Lower Limb Biomechanical Observations in Hypermobile Children: An Exploratory Case—Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.2.1. Hip Internal Rotation ROM (Craig’s Test)
2.2.2. Knee Joint Q-Angle Assessment
2.2.3. Tibial Torsion
2.2.4. Subtalar Joint Inversion and Eversion Range of Movement
2.2.5. Foot Posture Index
2.3. Statistical Analysis
3. Results
3.1. Study Participant Characteristics
3.2. Biomechanical Profiles
4. Discussion
4.1. Overview of Biomechanical Profiles
4.2. Comparison with Previous Studies
4.2.1. Significance of Internal Hip Rotation in Children with GJH
4.2.2. Q-Angle Values and Their Implications in Children with GJH
4.2.3. Role of Ankle ROM in the Assessment of Children with GJH
4.2.4. Correlation Between FPI Scores and Hypermobility
4.2.5. Tibial Torsion in Hypermobile Children
4.3. Clinical Implications and Potential Impact of Biomechanical Variations in Children with GJH
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirk, J.; Ansell, B.; Bywaters, E. The hypermobility syndrome. Musculoskeletal complaints associated with generalized joint hypermobility. Ann. Rheum. Dis. 1967, 26, 419. [Google Scholar] [CrossRef]
- Smits-Engelsman, B.; Klerks, M.; Kirby, A. Beighton score: A valid measure for generalized hypermobility in children. J. Pediatr. 2011, 158, 119–123. [Google Scholar] [CrossRef]
- Nicholson, L.L.; Simmonds, J.; Pacey, V.; De Wandele, I.; Rombaut, L.; Williams, C.M.; Chan, C. International Perspectives on Joint Hypermobility: A Synthesis of Current Science to Guide Clinical and Research Directions. J. Clin. Rheumatol. 2022, 28, 314–320. [Google Scholar] [CrossRef]
- MacConaill, M.A. The movements of bones and joints: 5. The significance of shape. J. Bone Jt. Surg. Br. 1953, 35, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Pugh, L.; Mascarenhas, R.; Arneja, S.; Chin, P.Y.; Leith, J.M. Current concepts in instrumented knee-laxity testing. Am. J. Sports Med. 2009, 37, 199–210. [Google Scholar] [CrossRef]
- Remvig, L.; Kümmel, C.; Kristensen, J.H.; Boas, G.; Juul-Kristensen, B. Prevalence of generalized joint hypermobility, arthralgia and motor competence in 10-year-old school children. Int. Musculoskelet. Med. 2011, 33, 137–145. [Google Scholar] [CrossRef]
- Tobias, J.H.; Deere, K.; Palmer, S.; Clark, E.M.; Clinch, J. Joint Hypermobility Is a Risk Factor for Musculoskeletal Pain During Adolescence: Findings of a Prospective Cohort Study. Arthritis Rheum. 2013, 65, 1107–1115. [Google Scholar] [CrossRef]
- Pacey, V.; Tofts, L.; Adams, R.; Nicholson, L. Factors affecting change in children with joint hypermobility syndrome: Results of a prospective longitudinal study. Intern. Med. J. 2015, 45, 561–569. [Google Scholar]
- Sundemo, D.; Hamrin Senorski, E.; Karlsson, L.; Horvath, A.; Juul-Kristensen, B.; Karlsson, J.; Ayeni, O.R.; Samuelsson, K. Generalised joint hypermobility increases ACL injury risk and is associated with inferior outcome after ACL reconstruction: A systematic review. BMJ Open Sport. Exerc. Med. 2019, 5, e000620. [Google Scholar] [CrossRef] [PubMed]
- Hanewinkel-van Kleef, Y.B.; Helders, P.J.; Takken, T.; Engelbert, R.H. Motor performance in children with generalized hypermobility: The influence of muscle strength and exercise capacity. Pediatr. Phys. Ther. 2009, 21, 194–200. [Google Scholar] [CrossRef]
- Pacey, V.; Nicholson, L.L.; Adams, R.D.; Munn, J.; Munns, C.F. Generalized joint hypermobility and risk of lower limb joint injury during sport: A systematic review with meta-analysis. Am. J. Sports Med. 2010, 38, 1487–1497. [Google Scholar] [CrossRef]
- Engelbert, R.H.H.; Juul-Kristensen, B.; Pacey, V.; de Wandele, I.; Smeenk, S.; Woinarosky, N.; Sabo, S.; Scheper, M.C.; Russek, L.; Simmonds, J.V. The evidence-based rationale for physical therapy treatment of children, adolescents, and adults diagnosed with joint hypermobility syndrome/hypermobile Ehlers Danlos syndrome. Am. J. Med. Genet. C 2017, 175, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Sohrbeck-Nøhr, O.; Kristensen, J.H.; Boyle, E.; Remvig, L.; Juul-Kristensen, B. Generalized joint hypermobility in childhood is a possible risk for the development of joint pain in adolescence: A cohort study. BMC Pediatr. 2014, 14, 302. [Google Scholar] [CrossRef]
- Peterson, B.; Coda, A.; Pacey, V.; Hawke, F. Physical and mechanical therapies for lower limb symptoms in children with Hypermobility Spectrum Disorder and Hypermobile Ehlers-Danlos Syndrome: A systematic review. J. Foot Ankle Res. 2018, 11, 59. [Google Scholar] [CrossRef]
- Scheper, M.C.; Nicholson, L.L.; Adams, R.D.; Tofts, L.; Pacey, V. The natural history of children with joint hypermobility syndrome and Ehlers-Danlos hypermobility type: A longitudinal cohort study. Rheumatology 2017, 56, 2073–2083. [Google Scholar] [CrossRef]
- Mu, W.; Muriello, M.; Clemens, J.L.; Wang, Y.; Smith, C.H.; Tran, P.T.; Rowe, P.C.; Francomano, C.A.; Kline, A.D.; Bodurtha, J. Factors affecting quality of life in children and adolescents with hypermobile Ehlers-Danlos syndrome/hypermobility spectrum disorders. Am. J. Med. Genet. A 2019, 179, 561–569. [Google Scholar] [CrossRef]
- Fatoye, F.; Palmer, S.; Macmillan, F.; Rowe, P.; van der Linden, M. Pain intensity and quality of life perception in children with hypermobility syndrome. Rheumatol. Int. 2012, 32, 1277–1284. [Google Scholar] [CrossRef]
- Schubert-Hjalmarsson, E.; Öhman, A.; Kyllerman, M.; Beckung, E. Pain, balance, activity, and participation in children with hypermobility syndrome. Pediatr. Phys. Ther. 2012, 24, 339–344. [Google Scholar] [CrossRef]
- Pacey, V.; Tofts, L.; Adams, R.D.; Munns, C.F.; Nicholson, L.L. Exercise in children with joint hypermobility syndrome and knee pain: A randomised controlled trial comparing exercise into hypermobile versus neutral knee extension. Pediatr. Rheumatol. Online J. 2013, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, J.; Parslow, C.; Lim, E.J.; Hayward, A. Joint hypermobility: The use of a new assessment tool to measure lower limb hypermobility. Clin. Exp. Rheumatol. 2005, 23, 413–420. [Google Scholar] [PubMed]
