Trends in and Risk Factors for Bicycle-Related Mortality in an Ageing Cycling-Centric Country: Analysis of Japanese Administrative Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Statistical Analysis
3. Results
3.1. Incidence and Trends in Bicycle-Related Casualties
3.2. Incidence and Trends in Bicycle-Related Mortality
3.2.1. Mortality per Population
3.2.2. Mortality Share of Casualties
3.2.3. Demographics and Severity of Bicycle-Related Injuries
4. Discussion
4.1. Current Situations in the High-Risk Groups and Age Groups with Minimal Decreasing Trend
4.2. Current Efforts by Japanese Society to Reduce Bicycle-Related Injuries
4.3. Suggestions for Reform to Improve Bicycle Safety in Japan
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPSOS. Cycling Across the World. 2022. Available online: https://www.ipsos.com/sites/default/files/ct/news/documents/2022-05/Global%20Advisor-Cycling%20Across%20the%20World-2022%20Report.pdf (accessed on 9 January 2025).
- Japan Bicycle Promotion Institute. Bicycle Statistics in Japan. 2017. Available online: https://jbpi.or.jp/wp-content/uploads/2022/12/toukeiyouran_51.pdf (accessed on 9 January 2025).
- Japan: Ministry of Land, Infrastructure, Transport and Tourism. Toshibu ni Wataru Hitono Ugoki to Sono Henka. 2024. Available online: https://www.mlit.go.jp/report/press/content/001711623.pdf (accessed on 9 January 2025).
- Japan: Cabinet Office. White Paper on Traffic Safety in Japan. 2023. Available online: https://www8.cao.go.jp/koutu/taisaku/r05kou_haku/english/pdf/wp2023.pdf (accessed on 9 January 2025).
- Harada, M. Jitenshano Tsukoukankyoto soukoukoudou no kenkyu. Sch. Des. Archit. Nagoya City Univ. Bull. 2019, 24, 37–51. [Google Scholar]
- Tokyo Metropolitan Public Safety. Tokyo Douro Koutsu Kisoku, Article 10-1. 1971. Available online: https://www.reiki.metro.tokyo.lg.jp/reiki/reiki_honbun/g101RG00002199.html (accessed on 14 January 2025).
- Sakurai, R.; Kawai, H.; Suzuki, H.; Ogawa, S.; Kim, H.; Watanabe, Y.; Hirano, H.; Ihara, K.; Obuchi, S.; Fujiwara, Y. An Epidemiological Study of the Risk Factors of Bicycle-Related Falls Among Japanese Older Adults. J. Epidemiol. 2019, 29, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Au Insurance Co. Survey on Bicycle Use by People 65 Years and Older. 2022. Available online: https://www.au-sonpo.co.jp/corporate/news/detail-307.html (accessed on 15 January 2025).
- Sakurai, R.; Kawai, H.; Fukaya, T.; Yoshida, H.; Kim, H.; Hirano, H.; Suzuki, H.; Obuchi, S.; Fujiwara, Y. Incidence of bicycle-related accidents and subsequent injury in community-dwelling older adults: Understanding potential accidents. Jpn. J. Public Health 2015, 62, 251–258. [Google Scholar] [CrossRef]
- Sasaki, Y.; Fujiwara, K.; Mitobe, K. Risks that induce bicycle accidents: Measurement and analysis of bicyclist behavior while going straight and turning right using a bicycle simulator. Accid. Anal. Prev. 2024, 194, 107338. [Google Scholar] [CrossRef]
- Japan: Cabinet Office. Douro Koutsu Hou, Article 63-11, Act No. 32. Available online: https://www.npa.go.jp/laws/kaisei/02_youkou.pdf (accessed on 14 January 2025).
- Ohmori, Y. Bicycle Culture in Japan Derived from Mamachari. IATSS Rev. 2021, 46, 139–146. [Google Scholar] [CrossRef]
- Japan: National Police Agency. Statistics About Road Traffic. 2024. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00130002&tstat=000001027457&cycle=7&year=20230&month=0&result_back=1&cycle_facet=cycle&tclass1val=0&metadata=1&data=1 (accessed on 15 January 2025).
