nature 2025, 639, 22–24. Available online: https://www.nature.com/articles/d41586-025-00616-z (accessed on 14 March 2025). [PubMed]
- Noman, B.; Donti, P.; Cuff, J.; Sroka, S.; Ilic, M.; Sze, V.; Delimitrou, C.; Olivetti, E. The Climate and Sustainability Implications of Generative AI. MIT Explor. Gener. AI 2024. [Google Scholar] [CrossRef]
- Heikkilä, M. AI’s Carbon Footprint Is Bigger Than You Think. MIT Technol. Rev. 2023. Available online: https://www.technologyreview.com/2023/12/05/1084417/ais-carbon-footprint-is-bigger-than-you-think/ (accessed on 30 January 2025).
- International Telecommunication Union (ITU). AI and the Environment—International Standards for AI and the Environment, Report; ITU: Geneva, Switzerland, 2024; ISBN 978-92-61-39371-7. [Google Scholar]
- OECD Digital Economy Papers, Measuring the Environmental Impacts of Artificial Intelligence Compute and Applications, n°341, DSTI/CDEP/AIGO(2022)3/FINAL. November 2022. Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2022/11/measuring-the-environmental-impacts-of-artificial-intelligence-compute-and-applications_3dddded5/7babf571-en.pdf (accessed on 30 January 2025).
- ANS Website. Available online: https://ecoscore.esante.gouv.fr/ (accessed on 30 January 2025).
- Varandat, M. Sobriété Numérique—L’ANS Impose un Ecoscore aux Applications de e-santé. ITforBusiness.fr, Green IT. 9 August 2023. Available online: https://www.itforbusiness.fr/sobriete-numerique-l-ans-impose-un-eco-score-aux-applications-de-e-sante-65495 (accessed on 30 January 2025).
- L’écoscore: Un Outil clé Pour Evaluer L’impact Environnemental. Available online: https://www.22emesiecle.com/eco-score-outil-cle/ (accessed on 30 January 2025).
- Sinclair, J.-R. Importance of a One Health approach in advancing global health security and the Sustainable Development Goals. Rev. Sci. Tech. 2019, 38, 145–154. [Google Scholar] [CrossRef]
- Keusch, G.T.; Amuasi, J.H.; Anderson, D.E.; Daszak, P.; Eckerle, I.; Field, H.; Koopmans, M.; Lam, S.K.; Das Neves, C.G.; Peiris, M.; et al. Pandemic origins and a One Health approach to preparedness and prevention: Solutions based on SARS-CoV-2 and other RNA viruses. Proc. Natl. Acad. Sci. USA 2022, 119, e2202871119. [Google Scholar] [CrossRef]
- Faijue, D.-D.; Osorio Segui, A.; Shringarpure, K.; Razavi, A.; Hasan, N.; Dar, O.; Manikam, L. Constructing a One Health governance architecture: A systematic review and analysis of governance mechanisms for One Health. Eur. J. Public Health 2024, 34, 1086–1094. [Google Scholar] [CrossRef]
- The Oxford Review Briefings, Frugal Innovation: Definition and Explanation. Available online: https://oxford-review.com/oxford-review-encyclopaedia-terms/frugal-innovation/ (accessed on 10 January 2025).
- Brown, C.; Bhatti, Y.; Harris, M. Environmental sustainability in healthcare systems: Role of frugal innovation. BMJ 2023, 383, e076381. [Google Scholar] [CrossRef]
- Poddar, M.; Marwaha, J.S.; Yuan, W.; Romero-Brufau, S.; Brat, G.A. An operational guide to translational clinical machine learning in academic medical centers. npj Digit. Med. 2024, 7, 129. [Google Scholar] [CrossRef]
- Weidener, L.; Fischer, M. Teaching AI Ethics in Medical Education: A Scoping Review of Current Literature and Practices. Perspect. Med. Educ. 2023, 12, 399–410. [Google Scholar] [CrossRef]
- European Parliament. Artificial Intelligence in Healthcare, Applications, Risks and Ethical and Societal Impacts, EPRS|European Parliamentary Research Service, Scientific Foresight Unit (STOA), PE 729.512. June 2022. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_STU(2022)729512 (accessed on 10 January 2025).