- Pacey, V.; Tofts, L.; Adams, R.D.; Munns, C.F.; Nicholson, L.L. Quality of life prediction in children with joint hypermobility syndrome. J. Paediatr. Child Health 2015, 51, 689–695. [Google Scholar] [CrossRef]
- Adib, N.; Davies, K.; Grahame, R.; Woo, P.; Murray, K.J. Joint hypermobility syndrome in childhood. A not so benign multisystem disorder? Rheumatology 2005, 44, 744–750. [Google Scholar] [CrossRef]
- Vermeulen, S.; De Mits, S.; De Ridder, R.; Calders, P.; De Schepper, J.; Malfait, F.; Rombaut, L. Altered Multisegment Ankle and Foot Kinematics During Gait in Patients with Hypermobile Ehlers-Danlos Syndrome/Hypermobility Spectrum Disorder: A Case–Control Study. Arthritis Care Res. 2022, 74, 841–848. [Google Scholar] [CrossRef]
- de Koning, L.E.; Scheper, M.C.; Ploeger, H.E.; Warnink-Kavelaars, J.; Oosterlaan, J.; Bus, S.A.; Engelbert, R.H.H. An exploratory study of clinical characteristics and gait features of adolescents with hypermobility disorders. Gait Posture 2023, 100, 222–229. [Google Scholar] [CrossRef]
- Nikolajsen, H.; Larsen, P.K.; Simonsen, E.B.; Alkjær, T.; Falkerslev, S.; Kristensen, J.H.; Jensen, B.R.; Remvig, L.; Juul-Kristensen, B. Gait pattern in 9-11-year-old children with generalized joint hypermobility compared with controls; a cross-sectional study. BMC Musculoskelet. Disord. 2013, 14, 341. [Google Scholar] [CrossRef]
- Avsiuk, P.S. Lower extremity characteristics and postural alignment in young pre-professional dancers. Res. Dance Educ. 2020, 1–16. [Google Scholar] [CrossRef]
- Alsiri, N.; Cramp, M.; Barnett, S.; Palmer, S. Gait biomechanics in joint hypermobility syndrome: A spatiotemporal, kinematic and kinetic analysis. Musculoskelet. Care 2020, 18, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Hawke, F.; Rome, K.; Evans, A.M. The relationship between foot posture, body mass, age and ankle, lower-limb and whole-body flexibility in healthy children aged 7 to 15 years. J. Foot Ankle Res. 2016, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, N.; Hershkovitz, I.; Zeev, A.; Rothschild, B.; Siev-Ner, I. Joint Hypermobility and Joint Range of Motion in Young Dancers. J. Clin. Rheumatol. 2016, 22, 171–178. [Google Scholar] [CrossRef]
- Gulan, G.; Matovinović, D.; Nemec, B.; Rubinić, D.; Ravlić-Gulan, J. Femoral neck anteversion: Values, development, measurement, common problems. Coll. Antropol. 2000, 24, 521–527. [Google Scholar] [PubMed]
- Khamis, S.; Yizhar, Z. Effect of feet hyperpronation on pelvic alignment in a standing position. Gait Posture 2007, 25, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.; Woo, P. Benign joint hypermobility in childhood. Rheumatology 2001, 40, 489–491. [Google Scholar] [CrossRef]
- Leblebici, G.; Akalan, E.; Apti, A.; Kuchimov, S.; Kurt, A.; Onerge, K.; Temelli, Y.; Miller, F. Increased femoral anteversion-related biomechanical abnormalities: Lower extremity function, falling frequencies, and fatigue. Gait Posture 2019, 70, 336–340. [Google Scholar] [CrossRef]
- Hicks, J.; Arnold, A.; Anderson, F.; Schwartz, M.; Delp, S. The effect of excessive tibial torsion on the capacity of muscles to extend the hip and knee during single-limb stance. Gait Posture 2007, 26, 546–552. [Google Scholar] [CrossRef]
- Snow, M. Tibial torsion and patellofemoral pain and instability in the adult population: Current concept review. Curr. Rev. Musculoskelet. Med. 2021, 14, 67–75. [Google Scholar] [CrossRef]
- Konopinski, M.D.; Jones, G.J.; Johnson, M.I. The Effect of Hypermobility on the Incidence of Injuries in Elite-Level Professional Soccer Players: A Cohort Study. Am. J. Sports Med. 2012, 40, 763–769. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Paterno, M.V.; Nick, T.G.; Hewett, T.E. The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am. J. Sports Med. 2008, 36, 1073–1080. [Google Scholar] [CrossRef]
- Smith, R.; Damodaran, A.K.; Swaminathan, S.; Campbell, R.; Barnsley, L. Hypermobility and sports injuries in junior netball players. Br. J. Sports Med. 2005, 39, 628–631. [Google Scholar] [CrossRef] [PubMed]
- Östenberg, A.; Roos, H. Injury risk factors in female European football. A prospective study of 123 players during one season. Scand. J. Med. Sci. Sports 2000, 10, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Livingston, L.A.; Mandigo, J.L. Bilateral within-subject Q angle asymmetry in young adult females and males. Biomed. Sci. Instrum. 1997, 33, 112–117. [Google Scholar]
- Emami, M.-J.; Ghahramani, M.-H.; Abdinejad, F.; Namazi, H. Q-angle: An invaluable parameter for evaluation of anterior knee pain. Arch. Iran. Med. 2007, 10, 24–26. [Google Scholar]
- Lankhorst, N.E.; Bierma-Zeinstra, S.M.; van Middelkoop, M. Factors associated with patellofemoral pain syndrome: A systematic review. Br. J. Sports Med. 2013, 47, 193–206. [Google Scholar] [CrossRef]
- Ajuzie, G.G.; Ojukwu, C.P.; Ayachukwu, C.C.; Ajuzie, H.D.; Ekechukwu, E.N. Correlation between Foot Arch Index and Quadriceps Angle among Patients with Knee Osteoarthritis in National Orthopaedics Hospital Enugu. AJHST 2020, 3, 156–163. [Google Scholar]
- Akinbo, S.; Alimi, N.; Noronha, C. Relationship between bilateral knee joint osteoarthritis and the quadriceps (Q)-angle. S. Afr. J. Physiother. 2004, 60, 26. [Google Scholar]
- Puckree, T.; Govender, A.; Govender, K.; Naidoo, P. The quadriceps angle and the incidence of knee injury in Indian long-distance runners. S. Afr. J. Sports Med. 2007, 19, 9. [Google Scholar] [CrossRef]
- Chhabra, P.K.; Godwin, R.; Setiya, M. “Quadriceps angle”: An important indicator of biomechanical function of lower extremity and its relation with anterior knee pain. Int. J. Sci. 2016, 4, 173–176. [Google Scholar]
- Foss, K.D.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Generalized joint laxity associated with increased medial foot loading in female athletes. J. Athl. Train. 2009, 44, 356–362. [Google Scholar] [CrossRef]