- Japan: Metropolitan Police Department, Traffic Bureau. Reiwa Gonen Niokeru Koutsu Shibou Jikono Hasseijoukyou Nitsuite. 2024. Available online: https://www.npa.go.jp/publications/statistics/koutsuu/jiko/R05bunseki.pdf (accessed on 15 January 2025).
- Institute for Traffic Accident Research and Data Analysis. Number of Deaths by Gender, Age and Legal Violations. 2024. Available online: https://www.itarda.or.jp/contents/7917/with_authenticate/FM-30NM107 (accessed on 15 January 2024).
- Japan: Cabinet Office. Kourei Shakai Hakusho. Annual Report on the Aging Society. Available online: https://www8.cao.go.jp/kourei/whitepaper/w-2024/zenbun/pdf/1s1s_01.pdf (accessed on 15 January 2025).
- Japan Bicycle Promotion Institute. Jitensha Hoyu Narabini Shiyoujittaini Kansuru Chousahoukokusho. 2022. Available online: https://jbpi.or.jp/wp-content/uploads/2022/12/own_report_2021.pdf (accessed on 15 January 2025).
- Scarano, A.; Aria, M.; Mauriello, F.; Riccardi, M.R.; Montella, A. Systematic literature review of 10 years of cyclist safety research. Accid. Anal. Prev. 2023, 184, 106996. [Google Scholar] [CrossRef] [PubMed]
- Hyder, A.A.; Hoe, C.; Hijar, M.; Peden, M. The political and social contexts of global road safety: Challenges for the next decade. Lancet 2022, 400, 127–136. [Google Scholar] [CrossRef]
- James, S.L.; Lucchesi, L.R.; Bisignano, C.; Castle, C.D.; Dingels, Z.V.; Fox, J.T.; Hamilton, E.B.; Liu, Z.; McCracken, D.; Nixon, M.R.; et al. Morbidity and mortality from road injuries: Results from the Global Burden of Disease Study 2017. INJ. Prev. 2020, 26 (Suppl. S1), i46–i56. [Google Scholar] [CrossRef]
- Tripodi, A.; Persia, L. Impact of e-safety applications on cyclists’ safety. Int. J. Inj. Control Saf. Promot. 2015, 22, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Japan: National Police Agency. Trend in Casualties of Pedal Cyclists by Age Group. 2021. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00130002&tstat=000001027457&cycle=7&year=20200&month=0&result_back=1&cycle_facet=cycle&tclass1val=0&metadata=1&data=1 (accessed on 18 February 2021).
- Tokyo, Japan: Ministry of Health Labour and Welfare. General Mortality: Deaths by Causes, Sex and Age: Japan [Dataset]. Vital Statistics of Japan. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&query=ICD&layout=dataset&metadata=1&data=11995-2020 (accessed on 17 September 2020).
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems, 10th Revision, Fifth Edition, 2016. 2015. Available online: https://apps.who.int/iris/handle/10665/246208 (accessed on 17 September 2020).
- Japan Trauma Care and Research. Japan Trauma Data Bank Report 2020. 2021. Available online: https://jtcr-jatec.org/traumabank/dataroom/dataroom.htm (accessed on 4 October 2021).
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1989. [Google Scholar]
- Ahmad, O.B.; Boschi, C.P.; Lopez, A.; Murray, C.; Lozano, R.; Inoue, M. Age Standardization of Rates: A New WHO Standard; World Health Organization: Geneva, Switzerland, 2001; p. 10. Available online: https://cdn.who.int/media/docs/default-source/gho-documents/global-health-estimates/gpe_discussion_paper_series_paper31_2001_age_standardization_rates.pdf (accessed on 15 April 2022).
- Australian Institute of Health and Welfare. Principles on the Use of Direct Age-Standardisation in Administrative Data Collections: For Measuring the Gap Between Indigenous and Non-Indigenous Australians; Cat. no. CSI 12; AIHW: Canberra, Australia, 2011. Available online: https://www.aihw.gov.au/getmedia/95237794-4b77-4683-9f00-77c4d33e0e7c/13406.pdf.aspx?inline=true (accessed on 20 December 2024).
