Exploring Human–AI Dynamics in Enhancing Workplace Health and Safety: A Narrative Review
Abstract
:1. Introduction
1.1. Defining Artificial Intelligence and Its Relevance to OHS
1.2. Legislative Framework for AI Technologies
1.3. AI for Accident Data Clustering and Risk Profiling
1.4. Objectives of This Review
2. Materials and Methods
2.1. Research Scope and Identification of the Research Area
2.2. Literature Search Strategy
2.3. Screening and Selection Criteria
2.4. Full-Text Review and Data Extraction
2.5. Elaboration of Results and Synthesis
3. Results
3.1. Overview of Included Publications
3.2. Bibliometric Statistics
3.3. Research Gaps
4. Discussion
4.1. AI in OHS—Current Landscape
4.2. Benefits of Human–AI Interaction in OHS
4.3. Challenges, Ethical Considerations, and Summary
4.4. Human–AI Collaboration Models
4.5. Examples of Human–AI Collaboration
4.6. Future Directions
4.7. Limitations of the Present Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chizubem, B.; Obasi, I.C.; Akinwande, D.V.; Ile, C. The impact of interventions on health, safety and environment in the process industry. Heliyon 2024, 10, e23604. [Google Scholar] [CrossRef]
- International Labour Organization. Occupational Safety and Health. Available online: https://www.ilo.org/resource/other/occupational-safety-and-health (accessed on 6 December 2024).
- Trivedi, P.; Alqahtani, F.M. The advancement of artificial intelligence (AI) in occupational health and safety (OHS) across high-risk industries. J. Infrastruct. Policy Dev. 2024, 8, 6889. [Google Scholar] [CrossRef]
- Fisher, E.; Flynn, M.A.; Pratap, P.; Vietas, J.A. Occupational Safety and Health Equity Impacts of Artificial Intelligence: A Scoping Review. Int. J. Environ. Res. Public Health 2023, 20, 6221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Felknor, S.A.; Streit, J.M.K.; McDaniel, M.; Schulte, P.A.; Chosewood, L.C.; Delclos, G.L.; on behalf of the Workshop Presenters and Participants. How Will the Future of Work Shape OSH Research and Practice? A Workshop Summary. Int. J. Environ. Res. Public Health 2021, 18, 5696. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Müller, C.; Ungerer, K.; Müller, J. DiWaBe employee survey. In FDZ-Datenreport: Documentation on Labour Market Data 202304 (EN); Institut für Arbeitsmarkt- und Berufsforschung (IAB): Nuremberg, Germany, 2023. [Google Scholar]
- Young, M.; Stanton, N. Attention and automation: New perspectives on mental underload and performance. Theor. Issues Ergon. Sci. 2002, 3, 178–194. [Google Scholar] [CrossRef]
- Parasuraman, R.; Sheridan, T.B.; Wickens, C.D. A model for types and levels of human interaction with automation. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 2000, 30, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Kaber, D.B.; Endsley, M.R. Out-of-the-loop performance problems and the use of intermediate levels of automation for improved control system functioning and safety. Process Saf. Prog. 1997, 16, 126–131. [Google Scholar] [CrossRef]
- Niehaus, S.; Hartwig, M.; Rosen PH and Wischniewski, S. An Occupational Safety and Health Perspective on Human in Control and AI. Front. Artif. Intell. 2022, 5, 868382. [Google Scholar] [CrossRef]
- GDPR Info. Available online: https://gdpr-info.eu/ (accessed on 5 January 2025).
- Personal Data Protection Office (Poland). Personal Data Protection Office; Personal Data Protection Office: Warsaw, Poland, 2024. Available online: https://uodo.gov.pl/en (accessed on 5 January 2025).
- European Parliament. EU AI Act: First Regulation on Artificial Intelligence; European Parliament: Strasbourg, France, 2023; Available online: https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence (accessed on 20 December 2024).