- Alahmari, K.A.; Kakaraparthi, V.N.; Reddy, R.S.; Samuel, P.S.; Tedla, J.S.; Rengaramanujam, K.; Ahmad, I.; Sangadala, D.R.; Mukherjee, D. Foot Posture Index Reference Values among Young Adults in Saudi Arabia and Their Association with Anthropometric Determinants, Balance, Functional Mobility, and Hypermobility. Biomed. Res. Int. 2021, 2021, 8844356. [Google Scholar] [CrossRef] [PubMed]
- McDermott, P.; Wolfe, E.; Lowry, C.; Robinson, K.; French, H.P. Evaluating the immediate effects of wearing foot orthotics in children with Joint Hypermobility Syndrome (JHS) by analysis of temperospatial parameters of gait and dynamic balance: A preliminary study. Gait Posture 2018, 60, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Fatoye, F.A.; Palmer, S.; Van der Linden, M.L.; Rowe, P.J.; Macmillan, F. Gait kinematics and passive knee joint range of motion in children with hypermobility syndrome. Gait Posture 2011, 33, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.C.; Ferrari, J.; Smillie, S. Assessment of gait characteristics and orthotic management in children with Developmental Coordination Disorder: Preliminary findings to inform multidisciplinary care. Res. Dev. Disabil. 2013, 34, 3197–3201. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, R.L.; Peng, H.L.; Lee, W.C. Short-term effects of customized arch support insoles on symptomatic flexible flatfoot in children: A randomized controlled trial. Medicine 2018, 97, e10655. [Google Scholar] [CrossRef]
- Shultz, S.J.; Nguyen, A.D.; Schmitz, R.J. Differences in lower extremity anatomical and postural characteristics in males and females between maturation groups. J. Orthop. Sports Phys. Ther. 2008, 38, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Norkin, C.C.; White, D.J. Measurement of Joint Motion: A Guide to Goniometry; FA Davis: Philadelphia, PA, USA, 2016. [Google Scholar]
- Gajdosik, R.L.; Bohannon, R.W. Clinical measurement of range of motion: Review of goniometry emphasizing reliability and validity. Phys. Ther. 1987, 67, 1867–1872. [Google Scholar] [CrossRef]
- Eliasziw, M.; Young, S.L.; Woodbury, M.G.; Fryday-Field, K. Statistical methodology for the concurrent assessment of interrater and intrarater reliability: Using goniometric measurements as an example. Phys. Ther. 1994, 74, 777–788. [Google Scholar] [CrossRef]
- Ruwe, P.A.; Gage, J.R.; Ozonoff, M.; DeLuca, P. Clinical determination of femoral anteversion. A comparison with established techniques. J. Bone Jt. Surg. Am. 1992, 74, 820–830. [Google Scholar] [CrossRef]
- Sankar, W.N.; Laird, C.T.; Baldwin, K.D. Hip Range of Motion in Children: What Is the Norm? J. Pediatr. Orthop. 2012, 32, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Uding, A.; Bloom, N.J.; Commean, P.K.; Hillen, T.J.; Patterson, J.D.; Clohisy, J.C.; Harris-Hayes, M. Clinical tests to determine femoral version category in people with chronic hip joint pain and asymptomatic controls. Musculoskelet. Sci. Pract. 2019, 39, 115–122. [Google Scholar] [CrossRef]
- Sendur, O.F.; Gurer, G.; Yildirim, T.; Ozturk, E.; Aydeniz, A. Relationship of Q angle and joint hypermobility and Q angle values in different positions. Clin. Rheumatol. 2006, 25, 304–308. [Google Scholar] [CrossRef]
- Örtqvist, M.; Moström, E.B.; Roos, E.M.; Lundell, P.; Janarv, P.-M.; Werner, S.; Broström, E.W. Reliability and reference values of two clinical measurements of dynamic and static knee position in healthy children. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 2060–2066. [Google Scholar] [CrossRef]
- Son, S.M.; Ahn, S.H.; Jung, G.S.; Seo, S.W.; Park, I.S.; Song, J.C.; Jang, S.H.; Do, K.H. The therapeutic effect of tibia counter rotator with toe-out gait plate in the treatment of tibial internal torsion in children. Ann. Rehabil. Med. 2014, 38, 218–225. [Google Scholar] [CrossRef]
- Staheli, L.T.; Corbett, M.; Wyss, C.; King, H. Lower-extremity rotational problems in children. Normal values to guide management. J. Bone Jt. Surg. Am. 1985, 67, 39–47. [Google Scholar] [CrossRef]
- Elveru, R.A.; Rothstein, J.M.; Lamb, R.L. Goniometric reliability in a clinical setting: Subtalar and ankle joint measurements. Phys. Ther. 1988, 68, 672–677. [Google Scholar] [CrossRef]
- Youdas, J.W.; Bogard, C.L.; Suman, V.J. Reliability of goniometric measurements and visual estimates of ankle joint active range of motion obtained in a clinical setting. Arch. Phys. Med. Rehabil. 1993, 74, 1113–1118. [Google Scholar] [CrossRef]
- Redmond, A.C.; Crane, Y.Z.; Menz, H.B. Normative values for the foot posture index. J. Foot Ankle Res. 2008, 1, 6. [Google Scholar] [CrossRef]
- Gijon-Nogueron, G.; Montes-Alguacil, J.; Alfageme-Garcia, P.; Cervera-Marin, J.A.; Morales-Asencio, J.M.; Martinez-Nova, A. Establishing normative foot posture index values for the paediatric population: A cross-sectional study. J. Foot Ankle Res. 2016, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, K.B.; Jeong, J.O.; Kwon, N.Y.; Jeong, S.M. Correlation of foot posture index with plantar pressure and radiographic measurements in pediatric flatfoot. Ann. Rehabil. Med. 2015, 39, 10. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.C.; Ferrari, J. Inter-rater reliability of the Foot Posture Index (FPI-6) in the assessment of the paediatric foot. J. Foot Ankle Res. 2009, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, F.A.; Aboelnasr, E.A.; Salem, Y.; Zaghloul, A.A. Validity and diagnostic accuracy of foot posture Index-6 using radiographic findings as the gold standard to determine paediatric flexible flatfoot between ages of 6–18 years: A cross-sectional study. Musculoskelet. Sci. Pract. 2020, 46, 102107. [Google Scholar] [CrossRef]
- Freedman, D. cdcanthro: Calculate Various Z-Scores, Percentiles, etc. from the CDC Growth Charts. R Package Version 0.1.2. Available online: https://github.com/CDC-DNPAO/CDCAnthro (accessed on 20 February 2022).