- Japan: National Police Agency. The White Paper on Police. 2020. Available online: https://www.npa.go.jp/hakusyo/r02/pdf/02_tokushu.pdf (accessed on 15 January 2025).
- Inada, H.; Tomio, J.; Nakahara, S.; Ichikawa, M. Association between mandatory cognitive testing for license renewal and motor vehicle collisions and road injuries. J. Am. Geriatr. Soc. 2023, 71, 1145–1155. [Google Scholar] [CrossRef]
- Japan: Ministry of Land, Infrastructure, Transport and Tourism. Jitensha Katsuyo Suishin Keikaku. 2021. Available online: https://www.mlit.go.jp/report/press/content/001406524.pdf (accessed on 15 January 2025).
- Japan: National Police Agency. Jitensha Kanren Koutsujikono Joukyou. 2022. Available online: https://www.npa.go.jp/koutsuu/kikaku/bicycle/kentokai/01/siryou07.pdf (accessed on 17 December 2023).
- Tokyo Metropolitan Government. Jitenshano Anzende Tekiseina Riyou. 2018. Available online: https://www.metro.tokyo.lg.jp/tosei/hodohappyo/press/2018/09/11/documents/01_00.pdf (accessed on 14 January 2025).
- Vanparijs, J.; Int Panis, L.; Meeusen, R.; de Geus, B. Exposure measurement in bicycle safety analysis: A review of the literature. Accid. Anal. Prev. 2015, 84, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Nihon Keizai Shimbun. Gyoumuchuno Jitenshajiko Zouka Takuhai Service Eikyouka. 2020. Available online: https://www.nikkei.com/article/DGXMZO66160260S0A111C2CR8000/ (accessed on 15 October 2021).
- Japan: Cabinet Office. White Paper on Traffic Safety in Japan. 2016. Available online: https://www8.cao.go.jp/koutu/taisaku/h28kou_haku/english/wp2016-pdf (accessed on 11 March 2023).
- Institute for Traffic Accident Research and Data Analysis. Number of Bicycle and Pedestrian Deaths by Human Factor, Gender, and Age-Group. 2024. Available online: https://www.itarda.or.jp/contents/8099/with_authenticate/FM-31NM102 (accessed on 13 January 2025).
- Japan: Metropolitan Police Department, Traffic Planning Division. Jitensha Jikoni Kakawaru Bunseki. 2019. Available online: https://www.npa.go.jp/bureau/traffic/bunseki/sonota/310425jitensha.pdf (accessed on 17 October 2021).
- Requirements for Low-Speed Electric Bicycles; Public Law 107–319; Consumer Product Safety Commission: Washington, DC, USA, 2002. Available online: https://www.cpsc.gov/PageFiles/93295/low.pdf (accessed on 4 February 2024).
- Japan: Cabinet Office. Douro Koutsu Hou, Article 1–3. Available online: https://laws.e-gov.go.jp/law/335M50000002060/20240629_506M60000002059#Mp-Ch_1-At_1_3 (accessed on 4 January 2023).
- Japan: Ministry of Land, Infrastructure, Transport and Tourism. Dai2ji Jitensha Katuyou Suishinkeikaku No Gaiyou. 2021. Available online: https://www.mlit.go.jp/road/bicycleuse/pdf/gaiyo2.pdf (accessed on 15 January 2025).
- Japan: Cabinet Office. Douro Koutsu Hou, Article 117-2, Act No. 34. Available online: https://laws.e-gov.go.jp/law/335AC0000000105#Mp-Ch_8-At_117_2 (accessed on 14 January 2025).
- Japan: Cabinet Office. Douro Koutsu Hou, Article 71-5, Act No. 34. Available online: https://laws.e-gov.go.jp/law/335AC0000000105#Mp-Ch_4-Se_1-At_71 (accessed on 14 January 2025).