- Chen, Z. Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanit. Soc. Sci. Commun. 2023, 10, 567. [Google Scholar] [CrossRef]
- Farahani, M.; Ghasemi, G. Artificial Intelligence and Inequality: Challenges and Opportunities. Int. J. Innov. Educ. 2024, 9, 78–99. [Google Scholar] [CrossRef]
- Lombardi, M.; Mauro, F.; Fargnoli, M.; Napoleoni, Q.; Berardi, D.; Berardi, S. Occupational Risk Assessment in Landfills: Research Outcomes from Italy. Safety 2023, 9, 3. [Google Scholar] [CrossRef]
- Lombardi, M.; Fargnoli, M.; Parise, G. Risk Profiling from the European Statistics on Accidents at Work (ESAW) Accidents Databases: A Case Study in Construction Sites. Int. J. Environ. Res. Public Health 2019, 16, 4748. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and Council. Regulation (EC) No. 1338/2008 of the European Parliament and of the Council of 16 December 2008 on Community Statistics on Public Health and Health and Safety at Work, Implemented by ESAW Regulation 349/2011. Off. J. Eur. Union 2008, 354, 70–81. [Google Scholar]
- Comberti, L.; Demichela, M.; Baldissone, G.; Fois, G.; Luzzi, R. Large occupational accidents data analysis with a coupled unsupervised algorithm: The S.O.M. k-means method. An application to the wood industry. Safety 2018, 4, 51. [Google Scholar] [CrossRef]
- Chokor, A.; Naganathan, H.; Chong, W.K.; Asmar, M. El Analyzing Arizona OSHA Injury Reports Using Unsupervised Machine Learning. Procedia Eng. 2016, 145, 1588–1593. [Google Scholar] [CrossRef]
- Mitro, N.; Argyri, K.; Pavlopoulos, L.; Kosyvas, D.; Karagiannidis, L.; Kostovasili, M.; Misichroni, F.; Ouzounoglou, E.; Amditis, A. AI-Enabled Smart Wristband Providing Real-Time Vital Signs and Stress Monitoring. Sensors 2023, 23, 2821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nahavandi, D.; Alizadehsani, R.; Khosravi, A.; Acharya, U.R. Application of artificial intelligence in wearable devices: Opportunities and challenges. Comput. Methods Programs Biomed. 2022, 213, 106541. [Google Scholar] [CrossRef]
- Awolusi, I.; Marks, E.; Hallowell, M. Wearable technology for personalized construction safety monitoring and trending: Review of applicable devices. Autom. Constr. 2018, 85, 96–106. [Google Scholar] [CrossRef]
- Khusainov, R.; Azzi, D.; Achumba, I.; Bersch, S.; Khusainov, R.; Azzi, D.; Achumba, I.E.; Bersch, S.D. Real-time human ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques, applications, challenges and limitations. Sensors 2013, 13, 12852–12902. [Google Scholar] [CrossRef]
- Aryal, A.; Ghahramani, A.; Becerik-Gerber, B. 2017. Monitoring fatigue in construction workers using physiological measurements. Autom. Constr. 2017, 82, 154–165. [Google Scholar] [CrossRef]
- Roos, L.G.; Slavich, G.M. Wearable technologies for health research: Opportunities, limitations, and practical and conceptual considerations. Brain Behav. Immun. 2023, 113, 444–452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anton, D.; Shibley, L.D.; Fethke, N.B.; Hess, J.; Cook, T.M.; Rosecrance, J. The effect of overhead drilling position on shoulder moment and electromyography. Ergonomics 2001, 44, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, S.; Esmaeili, B.; Dodd, M.D. Examining the Relationship between construction workers’ visual attention and situation awareness under fall and tripping hazard conditions: Using mobile eye tracking. J. Constr. Eng. Manag. 2018, 144, 04018060. [Google Scholar] [CrossRef]
- Jebelli, H.; Hwang, S.; Lee, S. Feasibility of field measurement of construction workers’ valence using a wearable EEG device. Comput. Civ. Eng. 2017, 2017, 99–106. [Google Scholar]
- Jebelli, H.; Khalili, M.M.; Hwang, S.; Lee, S. A supervised learning-based construction workers’ stress recognition using a wearable electroencephalography (EEG) device. Constr. Res. Congr. 2018, 2018, 40–50. [Google Scholar]