- Heumann, C.; Schomaker, M.; Shalabh, M.S. Introduction to Statistics and Data Analysis: With Exercises, Solutions and Applications in R, 2nd ed.; Springer International: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Bauer, D.F. Constructing confidence sets using rank statistics. J. Am. Stat. Assoc. 1972, 67, 687–690. [Google Scholar] [CrossRef]
- Velasco-Benítez, C.A.; Ruiz-Extremera, Á.; Saps, M. Case–control study on generalised joint hypermobility in schoolchildren with functional gastrointestinal disorders according to Rome IV criteria in Spanish. An. Pediatr. (Engl. Ed.) 2019, 91, 401–407. [Google Scholar] [CrossRef]
- Ewertowska, P.; Kleniewska, A.; Wasilewski, J.; Wasilewska, A.; Zielińska, A.; Haponiuk, I.; Czaprowski, D. Assessment of lower limbs in people with Generalized Joint Hypermobility-Preliminary report. Adv. Rehabil. 2021, 35, 25–32. [Google Scholar] [CrossRef]
- Turner, E.H.G.; Markhardt, B.K.; Cotter, E.J.; Hetzel, S.J.; Kanarek, A.; Lang, M.H.; Mintz, D.N.; Spiker, A.M. Patients with Generalized Joint Hypermobility Have Thinner Superior Hip Capsules and Greater Hip Internal Rotation on Physical Examination. Arthrosc. Sports Med. Rehabil. 2022, 4, e1417–e1427. [Google Scholar] [CrossRef]
- Magee, D.J. Lumbar Spine in Orthopedic Physical Assessment, 2nd ed.; W.B. Saunders Co.: Philadelphia, PA, USA, 1992. [Google Scholar]
- Williams, C.M.; Welch, J.J.; Scheper, M.; Tofts, L.; Pacey, V. Variability of joint hypermobility in children: A meta-analytic approach to set cut-off scores. Eur. J. Pediatr. 2024, 183, 3517–3529. [Google Scholar] [CrossRef]
- Chaiparinya, P.; Gaogasigam, C. Prevalence, frontal plane knee alignment, and lower limb joint pain and injury in generalized joint hypermobility in Thai physical therapy students. Reumatologia 2022, 60, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Sapril, A.; Subadi, I.; Pawana, I.P.A.; Poerwandari, D.; Wardani, N.K.; Melaniani, S. Relationship between Beighton score, genders, body mass index, and quadriceps angle in East Java Training Athletes. Bali Med. J. 2023, 12, 1174–1178. [Google Scholar] [CrossRef]
- Daneshmandi, H.; Saki, F. The study of joint hypermobility and Q angle in female football players. World J. Sport Sci. 2010, 3, 243–247. [Google Scholar]
- Tyagi, A.; Mohanty, P.; Pattnaik, M. Exploring the complex interplay: Correlation between pronated foot and pelvic inclination, femoral anteversion, quadriceps angle, tibial torsion and talus head position in asymptomatic adults. Med. Sci. 2024, 28, 1–10. [Google Scholar] [CrossRef]
- Powers, C.M. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective. J. Orthop. Sports Phys. Ther. 2003, 33, 639–646. [Google Scholar] [CrossRef]
- Tiberio, D. The effect of excessive subtalar joint pronation on patellofemoral mechanics: A theoretical model. J. Orthop. Sports Phys. Ther. 1987, 9, 160–165. [Google Scholar] [CrossRef]
- Olerud, C.; Berg, P. The variation of the Q angle with different positions of the foot. Clin. Orthop. Relat. Res. 1984, 191, 162–165. [Google Scholar] [CrossRef]
- Sharma, R.; Vaibhav, V.; Meshram, R.; Singh, B.; Khorwal, G. A Systematic Review on Quadriceps Angle in Relation to Knee Abnormalities. Cureus 2023, 15, e34355. [Google Scholar] [CrossRef] [PubMed]
- Malfait, F.; Francomano, C.; Byers, P.; Belmont, J.; Berglund, B.; Black, J.; Bloom, L.; Bowen, J.M.; Brady, A.F.; Burrows, N.P. The 2017 international classification of the Ehlers–Danlos syndromes. Am. J. Med. Genet. C 2017, 175, 8–26. [Google Scholar] [CrossRef]
- Bates, A.V.; McGregor, A.; Alexander, C.M. Adaptation of balance reactions following forward perturbations in people with joint hypermobility syndrome. BMC Musculoskelet. Disord. 2021, 22, 123. [Google Scholar] [CrossRef]
- Steinberg, N.; Tenenbaum, S.; Zeev, A.; Pantanowitz, M.; Waddington, G.; Dar, G.; Siev-Ner, I. Generalized joint hypermobility, scoliosis, patellofemoral pain, and physical abilities in young dancers. BMC Musculoskelet. Disord. 2021, 22, 161. [Google Scholar] [CrossRef]
- Chen, K.-C.; Tung, L.-C.; Yeh, C.-J.; Yang, J.-F.; Kuo, J.-F.; Wang, C.-H. Change in flatfoot of preschool-aged children: A 1-year follow-up study. Eur. J. Pediatr. 2013, 172, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-C.; Yeh, C.-J.; Tung, L.-C.; Yang, J.-F.; Yang, S.-F.; Wang, C.-H. Relevant factors influencing flatfoot in preschool-aged children. Eur. J. Pediatr. 2011, 170, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Žukauskas, S.; Barauskas, V.; Čekanauskas, E. Comparison of multiple flatfoot indicators in 5–8-year-old children. Open Med. 2021, 16, 246–256. [Google Scholar] [CrossRef]
- Lee, S.H.; Chung, C.Y.; Park, M.S.; Choi, I.H.; Cho, T.J. Tibial torsion in cerebral palsy: Validity and reliability of measurement. Clin. Orthop. Relat. Res. 2009, 467, 2098–2104. [Google Scholar] [CrossRef]