- Jameson, L.; Longo, D. Precision Medicine–Personalized, Problematic, and Promising. N. Engl. J. Med. 2015, 372, 2229–2234. [Google Scholar]
- Leventi, N.; Vodenitcharova, A.; Popova, K. Guidelines for Trustworthy AI application in clinical trials. Eur. J. Public Health 2020, 30 (Suppl. 5), ckaa165.806. [Google Scholar] [CrossRef]
- Heikkiläa, M.; Arnett, S. This is where the data to build AI comes from. MIT Technol. Rev. 2024. Available online: https://www.technologyreview.com/2024/12/18/1108796/this-is-where-the-data-to-build-ai-comes-from/ (accessed on 30 January 2025).
- Vallet, F.; Pailhès, B. L’utilisation de l’IA Dans la Gestion de la Crise Sanitaire. Laboratoire d’Innovation Numérique de la CNIL. 2 April 2022. Available online: https://linc.cnil.fr/lutilisation-de-lia-dans-la-gestion-de-la-crise-sanitaire (accessed on 10 January 2025).
- Nicholas Taleb, N. The Black Swan: The Impact of the Highly Improbable, 2nd ed.; Penguin: London, UK, 2010. [Google Scholar]
- Morozov, E. To Save Everything, Click Here: The Folly of Technological Solutionism, 1st ed.; PublicAffairs: New York, NY, USA, 2013; p. 432. ISBN 161039139X, 9781610391399. [Google Scholar]
- RDA Artificial Intelligence Data Visitation (AIDV). Working Group, Guidance for Ethics Committees Reviewing Artificial Intelligence and Data Visitation; AIDV: Paris, France, 2024. [Google Scholar]
- Trump 2.0: An assault on science anywhere is an assault on sciences everywhere. Nature 2025, 639, 7–8. [CrossRef]
- Floridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; Pagallo, U.; Rossi, F.; et al. Taken together, they vield 47 principles. An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommandations. Minds Mach. 2018, 28, 689–707. [Google Scholar] [CrossRef]
- Hasman, A.; Holm, S. Accountability for Reasonableness: Opening the Black Box of Process. Health Care Anal. 2005, 13, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Floridi, L. The Ethics of Artificial Intelligence. Principles, Challenges and Opportunities; Oxford University Press: Oxford, UK, 2023. [Google Scholar] [CrossRef]
- European Ethical Principles for Digital Health; French Presidency of the Council of the European Union: Rouen, France, 2022.
- UNESCO. Consultation Paper on AI Regulation, Emerging Approaches Across the World; UNESCO: Paris, France, 2024. [Google Scholar]
- Temple University, Center for Public Health Law Research. Defining Legal Epidemiology. Website. Available online: https://phlr.org/content/defining-legal-epidemiology (accessed on 10 January 2025).
- Duvernois, J. Une nouvelle ère pour la radiologie. Méd. Radiol. de Fr. 2010, 329, 4–5. [Google Scholar]
- Hervé, C.; Stanton-Jean, M. Innovations en Santé Publique, des Données Personnelles aux Données Massives (Big Data): Aspects Cliniques, Juridiques et Ethiques, 1st ed.; Dalloz: Paris, France, 2018. [Google Scholar]
- Obermeyer, Z.; Emmanuel, E. Predicting the future-big data, machine learning, and clinical medicine. N. Engl. J. Med. 2016, 375, 13. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Wada, O.J.; David-Olawade, A.C.; Kunonga, E.; Abaire, O.; Ling, J. Using artificial intelligence to improve public health: A narrative review. Front. Public Health 2023, 11, 1196397. [Google Scholar] [CrossRef]
- Antinozzi, M.; Del Re, D.; Palla, L.; Meridiani, P.; Soffi, L.; Loiudice, M.T.; Cattaruzza, M.S. An Artificial Intelligence approach to monitor infectious diseases: Lessons learned from COVID-19. Eur. J. Public Health 2024, 34 (Suppl. S3), ckae144.1167. [Google Scholar] [CrossRef]
- Bayer, R.; Galea, S. Public Health in the Precision-Medicine Era. N. Engl. J. Med. 2015, 373, 499–501. [Google Scholar] [CrossRef]
- Ashley, E. The Precision Medicine Initiative: A New National Effort. JAMA 2015, 313, 2119–2120. [Google Scholar] [CrossRef]