- Shah, I.A.; Mishra, S. Artificial intelligence in advancing occupational health and safety: An encapsulation of developments. J. Occup. Health 2024, 66, uiad017. [Google Scholar] [CrossRef] [PubMed]
- Jafleh, E.A.; Alnaqbi, F.A.; Almaeeni, H.A.; Faqeeh, S.; Alzaabi, M.A.; Al Zaman, K. The Role of Wearable Devices in Chronic Disease Monitoring and Patient Care: A Comprehensive Review. Cureus 2024, 16, e68921. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerke, S.; Minssen, T.; Cohen, G. Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 295–336. [Google Scholar] [CrossRef] [PubMed Central]
- Johnston, K.L.; Phillips, M.L.; Esmen, N.A.; Hall, T.A. Evaluation of an artificial intelligence program for estimating occupational exposures. Ann. Occup. Hyg. 2005, 49, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Smuts, D.; Manga, A.; Smallwood, J. Leveraging virtual reality for improved construction health and safety training. In Advances in Information Technology in Civil and Building Engineering; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Donisi, L.; Cesarelli, G.; Pisani, N.; Ponsiglione, A.M.; Ricciardi, C.; Capodaglio, E. Wearable Sensors and Artificial Intelligence for Physical Ergonomics: A Systematic Review of Literature. Diagnostics 2022, 12, 3048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Márquez-Sánchez, S.; Campero-Jurado, I.; Herrera-Santos, J.; Rodríguez, S.; Corchado, J.M. Intelligent Platform Based on Smart PPE for Safety in Workplaces. Sensors 2021, 21, 4652. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lind, C.M.; Diaz-Olivares, J.A.; Lindecrantz, K.; Eklund, J. A Wearable Sensor System for Physical Ergonomics Interventions Using Haptic Feedback. Sensors 2020, 20, 6010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ocharo, D.; Nganga, H.; Kiambi, S. Automatic PPE monitoring system for construction workers using YOLO algorithm based on deep reinforcement learning. Int. J. Comput. Appl. 2024, 186, 10–15. [Google Scholar] [CrossRef]
- Romanssini, M.; de Aguirre, P.C.C.; Compassi-Severo, L.; Girardi, A.G. A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery. Eng 2023, 4, 1797–1817. [Google Scholar] [CrossRef]
- Baldassarre, A.; Padovan, M. Regulatory and Ethical Considerations on Artificial Intelligence for Occupational Medicine. Med. Lav. 2024, 115, e2024013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choi, H.-W.; Kim, H.-J.; Kim, S.-K.; Na, W.S. An Overview of Drone Applications in the Construction Industry. Drones 2023, 7, 515. [Google Scholar] [CrossRef]
- Pontifical Academy for Life. The Principles Behind the Guidelines on Artificial Intelligence; Vatican State: Vatican City, Vatican City State, 2020; Available online: https://www.vaticanstate.va/en/news/1372-the-principles-behind-the-guidelines-on-artificial-intelligence.html (accessed on 26 January 2025).
- Ulich, E. Arbeitspsychologie, 6th ed; Schäffer-Poeschel: Stuttgart, Germany, 2005. [Google Scholar]
- Verma, A.; Maiti, J. Text-document clustering-based cause and effect analysis methodology for steel plant incident data. Int. J. Inj. Contr Saf. Promot. 2018, 25, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Lan, T.; Goh, Y.M.; Safiena, S.; Huang, Y.H.; Lytle, B.; He, Y. An interpretable clustering approach to safety climate analysis: Examining driver group distinctions. Accid. Anal. Prev. 2024, 196, 107420. [Google Scholar] [CrossRef] [PubMed]
- European Commission Joint Research Centre. Artificial intelligence: A European Perspective; European Commission Joint Research Centre: Brussels, Belgium, 2018; Available online: https://joint-research-centre.ec.europa.eu/jrc-mission-statement-work-programme/facts4eufuture/artificial-intelligence-european-perspective/future-ai_en (accessed on 20 December 2024).
- ScienceDirect. Black Box Model. 2024. Available online: https://www.sciencedirect.com/topics/engineering/black-box-model. (accessed on 20 December 2024).