- Bin Abd Razak, H.R.; Bin Ali, N.; Howe, T.S. Generalized ligamentous laxity may be a predisposing factor for musculoskeletal injuries. J. Sci. Med. Sport. 2014, 17, 474–478. [Google Scholar] [CrossRef]
- Blajwajs, L.; Williams, J.; Timmons, W.; Sproule, J. Hypermobility prevalence, measurements, and outcomes in childhood, adolescence, and emerging adulthood: A systematic review. Rheumatol. Int. 2023, 43, 1423–1444. [Google Scholar] [CrossRef] [PubMed]
- Black, W.R.; DiCesare, C.A.; Wright, L.A.; Thomas, S.; Pfeiffer, M.; Kitchen, K.; Ting, T.V.; Williams, S.E.; Myer, G.D.; Kashikar-Zuck, S. The effects of joint hypermobility on pain and functional biomechanics in adolescents with juvenile fibromyalgia: Secondary baseline analysis from a pilot randomized controlled trial. BMC Pediatr. 2023, 23, 557. [Google Scholar] [CrossRef]
- Apti, A.; Akalan, E.; Leblebici, G.; Kuchimov, S.; Kurt, A.; Kilicoglu, O.; Temelli, Y.; Miller, F. Frontal kinematic deviations between hyper and hypomobile children with increased femoral anteversion. Gait Posture 2021, 90, 9–10. [Google Scholar] [CrossRef]
- Akalan, N.E.; Apti, A.; Kuchimov, S.; Leblebici, G.; Onerge, K.; Bilgili, F.; Bacak, I.; Miller, F.; Temelli, Y. P19: Increased femoral anteversion related biomechanical abnormalities: Gait and hyper mobility. Gait Posture 2017, 57, 223–224. [Google Scholar] [CrossRef]
- Sobhani-Eraghi, A.; Motalebi, M.; Sarreshtehdari, S.; Molazem-Sanandaji, B.; Hasanlu, Z. Prevalence of joint hypermobility in children and adolescents: A systematic review and meta-analysis. J. Res. Med. Sci. 2020, 25, 104. [Google Scholar]
- Demmler, J.C.; Atkinson, M.D.; Reinhold, E.J.; Choy, E.; Lyons, R.A.; Brophy, S.T. Diagnosed prevalence of Ehlers-Danlos syndrome and hypermobility spectrum disorder in Wales, UK: A national electronic cohort study and case–control comparison. BMJ Open 2019, 9, e031365. [Google Scholar] [CrossRef]
- Escamilla-Martínez, E.; Sánchez Martín, F.; Ramos-Ortega, J.; González-García, P.; Cortés-Vega, M.D.; Fernández-Seguín, L.M. Age related changes in the Q angle of non-professional football players. Heliyon 2023, 9, e16781. [Google Scholar] [CrossRef]
- Ganokroj, P.; Sompornpanich, N.; Kerdsomnuek, P.; Vanadurongwan, B.; Lertwanich, P. Validity and reliability of smartphone applications for measurement of hip rotation, compared with three-dimensional motion analysis. BMC Musculoskelet. Disord. 2021, 22, 166. [Google Scholar] [CrossRef] [PubMed]
- Muralidaran, S.; Wilson-Smith, A.; Maharaj, M.; Beshara, P.; Nettleton, L.; Want, T.; Pelletier, M.; Mobbs, R.; Walsh, W.R. Validation of a Novel Digital Goniometer as a Range of Motion Assessment Tool for The Lower Extremity. J. Orthop. Res. Ther. 2020, 5, 1158–1166. [Google Scholar]
| Inclusion Criteria | Exclusion Criteria |
|---|---|
| Aged between 5 and 18 years Adequate vision, hearing, and cognitive ability to understand instructions Speak English to consent to biomechanical assessment Beighton score for children diagnosed with hypermobility: ≥5 pubertal ≥6 pre-pubertal | >18 years old Lower limb pain, swelling or acute injuries Inability to walk unassisted Unable to consent or understand instructions Presence of concomitant musculoskeletal disease, central or peripheral nerve disease |
| Assessments | Participant Position | Goniometer | ||
|---|---|---|---|---|
| Reference Arm | Mobile Arm | Axis | ||
| Internal hip Rotation (Craig’s Test) | Prone | Perpendicular to floor (representing femoral neck axis) | Parallel to tibia (representing line between femoral condyles) | Most lateral aspect of greater trochanter |
| Knee joint assessment (Q angle) | Upright | Pointed to ASIS | on tibial tuberosity | Centre of patella |
| Tibial torsion (transmalleolar angle) | Supine | Medial and lateral malleoli (transmalleolar axis) | longitudinal axis of the thigh (transcondylar axis) | transmalleolar axis |
| Subtalar Joint Inversion and Eversion | Prone | Posterior midline of lower leg | Posterior midline of calcaneus | Posterior aspect of subtalar joint midway between malleoli |
| Characteristic | GJH N = 25 1 | Non-GJH N = 27 1 | p-Value 2 | Overall N = 52 1 |
|---|---|---|---|---|
| Age | 0.580 | |||
| Median (IQR) | 11.00 (9.00, 12.00) | 11.00 (9.00, 14.00) | 11.00 (9.00, 13.00) | |
| Range | 5.00, 18.00 | 6.00, 18.00 | 5.00, 18.00 | |
| Sex | 0.677 | |||
| Female | 18 (72%) | 18 (67%) | 36 (69%) | |
| Male | 7 (28%) | 9 (33%) | 16 (31%) | |
| Beighton score | <0.001 | |||
| Median (IQR) | 6.00 (6.00, 8.00) | 0.00 (0.00, 0.00) | 1.00 (0.00, 6.00) | |
| Range | 5.00, 9.00 | 0.00, 1.00 | 0.00, 9.00 | |
| Height-sex age percentile | 0.088 | |||
| Median (IQR) | 69 (32, 85) | 46 (34, 50) | 47 (33, 69) | |
| Range | 0, 95 | 9, 100 | 0, 100 | |