- Inada, H.; Tomio, J.; Nakahara, S.; Ichikawa, M. Area-Wide Traffic-Calming Zone 30 Policy of Japan and Incidence of Road Traffic Injuries Among Cyclists and Pedestrians. Am. J. Public Health 2020, 110, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Matsui, Y.; Doi, T.; Oikawa, S.; Ando, K. Features of fatal pedestrian injuries in vehicle-to-pedestrian accidents in Japan. SAE Int. J. Transp. Saf. 2013, 1, 297–308. [Google Scholar] [CrossRef]
- Oikawa, S.; Matsui, Y.; Nakadate, H.; Aomura, S. Factors in fatal injuries to cyclists impacted by five types of vehicles. Int. J. Automot. Technol. 2019, 20, 197–205. [Google Scholar] [CrossRef]
- Hoye, A. Recommend or mandate? A systematic review and meta-analysis of the effects of mandatory bicycle helmet legislation. Accid. Anal. Prev. 2018, 120, 239–249. [Google Scholar] [CrossRef]
- Olivier, J.; Creighton, P. Bicycle injuries and helmet use: A systematic review and meta-analysis. Int. J. Epidemiol. 2016, 46, 278–292. [Google Scholar] [CrossRef]
- Büth, C.M.; Barbour, N.; Abdel-Aty, M. Effectiveness of bicycle helmets and injury prevention: A systematic review of meta-analyses. Sci. Rep. 2023, 13, 8540. [Google Scholar] [CrossRef] [PubMed]
- Bahrololoom, S.; Young, W.; Logan, D. Modelling injury severity of bicyclists in bicycle-car crashes at intersections. Accid. Anal. Prev. 2020, 144, 105597. [Google Scholar] [CrossRef]
- Nakanishi, M. Education for Cyclists. IATSS Rev. 2016, 41, 41–49. [Google Scholar]
- Orsi, C.; Montomoli, C.; Otte, D.; Morandi, A. Road accidents involving bicycles: Configurations and injuries. Int. J. Inj. Control. Saf. Promot. 2017, 24, 534–543. [Google Scholar] [CrossRef]
- Samerei, S.A.; Aghabayk, K.; Shiwakoti, N.; Mohammadi, A. Using latent class clustering and binary logistic regression to model Australian cyclist injury severity in motor vehicle-bicycle crashes. J. Saf. Res. 2021, 79, 246–256. [Google Scholar] [CrossRef] [PubMed]
Casualty | |||||
---|---|---|---|---|---|
N | IRR | 95% CI | p-Value | ||
(1,163,017) | Lower | Upper | |||
Year | 0.93 | 0.93 | 0.94 | <0.01 | |
Age group (years) | |||||
0–9 | 53,164 | 0.77 | 0.76 | 0.79 | <0.01 |
10–19 | 309,028 | 3.77 | 3.73 | 3.81 | <0.01 |
20–29 | 159,664 | 1.66 | 1.64 | 1.68 | <0.01 |
30–39 | 130,941 | 0.99 | 0.79 | 1.00 | <0.05 |
40–49 | 130,115 | 1 (reference) | |||
50–59 | 103,319 | 0.81 | 0.80 | 0.83 | <0.01 |
60–69 | 118,851 | 1.01 | 1.00 | 1.03 | <0.05 |
70–79 | 111,356 | 1.19 | 1.17 | 1.20 | <0.01 |
80+ | 46,579 | 0.64 | 0.63 | 0.65 | <0.01 |
Age group/year interaction | |||||
0–9 | 0.97 | 0.96 | 0.97 | <0.01 | |
10–19 | 0.99 | 0.98 | 0.99 | <0.01 | |