- Peek, N.; Combi, C.; Marin, R.; Bellazzi, R. Thirty years of artificial intelligence in medicine (AIME) conferences: A review of research themes. Artif. Intell. Med. AIME 2015, 65, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Rougé-Bugat, M.-E.; Béranger, J. Evolution de la relation médecin généraliste-patient à l’heure de la médecine digitale: Cas de la prise en charge du patient atteint de cancer. Les Trib. De La Santé 2021, 68, 105–113. [Google Scholar] [CrossRef]
- Schwalbe, N.; Wahl, B. Artificial intelligence and the future of global health. Lancet 2020, 395, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Ghim, J.-L.; Ahn, S. Transforming clinical trials: The emerging roles of large language models. Transl. Clin. Pharmacol. 2023, 31, 131–138. [Google Scholar] [CrossRef]
- Rougé-Bugat, M.-E.; Béranger, J. Evolution et impact du numérique dans la relation médecin généraliste-patient: Cas du patient atteint de cancer. Bull. de L’académie Natl. de Méd. 2021, 205, 822–830. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Baglivo, F.; De Angelis, L.; Casigliani, V.; Arzilli, G.; Privitera, G.-P.; Rizzo, C. Artificial Intelligence Chatbots for medical training in Public Health: A tool to explore. Eur. J. Public Health 2023, 33 (Suppl. 2), ckad160.1220. [Google Scholar] [CrossRef]
- Ayers, J.W.; Poliak, A.; Dredze, M.; Leas, E.C.; Zhu, Z.; Kelley, J.B.; Faix, D.J.; Goodman, A.M.; Longhurst, C.A.; Hogarth, M.; et al. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern. Med. 2023, 183, 589–596. [Google Scholar] [CrossRef]
- Ramezani, M.; Takian, A.; Bakhtiari, A.; Rabiee, H.R.; Ghazanfari, S.; Mostafavi, H. The application of artificial intelligence in health policy: A scoping review. BMC Health Serv. Res. 2023, 23, 1416. [Google Scholar] [CrossRef]
- Voarino, N. Artificial Intelligence Systems and Health: The Challenges of Responsible Innovation. Doctoral Thesis, Faculty of Medicine of Montreal, Montreal, QC, Canada, 2019; p. 356. [Google Scholar]
- Lacy, L. Hallucinations: Why AI Makes Stuff up, and What’s Being Done about It. 2024. Available online: https://www.cnet.com/tech/hallucinations-why-ai-makes-stuff-up-and-whats-being-done-about-it/ (accessed on 23 January 2025).
- Kim, P. Data-Driven Discrimination at Work. William Mary Law Rev. 2017, 58, 857. [Google Scholar]
- Campolo, A.; Sanfilippo, M.; Whittaker, M.; Crawford, K. AI Now 2017 Report. 2017. Available online: https://ainowinstitute.org/AI_Now_2017_Report.pdf (accessed on 23 January 2025).
- Brundage, M.; Avin, S.; Clark, J.; Toner, H.; Eckersley, P.; Garfinkel, B.; Dafoe, A.; Scharre, P.; Zeitzoff, T.; Filar, B.; et al. The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv 2018, arXiv:1802.07228. [Google Scholar] [CrossRef]
- Casilli, A. En Attendant les Robots: Enquête sur le Travail du clic, 1st ed.; Seuil: Paris, France, 2019; 400p, ISBN -10202140188X. [Google Scholar]
- Floridi, L.; Taddeo, M. What Is Data Ethics? Phil. Trans. R. Soc. A 2016, 374, 20160360. [Google Scholar] [CrossRef] [PubMed]
- Coeckelbergh, M. Artificial Agents, Good Care, and Modernity. Theor. Med. Bioeth. 2015, 36, 265–277. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chassang, G.; Béranger, J.; Rial-Sebbag, E. The Emergence of AI in Public Health Is Calling for Operational Ethics to Foster Responsible Uses. Int. J. Environ. Res. Public Health 2025, 22, 568. https://doi.org/10.3390/ijerph22040568
Chassang G, Béranger J, Rial-Sebbag E. The Emergence of AI in Public Health Is Calling for Operational Ethics to Foster Responsible Uses. International Journal of Environmental Research and Public Health. 2025; 22(4):568. https://doi.org/10.3390/ijerph22040568
Chicago/Turabian StyleChassang, Gauthier, Jérôme Béranger, and Emmanuelle Rial-Sebbag. 2025. "The Emergence of AI in Public Health Is Calling for Operational Ethics to Foster Responsible Uses" International Journal of Environmental Research and Public Health 22, no. 4: 568. https://doi.org/10.3390/ijerph22040568
APA StyleChassang, G., Béranger, J., & Rial-Sebbag, E. (2025). The Emergence of AI in Public Health Is Calling for Operational Ethics to Foster Responsible Uses. International Journal of Environmental Research and Public Health, 22(4), 568. https://doi.org/10.3390/ijerph22040568