| Weight-sex age percentile | 0.048 | |||
| Median (IQR) | 68 (38, 85) | 47 (41, 50) | 49 (41, 70) | |
| Range | 0, 98 | 33, 92 | 0, 98 | |
| BMI-sex age percentile | 0.139 | |||
| Median (IQR) | 65 (32, 87) | 52 (47, 58) | 54 (47, 73) | |
| Range | 0, 100 | 34, 80 | 0, 100 |
| Characteristic | Hyper N = 7 | Non-Hyper N = 9 | p-Value 1 | Overall N = 16 | Hyper N = 18 | Non-Hyper N = 18 | p-Value 1 | Overall N = 36 |
|---|---|---|---|---|---|---|---|---|
| Males | Females | |||||||
| Age | 0.589 | 0.408 | ||||||
| Median (IQR) | 12.00 (10.50, 12.00) | 10.00 (9.00, 12.00) | 11.00 (9.00, 12.00) | 10.00 (9.00, 13.00) | 12.50 (9.25, 14.00) | 11.00 (9.00, 14.00) | ||
| Range | 7.00, 12.00 | 7.00, 16.00 | 7.00, 16.00 | 5.00, 18.00 | 6.00, 18.00 | 5.00, 18.00 | ||
| Height-sex age percentile | 0.916 | 0.035 | ||||||
| Median (IQR) | 75 (15, 91) | 47 (44, 50) | 47 (41, 79) | 65 (37, 77) | 44 (31, 50) | 48 (33, 63) | ||
| Range | 0, 95 | 9, 100 | 0, 100 | 6, 91 | 14, 57 | 6, 91 | ||
| Weight-sex age percentile | 0.351 | 0.060 | ||||||
| Median (IQR) | 86 (46, 92) | 48 (47, 61) | 56 (45, 87) | 61 (39, 81) | 45 (41, 49) | 48 (41, 66) | ||
| Range | 0, 96 | 33, 92 | 0, 96 | 0, 98 | 37, 66 | 0, 98 | ||
| BMI-sex age percentile | 0.681 | 0.104 | ||||||
| Median (IQR) | 86 (33, 88) | 54 (53, 61) | 55 (44, 81) | 65 (36, 83) | 49 (47, 57) | 51 (47, 67) | ||
| Range | 6, 100 | 36, 80 | 6, 100 | 0, 96 | 34, 74 | 0, 96 | ||
| Characteristic | Overall N = 52 | GJH N = 25 | Non-GJH N = 27 | Median Difference (95%CI) | p-Value 1 |
|---|---|---|---|---|---|
| Craig’s test (internal rotation) RIGHT | <0.001 | ||||
| Median (IQR) | 23.5 (20.0, 26.0) | 26.0 (25.0, 30.0) | 20.0 (17.5, 23.0) | 7 (5, 9) | |
| Range | 12.0, 35.0 | 18.0, 35.0 | 12.0, 26.0 | ||
| Craig’s test (internal rotation) LEFT | <0.001 | ||||
| Median (IQR) | 23.0 (20.0, 27.0) | 27.0 (25.0, 31.0) | 20.0 (18.5, 22.5) | 7 (5, 9) | |
| Range | 12.0, 34.0 | 17.0, 34.0 | 12.0, 26.0 | ||
| Knee Position Extension Q angle RIGHT | <0.001 | ||||
| Median (IQR) | 9.50 (7.00, 12.00) | 12.00 (11.00, 14.00) | 8.00 (6.00, 8.00) | 4 (3, 6) | |
| Range | 4.00, 15.00 | 7.00, 15.00 | 4.00, 12.00 | ||
| Knee Position Extension Q angle LEFT | <0.001 | ||||
| Median (IQR) | 9.50 (7.00, 12.00) | 12.00 (10.00, 14.00) | 7.00 (6.00, 8.00) | 4 (3, 6) | |
| Range | 4.00, 17.00 | 7.00, 17.00 | 4.00, 12.00 | ||
| Tibial torsion (Transmalleolar angle) RIGHT | 0.020 | ||||
| Median (IQR) | 14.0 (12.0, 17.0) | 12.0 (8.0, 15.0) | 15.0 (13.0, 17.0) | −3 (−5, −1) | |
| Range | 4.0, 20.0 | 4.0, 20.0 | 12.0, 18.0 | ||
| Tibial torsion (Transmalleolar angle) LEFT | 0.067 | ||||
| Median (IQR) | 15.0 (12.0, 16.3) | 14.0 (8.0, 16.0) | 15.0 (14.0, 17.0) | −3 (−6, 0) | |
| Range | 0.0, 21.0 | 0.0, 21.0 | 12.0, 20.0 | ||
| Subtalar Joint ROM total RIGHT | <0.001 | ||||
| Median (IQR) | 33.0 (30.0, 40.3) | 41.0 (36.0, 43.0) | 30.0 (29.0, 32.0) | 9 (7, 12) | |
| Range | 28.0, 48.0 | 29.0, 48.0 | 28.0, 34.0 | ||
| Subtalar Joint ROM total LEFT | <0.001 | ||||
| Median (IQR) | 33.0 (31.0, 39.3) | 40.0 (35.0, 43.0) | 31.0 (29.5, 32.0) | 9 (6, 12) | |
| Range | 27.0, 47.0 | 27.0, 47.0 | 28.0, 34.0 | ||
| Subtalar Joint ROM inversion RIGHT | <0.001 | ||||
| Median (IQR) | 23.1 (21.0, 28.2) | 28.7 (25.2, 30.1) | 21.0 (20.3, 22.4) | 6.3 (4.9, 8.4) | |
| Range | 19.6, 33.6 | 20.3, 33.6 | 19.6, 23.8 | ||
| Subtalar Joint ROM eversion RIGHT | <0.001 | ||||
| Median (IQR) | 9.90 (9.00, 12.08) | 12.30 (10.80, 12.90) | 9.00 (8.70, 9.60) | 2.7 (2.1, 3.6) | |
| Range | 8.40, 14.40 | 8.70, 14.40 | 8.40, 10.20 | ||
| Subtalar Joint ROM inversion LEFT | <0.001 | ||||
| Median (IQR) | 23.1 (21.7, 27.5) | 28.0 (24.5, 30.1) | 21.7 (20.7, 22.4) | 6.3 (4.2, 8.4) | |
| Range | 18.9, 32.9 | 18.9, 32.9 | 19.6, 23.8 | ||
| Subtalar Joint ROM eversion LEFT | <0.001 | ||||
| Median (IQR) | 9.90 (9.30, 11.78) | 12.00 (10.50, 12.90) | 9.30 (8.85, 9.60) | 2.7 (1.8, 3.6) | |
| Range | 8.10, 14.10 | 8.10, 14.10 | 8.40, 10.20 | ||
| Foot Posture Index (FPI) RIGHT | <0.001 | ||||
| Median (IQR) | 6.5 (4.0, 9.0) | 9.0 (8.0, 10.0) | 4.0 (0.0, 5.0) | 5 (4, 7) | |
| Range | −2.0, 12.0 | 0.0, 12.0 | −2.0, 7.0 | ||
| Foot Posture Index (FPI) LEFT | <0.001 | ||||
| Median (IQR) | 6.0 (4.0, 9.0) | 9.0 (8.0, 10.0) | 4.0 (0.0, 5.0) | 5 (4, 7) | |
| Range | −2.0, 12.0 | 0.0, 12.0 | −2.0, 7.0 | ||
| Sex | Males | Females | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Characteristic |
Overall
N = 16 |
GJH
N = 7 |
Non-GJH
N = 9 |
Median
Difference (95%CI) | p-Value 1 |
Overall
N = 36 |
GJH
N = 18 |
Non-GJH
N = 18 |
Median
Difference (95%CI) | p-Value 1 |
| Craig’s test (internal rotation) RIGHT | 0.040 | <0.001 | ||||||||
| Median (IQR) | 21.5 (20.0, 25.0) | 25.0 (22.5, 30.0) | 20.0 (20.0, 23.0) | 5 (0, 10) | 24.5 (19.5, 26.3) | 26.5 (25.0, 29.8) | 19.0 (17.3, 23.8) | 7 (4, 10) | ||