20–29 | 1.00 | 0.99 | 1.00 | <0.01 | |
30–39 | 1.01 | 1.01 | 1.02 | <0.01 | |
40–49 | 1 (reference) | ||||
50–59 | 1.02 | 1.01 | 1.02 | <0.01 | |
60–69 | 0.97 | 0.97 | 0.97 | 0.55 | |
70–79 | 0.99 | 0.98 | 0.99 | <0.01 | |
80+ | 1.02 | 1.02 | 1.02 | <0.01 |
Casualty per Population | ||||
---|---|---|---|---|
Age Group (Years) | Annual % Change | 95% CI | p-Value | |
Upper | Lower | |||
0–9 | −9.77 | −10.02 | −9.51 | <0.01 |
10–19 | −8.14 | −8.24 | −8.03 | <0.01 |
20–29 | −7.05 | −7.20 | −6.90 | <0.01 |
30–39 | −5.47 | −5.63 | −5.30 | <0.01 |
40–49 | −6.69 | −6.86 | −6.53 | <0.01 |
50–59 | −5.20 | −5.39 | −5.02 | <0.01 |
60–69 | −9.67 | −9.84 | −9.51 | <0.01 |
70–79 | −8.07 | −8.25 | −7.90 | <0.01 |
80+ | −4.95 | −5.22 | −4.68 | <0.01 |
Boys/Men | Girls/Women | |||||||
---|---|---|---|---|---|---|---|---|
IRR | 95% CI | p-Value | IRR | 95% CI | p-Value | |||
Lower | Upper | Lower | Upper | |||||
Year | 0.95 | 0.94 | 0.96 | <0.01 | 0.94 | 0.93 | 0.95 | <0.01 |
Age group (years) | ||||||||
0–9 | 0.83 | 0.70 | 0.98 | 0.03 | 0.47 | 0.35 | 0.63 | <0.01 |
19–10 | 1.44 | 1.26 | 1.64 | <0.01 | 1.57 | 1.31 | 1.89 | <0.01 |
20–29 | 0.42 | 0.36 | 0.50 | <0.01 | 0.53 | 0.42 | 0.66 | <0.01 |
30–39 | 0.50 | 0.43 | 0.60 | <0.01 | 0.41 | 0.32 | 0.53 | <0.01 |
40–49 | 1 (reference) | 1 (reference) | ||||||
50–59 | 2.41 | 2.14 | 2.71 | <0.01 | 3.38 | 2.88 | 3.95 | <0.01 |
60–69 | 4.86 | 4.35 | 5.42 | <0.01 | 6.21 | 5.35 | 7.20 | <0.01 |
70–79 | 12.62 | 11.35 | 14.04 | <0.01 | 10.67 | 9.23 | 12.34 | <0.01 |
80+ | 28.15 | 25.29 | 31.35 | <0.01 | 4.00 | 3.36 | 4.75 | <0.01 |
Age group/year interaction | ||||||||
0–9 | 0.96 | 0.95 | 0.98 | <0.01 | 1.00 | 0.97 | 1.02 | 0.49 |
19–10 | 1.00 | 0.99 | 1.01 | 0.89 | 1.00 | 0.98 | 1.02 | 0.83 |
20–29 | 1.03 | 1.02 | 1.05 | <0.01 | 1.04 | 1.02 | 1.06 | <0.01 |
30–39 | 1.02 | 1.00 | 1.03 | 0.03 | 1.03 | 1.01 | 1.05 | 0.02 |
40–49 | 1 (reference) | 1 (reference) | ||||||
50–59 | 0.99 | 0.98 | 1.00 | 0.06 | 0.96 | 0.95 | 0.98 | <0.01 |
60–69 | 0.98 | 0.97 | 0.99 | <0.01 | 0.98 | 0.97 | 0.99 | <0.01 |
70–79 | 0.97 | 0.96 | 0.98 | <0.01 | 0.99 | 0.98 | 1.00 | 0.05 |
80+ | 0.97 | 0.96 | 0.98 | <0.01 | 1.03 | 1.01 | 1.04 | <0.01 |
Death per Population | ||||||||
---|---|---|---|---|---|---|---|---|
Boys/Men | Girls/Women | |||||||
Age Group (Years) | Annual% Change | 95% CI | p-Value | Annual% Change | 95% CI | p-Value | ||
Upper | Lower | Upper | Lower | |||||
0–9 | −8.54 | −9.84 | −7.22 | <0.01 | −6.96 | −9.13 | −4.74 | <0.01 |
10–19 | −5.11 | −5.85 | −4.36 | <0.01 | −5.80 | −6.84 | −4.75 | <0.01 |
20–29 | −1.07 | −3.16 | −0.97 | <0.01 | −2.61 | −4.00 | −1.21 | <0.01 |