- Tang, K.H.D. Artificial Intelligence in Occupational Health and Safety Risk Management of Construction, Mining, and Oil and Gas Sectors: Advances and Prospects. J. Eng. Res. Rep. 2024, 26, 241–253. [Google Scholar] [CrossRef]
- Sen, S.; Gonzalez, V.; Husom, E.J.; Tverdal, S.; Tokas, S.; Tjøsvoll, S.O. ERG-AI: Enhancing occupational ergonomics with uncertainty-aware ML and LLM feedback. Appl. Intell. 2024, 54, 12128–12155. [Google Scholar] [CrossRef]
- Zhao, A.P.; Li, S.; Cao, Z.; Hu, P.J.; Wang, J.; Xiang, Y.; Xie, D.; Lu, X. AI for science: Predicting infectious diseases. J. Saf. Sci. Resil. 2024, 5, 130–146. [Google Scholar] [CrossRef]
- Yazdi, M.; Zarei, E.; Adumene, S.; Beheshti, A. Navigating the Power of Artificial Intelligence in Risk Management: A Comparative Analysis. Safety 2024, 10, 42. [Google Scholar] [CrossRef]
- European Agency for Safety and Health at Work (EU-OSHA). Artificial Intelligence and Workplace Safety and Health: The Future of Work or a Complex Challenge? Healthy Workplaces Campaign 2023–2025; EU-OSHA: Bilbao, Spain, 2023; Available online: https://healthy-workplaces.osha.europa.eu/en. (accessed on 5 January 2025).
- Kim, B.J.; Lee, J. The mental health implications of artificial intelligence adoption: The crucial role of self-efficacy. Humanit. Soc. Sci. Commun. 2024, 11, 1561. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 26 January 2025).
Category | MeSH Keywords |
---|---|
General Keywords | “Occupational Health”, “Workplace”, “Occupational Safety”, “Occupational Health Services”, “Occupational Exposure” |
AI-Related Keywords | “Artificial Intelligence”, “Machine Learning”, “Deep Learning”, “Automation”, “Decision Support Systems, Clinical” |
Health and Safety Metrics | “Ergonomics”, “Risk Assessment”, “Workplace Monitoring”, “Safety Management”, “Health Promotion” |
Psychological and Social Aspects | “Stress, Psychological”, “Mental Fatigue”, “Job Satisfaction”, “Mental Health” |
Applications and Tools | “Wearable Electronic Devices”, “Sensors”, “Predictive Analytics”, “User–Computer Interface” |
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Dimension | Advantages | Challenges |
---|---|---|
Risk Detection & Monitoring | Proactive hazard identification and preventionReal-time alerts & predictive maintenance [1,2,3] | Data privacy and security concernsDevice interoperability and system integration [15,16] |
Analytics & Diagnostics | Early malfunction detectionAdvanced data clustering for risk profiling [4,5] | AI bias leading to unfair treatmentOverdependence on AI for critical decisions [17,18] |
Wearables & Sensors | Continuous physiological monitoring (fatigue, stress)Quick intervention and more targeted prevention [6,7,8] | Worker acceptance and comfort with wearablesInteroperability and reliability of devices [19,20] |
Training & Education | VR/AR simulations enhance engagementPersonalized feedback for skill improvement [9,10] | High cost for SMEsSkills gap and need for upskilling in AI literacy [21,22] |
Ergonomics & Work Design | AI-driven assessment reduces musculoskeletal disordersImproved workflow efficiency [11,12] | Implementation time and resourcesPotential for job stress if changes are too rapid [23,24] |
Regulatory & Ethical | Potential alignment with compliance requirements (e.g., GDPR)Improved accountability through AI-based tracking [13,14] | Regulatory uncertainty and evolving AI ActsEthical concerns regarding surveillance and algorithmic transparency [25,26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiegler-Rudol, J.; Lau, K.; Mroczek, A.; Kasperczyk, J. Exploring Human–AI Dynamics in Enhancing Workplace Health and Safety: A Narrative Review. Int. J. Environ. Res. Public Health 2025, 22, 199. https://doi.org/10.3390/ijerph22020199
Fiegler-Rudol J, Lau K, Mroczek A, Kasperczyk J. Exploring Human–AI Dynamics in Enhancing Workplace Health and Safety: A Narrative Review. International Journal of Environmental Research and Public Health. 2025; 22(2):199. https://doi.org/10.3390/ijerph22020199
Chicago/Turabian StyleFiegler-Rudol, Jakub, Karolina Lau, Alina Mroczek, and Janusz Kasperczyk. 2025. "Exploring Human–AI Dynamics in Enhancing Workplace Health and Safety: A Narrative Review" International Journal of Environmental Research and Public Health 22, no. 2: 199. https://doi.org/10.3390/ijerph22020199
APA StyleFiegler-Rudol, J., Lau, K., Mroczek, A., & Kasperczyk, J. (2025). Exploring Human–AI Dynamics in Enhancing Workplace Health and Safety: A Narrative Review. International Journal of Environmental Research and Public Health, 22(2), 199. https://doi.org/10.3390/ijerph22020199