| Range | 15.0, 32.0 | 18.0, 32.0 | 15.0, 23.0 | 12.0, 35.0 | 20.0, 35.0 | 12.0, 26.0 | ||||
| Craig’s test (internal rotation) LEFT | 0.062 | <0.001 | ||||||||
| Median (IQR) | 21.5 (20.0, 25.3) | 26.0 (22.5, 30.5) | 20.0 (20.0, 22.0) | 6 (0, 11) | 24.0 (20.0, 27.0) | 27.0 (26.0, 30.8) | 20.0 (18.0, 22.8) | 7 (4, 10) | ||
| Range | 15.0, 34.0 | 17.0, 34.0 | 15.0, 23.0 | 12.0, 33.0 | 20.0, 33.0 | 12.0, 26.0 | ||||
| Knee Position Extension Q angle RIGHT | 0.006 | <0.001 | ||||||||
| Median (IQR) | 8.00 (7.00, 11.25) | 12.00 (10.00,13.50) | 7.00 (7.00, 8.00) | 5 (2, 7) | 10.00 (8.00, 12.00) | 11.50 (11.00, 13.75) | 8.00 (6.00, 9.75) | 4 (3, 6) | ||
| Range | 4.00, 15.00 | 7.00, 15.00 | 4.00, 8.00 | 4.00, 15.00 | 8.00, 15.00 | 4.00, 12.00 | ||||
| Knee Position Extension Q angle LEFT | 0.012 | <0.001 | ||||||||
| Median (IQR) | 8.00 (7.00, 10.25) | 11.00 (9.00, 13.50) | 8.00 (6.00, 8.00) | 5 (1, 7) | 10.00 (7.00, 12.00) | 12.00 (10.00, 14.00) | 7.00 (6.00, 9.50) | 4 (3, 6) | ||
| Range | 4.00, 15.00 | 7.00, 15.00 | 4.00, 8.00 | 4.00, 17.00 | 8.00, 17.00 | 4.00, 12.00 | ||||
| Tibial torsion (Transmalleolar angle) RIGHT | 0.423 | 0.002 | ||||||||
| Median (IQR) | 16.0 (13.8, 18.0) | 17.0 (14.5, 19.0) | 16.0 (13.0, 16.0) | 2 (−3, 5) | 14.0 (10.0, 16.0) | 10.0 (8.0, 14.0) | 14.5 (13.3, 17.0) | −4 (−7, −2) | ||
| Range | 4.0, 20.0 | 4.0, 20.0 | 12.0, 18.0 | 6.0, 20.0 | 6.0, 20.0 | 12.0, 18.0 | ||||
| Tibial torsion (Transmalleolar angle) LEFT | 0.393 | 0.010 | ||||||||
| Median (IQR) | 15.0 (14.0, 18.3) | 15.0 (15.0, 19.5) | 15.0 (14.0, 17.0) | 1 (−3, 5) | 14.0 (9.8, 16.0) | 9.5 (8.0, 15.0) | 15.0 (14.0, 16.8) | −5 (−7, −1) | ||
| Range | 0.0, 21.0 | 0.0, 21.0 | 13.0, 19.0 | 5.0, 20.0 | 5.0, 18.0 | 12.0, 20.0 | ||||
| Subtalar Joint ROM total RIGHT | 0.022 | <0.001 | ||||||||
| Median (IQR) | 31.0 (29.0, 36.5) | 38.0 (33.0, 38.5) | 30.0 (28.0, 32.0) | 7 (1, 10) | 33.0 (30.8, 41.0) | 41.0 (37.0, 44.8) | 31.0 (29.0, 32.8) | 11 (7, 13) | ||
| Range | 28.0, 41.0 | 29.0, 41.0 | 28.0, 33.0 | 28.0, 48.0 | 30.0, 48.0 | 28.0, 34.0 | ||||
| Subtalar Joint ROM total LEFT | 0.009 | <0.001 | ||||||||
| Median (IQR) | 32.0 (30.8, 36.3) | 37.0 (34.0, 38.5) | 31.0 (29.0, 32.0) | 6 (2, 9) | 33.5 (31.0, 42.3) | 42.5 (35.8, 44.5) | 31.0 (30.0, 31.8) | 11 (7, 13) | ||
| Range | 28.0, 40.0 | 31.0, 40.0 | 28.0, 34.0 | 27.0, 47.0 | 27.0, 47.0 | 28.0, 34.0 | ||||
| Subtalar Joint inversion RIGHT | 0.022 | <0.001 | ||||||||
| Median (IQR) | 21.70 (20.30, 25.55) | 26.60 (23.10, 26.95) | 21.00 (19.60, 22.40) | 4.9 (0.7, 7) | 23.1 (21.5, 28.7) | 28.7 (25.9, 31.3) | 21.7 (20.3, 22.9) | 7.7 (4.9, 9.1) | ||
| Range | 19.60, 28.70 | 20.30, 28.70 | 19.60, 23.10 | 19.6, 33.6 | 21.0, 33.6 | 19.6, 23.8 | ||||
| Subtalar Joint ROM eversion RIGHT | 0.022 | <0.001 | ||||||||
| Median (IQR) | 9.30 (8.70, 10.95) | 11.40 (9.90, 11.55) | 9.00 (8.40, 9.60) | 2.1 (0.3, 3) | 9.90 (9.23, 12.30) | 12.30 (11.10, 13.43) | 9.30 (8.70, 9.83) | 3.3 (2.1, 3.9) | ||
| Range | 8.40, 12.30 | 8.70, 12.30 | 8.40, 9.90 | 8.40, 14.40 | 9.00, 14.40 | 8.40, 10.20 | ||||
| Subtalar Joint ROM inversion LEFT | <0.001 | 0.009 | <0.001 | |||||||
| Median (IQR) | 22.40 (21.53, 25.38) | 25.90 (23.80, 26.95) | 21.70 (20.30, 22.40) | 4.2 (1.4, 6.3) | 23.5 (21.7, 29.6) | 29.8 (25.0, 31.2) | 21.7 (21.0, 22.2) | 7.7 (4.9, 9.1) | ||
| Range | 19.60, 28.00 | 21.70, 28.00 | 19.60, 23.80 | 18.9, 32.9 | 18.9, 32.9 | 19.6, 23.8 | ||||
| Subtalar Joint ROM eversion LEFT | 0.009 | <0.001 | ||||||||
| Median (IQR) | 9.60 (9.23, 10.88) | 11.10 (10.20, 11.55) | 9.30 (8.70, 9.60) | 1.8 (0.6, 2.7) | 10.05 (9.30, 12.68) | 12.75 (10.73, 13.35) | 9.30 (9.00, 9.53) | 3.3 (2.1, 3.9) | ||
| Range | 8.40, 12.00 | 9.30, 12.00 | 8.40, 10.20 | 8.10, 14.10 | 8.10, 14.10 | 8.40, 10.20 | ||||
| Foot Posture Index (FPI) RIGHT | <0.001 | <0.001 | ||||||||
| Median (IQR) | 6.5 (4.0, 9.0) | 9.0 (8.5, 9.5) | 4.0 (3.0, 5.0) | 5 (3, 8) | 6.5 (3.5, 9.3) | 9.5 (7.3, 10.0) | 4.0 (0.0, 5.0) | 6 (4, 8) | ||
| Range | 0.0, 10.0 | 8.0, 10.0 | 0.0, 7.0 | −2.0, 12.0 | 0.0, 12.0 | −2.0, 7.0 | ||||
| Foot Posture Index (FPI) LEFT | <0.001 | <0.001 | ||||||||
| Median (IQR) | 6.0 (4.0, 8.3) | 9.0 (8.0, 10.0) | 4.0 (3.0, 5.0) | 5 (3, 8) | 6.0 (3.5, 9.3) | 9.5 (7.3, 10.0) | 4.0 (0.0, 5.0) | 6 (4, 8) | ||
| Range | 0.0, 10.0 | 8.0, 10.0 | 0.0, 7.0 | −2.0, 12.0 | 0.0, 12.0 | −2.0, 6.0 | ||||
| Age Group | 11 Years and Under | 12 Years and Over | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Characteristic | Overall N = 28 | GJH N = 14 | Non-GJH N = 14 | Median Difference (95%CI) | p-Value 1 | Overall N = 24 | GJH N = 11 | Non-GJH N = 13 | Median Difference (95%CI) | p-Value 1 |
| Craigs test (internal rotation) RIGHT | <0.001 | 0.001 | ||||||||
| Median (IQR) | 25.0 (20.0, 28.0) | 28.0 (25.0, 30.0) | 20.0 (20.0, 23.0) | 7 (4, 10) | 21.0 (17.8, 25.0) | 25.0 (22.5, 28.0) | 18.0 (17.0, 22.0) | 7 (3, 10) | ||