30–39 | −3.56 | −4.61 | −2.50 | <0.01 | −4.36 | −5.94 | −2.74 | <0.01 |
40–49 | −5.03 | −5.79 | −4.27 | <0.01 | −6.29 | −7.40 | −5.17 | <0.01 |
50–59 | −6.36 | −6.93 | −5.80 | <0.01 | −8.61 | −9.37 | −7.86 | <0.01 |
60–69 | −6.67 | −7.08 | −6.25 | <0.01 | −7.49 | −8.00 | −6.97 | <0.01 |
70–79 | −7.74 | −8.10 | −7.40 | <0.01 | −6.42 | −6.85 | −5.99 | <0.01 |
80+ | −7.72 | −8.06 | −7.38 | <0.01 | −2.49 | −3.19 | −1.78 | <0.01 |
Death | |||||
---|---|---|---|---|---|
N | IRR | 95% CI | p-Value | ||
(8254) | Lower | Upper | |||
Year | 0.98 | 0.95 | 1.01 | 0.21 | |
Age group (years) | |||||
0–9 | 94 | 0.39 | 0.27 | 0.58 | <0.01 |
10–19 | 406 | 0.44 | 0.35 | 0.55 | <0.01 |
20–29 | 281 | 0.50 | 0.39 | 0.64 | <0.01 |
30–39 | 291 | 0.66 | 0.51 | 0.85 | <0.01 |
40–49 | 427 | 1 (reference) | |||
50–59 | 694 | 2.25 | 1.84 | 2.75 | <0.01 |
60–69 | 1518 | 3.60 | 3.00 | 4.31 | <0.01 |
70–79 | 2379 | 6.63 | 5.57 | 7.89 | <0.01 |
80+ | 2164 | 15.18 | 12.72 | 18.11 | <0.01 |
Age group/year interaction | |||||
0–9 | 1.08 | 1.00 | 1.16 | 0.04 | |
10–19 | 0.98 | 0.93 | 1.02 | 0.29 | |
20–29 | 0.95 | 0.97 | 1.07 | 0.48 | |
30–39 | 0.91 | 0.96 | 1.06 | 0.83 | |
40–49 | 1 (reference) | ||||
50–59 | 0.93 | 0.94 | 1.02 | 0.25 | |
60–69 | 0.96 | 0.98 | 1.05 | 0.31 | |
70–79 | 0.94 | 0.96 | 1.03 | 0.77 | |
80+ | 0.93 | 0.95 | 1.02 | 0.42 |
Death per Casualty | ||||
---|---|---|---|---|
Age Group (Years) | Annual% Change | 95% CI | p-Value | |
Upper | Lower | |||
0–9 | +5.65 | −0.98 | +12.72 | 0.10 |
10–19 | −3.08 | −6.11 | −0.05 | 0.05 |
20–29 | −0.04 | −3.74 | +3.80 | 0.98 |
30–39 | −3.63 | −7.27 | +0.14 | 0.06 |
40–49 | −2.29 | −5.25 | +0.77 | 0.14 |
50–59 | −2.28 | −4.51 | −0.00 | 0.05 |
60–69 | −1.39 | −0.23 | +3.03 | 0.09 |
70–79 | −0.30 | −0.15 | +0.95 | 0.63 |
80+ | −1.75 | −3.02 | −0.47 | <0.01 |
Overall a N = 126,338 | Bicycle N = 25,092 | Car N = 37,401 (Driver N = 27,823) | Motorcycle N = 36,695 (Driver N = 35,308) | |||||
---|---|---|---|---|---|---|---|---|
N | (%) | N | (%) | N | (%) | N | (%) | |
Age(mean(SD)) | 47.72 | (23.49) | 48.75 | (25.59) | 48.78 | (21.84) | 40.65 | (19.42) |
Gender | ||||||||
Boys/Men | 85,779 | (67.90) | 15,619 | (62.25) | 24,229 | (64.78) | 30,918 | (84.26) |
Girls/Women | 40,529 | (32.08) | 9466 | (37.73) | 13,159 | (35.18) | 5772 | (15.73) |
Drinking b | 9324 | (7.38) | 2111 | (8.41) | 2045 | (7.35) | 1805 | (8.15) |
Region | ||||||||
Head | 49,309 | (40.49) | 13,127 | (54.06) | 9409 | (26.23) | 12,319 | (34.82) |
Face | 6442 | (5.29) | 1127 | (4.64) | 1865 | (5.20) | 2321 | (6.56) |
Neck | 349 | (0.29) | 35 | (0.14) | 170 | (0.47) | 107 | (0.30) |
Thorax | 23,421 | (19.23) | 2378 | (9.79) | 10,259 | (28.60) | 7195 | (20.34) |
Abdomen | 5145 | (4.22) | 685 | (2.82) | 2687 | (7.49) | 1257 | (3.55) |
Spine | 15,383 | (12.63) | 2506 | (10.32) | 6698 | (18.67) | 3868 | (10.93) |
Upper Extremity | 5966 | (4.90) | 1314 | (5.41) | 1433 | (3.99) | 2423 | (6.85) |
Lower Extremity | 14,758 | (12.12) | 2978 | (12.26) | 2907 | (8.10) | 5600 | (15.83) |
Severity Scores | ||||||||
AIS (M(SD)) | 2.59 | (1.05) | 2.66 | (0.99) | 2.48 | (1.10) | 2.56 | (1.03) |
ISS (M(SD)) | 17.63 | (13.41) | 16.65 | (11.89) | 15.96 | (13.19) | 17.16 | (12.67) |
RTS (M(SD)) | 6.99 | (1.89) | 7.09 | (1.65) | 7.13 | (1.79) | 7.15 | (1.72) |
TRISS (M(SD)) | 0.86 | (0.26) | 0.87 | (0.24) | 0.88 | (0.24) | 0.90 | (0.23) |
GCS (M(SD)) | 12.69 | (3.88) | 12.69 | (3.78) | 13.20 | (3.52) | 13.09 | (3.58) |
No operation | 53,220 | (42.13) | 9444 | (37.64) | 14,435 | (38.60) | 17,576 | (47.90) |
Operation type | ||||||||
Head | 4214 | (3.34) | 1458 | (5.85) | 493 | (1.32) | 958 | (2.61) |
Thoracic | 2260 | (1.79) | 264 | (1.05) | 691 | (1.85) | 648 | (1.77) |
Abdominal | 4771 | (3.80) | 333 | (1.33) | 2764 | (7.36) | 1005 | (2.74) |
Fracture | 26,573 | (21.04) | 4519 | (18.01) | 6322 | (16.90) | 10,492 | (28.59) |
Angioplasty | 318 | (0.25) | 22 | (0.09) | 85 | (0.23) | 150 | (0.41) |
Death | 13,487 | (10.68) | 2413 | (9.62) | 3132 | (8.37) | 2712 | (7.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, S.; Shimizu, K.; Gilmour, S. Trends in and Risk Factors for Bicycle-Related Mortality in an Ageing Cycling-Centric Country: Analysis of Japanese Administrative Data. Int. J. Environ. Res. Public Health 2025, 22, 322. https://doi.org/10.3390/ijerph22030322
Tanaka S, Shimizu K, Gilmour S. Trends in and Risk Factors for Bicycle-Related Mortality in an Ageing Cycling-Centric Country: Analysis of Japanese Administrative Data. International Journal of Environmental Research and Public Health. 2025; 22(3):322. https://doi.org/10.3390/ijerph22030322
Chicago/Turabian StyleTanaka, Sayo, Keiki Shimizu, and Stuart Gilmour. 2025. "Trends in and Risk Factors for Bicycle-Related Mortality in an Ageing Cycling-Centric Country: Analysis of Japanese Administrative Data" International Journal of Environmental Research and Public Health 22, no. 3: 322. https://doi.org/10.3390/ijerph22030322
APA StyleTanaka, S., Shimizu, K., & Gilmour, S. (2025). Trends in and Risk Factors for Bicycle-Related Mortality in an Ageing Cycling-Centric Country: Analysis of Japanese Administrative Data. International Journal of Environmental Research and Public Health, 22(3), 322. https://doi.org/10.3390/ijerph22030322