| Range | 17.0, 35.0 | 20.0, 35.0 | 17.0, 26.0 | 12.0, 32.0 | 18.0, 32.0 | 12.0, 24.0 | ||||
| Craigs test (internal rotation) LEFT | <0.001 | 0.003 | ||||||||
| Median (IQR) | 25.0 (20.0, 27.3) | 27.5 (26.0, 31.0) | 20.5 (20.0, 23.0) | 7 (4, 10) | 21.5 (18.8, 26.0) | 26.0 (22.5, 29.0) | 20.0 (16.0, 22.0) | 7 (3, 11) | ||
| Range | 17.0, 33.0 | 20.0, 33.0 | 17.0, 26.0 | 12.0, 34.0 | 17.0, 34.0 | 12.0, 24.0 | ||||
| Knee Position Extension Q angle RIGHT | <0.001 | 0.003 | ||||||||
| Median (IQR) | 10.00 (8.00, 12.00) | 12.00 (11.00, 13.75) | 8.00 (7.00, 8.00) | 4 (3, 6) | 8.50 (6.75, 11.25) | 11.00 (9.50, 13.50) | 7.00 (5.00, 8.00) | 4 (2, 6) | ||
| Range | 4.00, 15.00 | 9.00, 15.00 | 4.00, 10.00 | 4.00, 15.00 | 7.00, 15.00 | 4.00, 12.00 | ||||
| Knee Position Extension Q angle LEFT | <0.001 | 0.003 | ||||||||
| Median (IQR) | 10.00 (7.75, 12.00) | 12.00 (10.25, 14.00) | 7.50 (7.00, 8.00) | 4 (3, 6) | 8.00 (6.00, 12.00) | 12.00 (9.00, 13.50) | 6.00 (6.00, 8.00) | 4 (2, 7) | ||
| Range | 4.00, 17.00 | 9.00, 17.00 | 4.00, 10.00 | 4.00, 15.00 | 7.00, 15.00 | 4.00, 12.00 | ||||
| Tibial torsion (Transmalleolar angle) RIGHT | 0.111 | 0.052 | ||||||||
| Median (IQR) | 13.0 (10.0, 15.3) | 10.0 (8.5, 15.0) | 13.5 (13.0, 16.0) | −3 (−6, 1) | 15.5 (13.8, 18.0) | 14.0 (9.5, 16.5) | 17.0 (15.0, 18.0) | −3 (−7, 0) | ||
| Range | 7.0, 20.0 | 7.0, 20.0 | 12.0, 17.0 | 4.0, 20.0 | 4.0, 20.0 | 13.0, 18.0 | ||||
| Tibial torsion (Transmalleolar angle) LEFT | 0.100 | 0.336 | ||||||||
| Median (IQR) | 14.5 (11.3, 16.0) | 10.5 (8.0, 15.0) | 15.0 (14.0, 16.0) | −4 (−7, 0) | 15.0 (13.0, 18.0) | 15.0 (9.0, 17.0) | 17.0 (13.0, 18.0) | −2 (−6, 1) | ||
| Range | 5.0, 21.0 | 5.0, 21.0 | 12.0, 18.0 | 0.0, 20.0 | 0.0, 19.0 | 12.0, 20.0 | ||||
| Subtalar Joint ROM total RIGHT | <0.001 | 0.001 | ||||||||
| Median (IQR) | 33.5 (31.0, 41.0) | 41.0 (36.5, 42.5) | 31.0 (29.0, 32.0) | 9 (6, 12) | 32.5 (29.8, 38.3) | 39.0 (34.5, 43.5) | 30.0 (29.0, 32.0) | 9 (4, 13) | ||
| Range | 28.0, 48.0 | 30.0, 48.0 | 28.0, 34.0 | 28.0, 46.0 | 29.0, 46.0 | 28.0, 33.0 | ||||
| Subtalar Joint ROM total LEFT | <0.001 | 0.002 | ||||||||
| Median (IQR) | 33.5 (31.0, 40.3) | 40.5 (35.8, 42.8) | 31.0 (30.0, 32.5) | 9 (5, 12) | 32.0 (29.8, 37.3) | 38.0 (35.5, 43.0) | 31.0 (29.0, 32.0) | 9 (4, 13) | ||
| Range | 28.0, 47.0 | 32.0, 47.0 | 28.0, 34.0 | 27.0, 46.0 | 27.0, 46.0 | 28.0, 34.0 | ||||
| Subtalar Joint ROM inversion RIGHT | <0.001 | 0.001 | ||||||||
| Median (IQR) | 23.5 (21.7, 28.7) | 28.7 (25.6, 29.8) | 21.7 (20.3, 22.4) | 6.3 (4.2, 8.4) | 22.8 (20.8, 26.8) | 27.3 (24.2, 30.5) | 21.0 (20.3, 22.4) | 6.3 (2.8, 9.1) | ||
| Range | 19.6, 33.6 | 21.0, 33.6 | 19.6, 23.8 | 19.6, 32.2 | 20.3, 32.2 | 19.6, 23.1 | ||||
| Subtalar Joint ROM eversion RIGHT | <0.001 | 0.001 | ||||||||
| Median (IQR) | 10.05 (9.30, 12.30) | 12.30 (10.95, 12.75) | 9.30 (8.70, 9.60) | 2.7 (1.8, 3.6) | 9.75 (8.93, 11.48) | 11.70 (10.35, 13.05) | 9.00 (8.70, 9.60) | 2.7 (1.2, 3.9) | ||
| Range | 8.40, 14.40 | 9.00, 14.40 | 8.40, 10.20 | 8.40, 13.80 | 8.70, 13.80 | 8.40, 9.90 | ||||
| Subtalar Joint ROM inversion LEFT | <0.001 | 0.002 | ||||||||
| Median (IQR) | 23.5 (21.7, 28.2) | 28.4 (25.0, 29.9) | 21.7 (21.0, 22.8) | 6.3 (3.5, 8.4) | 22.4 (20.8, 26.1) | 26.6 (24.9, 30.1) | 21.7 (20.3, 22.4) | 6.3 (2.8, 9.1) | ||
| Range | 19.6, 32.9 | 22.4, 32.9 | 19.6, 23.8 | 18.9, 32.2 | 18.9, 32.2 | 19.6, 23.8 | ||||
| Subtalar Joint ROM eversion LEFT | <0.001 | 0.002 | ||||||||
| Median (IQR) | 10.05 (9.30, 12.08) | 12.15 (10.73, 12.83) | 9.30 (9.00, 9.75) | 2.7 (1.5, 3.6) | 9.60 (8.93, 11.18) | 11.40 (10.65, 12.90) | 9.30 (8.70, 9.60) | 2.7 (1.2, 3.9) | ||
| Range | 8.40, 14.10 | 9.60, 14.10 | 8.40, 10.20 | 8.10, 13.80 | 8.10, 13.80 | 8.40, 10.20 | ||||
| Foot Posture Index (FPI) RIGHT | <0.001 | <0.001 | ||||||||
| Median (IQR) | 7.00 (4.00, 9.00) | 9.00 (7.25, 10.00) | 4.00 (4.00, 5.75) | 5 (3, 6) | 5.0 (0.0, 9.0) | 9.0 (8.0, 10.0) | 2.0 (0.0, 5.0) | 7 (4, 9) | ||
| Range | 0.00, 12.00 | 7.00, 12.00 | 0.00, 7.00 | −2.0, 12.0 | 0.0, 12.0 | −2.0, 5.0 | ||||
| Foot Posture Index (FPI) LEFT | <0.001 | <0.001 | ||||||||
| Median (IQR) | 7.00 (4.00, 9.00) | 9.00 (7.25, 10.00) | 4.00 (4.00, 5.75) | 4 (3, 6) | 5.0 (0.0, 9.3) | 10.0 (8.0, 10.0) | 2.0 (0.0, 5.0) | 8 (4, 10) | ||
| Range | 0.00, 12.00 | 7.00, 12.00 | 0.00, 7.00 | −2.0, 12.0 | 0.0, 12.0 | −2.0, 6.0 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maarj, M.; Pacey, V.; Tofts, L.; Fellas, A.; Clapham, M.; Coda, A. Lower Limb Biomechanical Observations in Hypermobile Children: An Exploratory Case—Control Study. Int. J. Environ. Res. Public Health 2025, 22, 1776. https://doi.org/10.3390/ijerph22121776
Maarj M, Pacey V, Tofts L, Fellas A, Clapham M, Coda A. Lower Limb Biomechanical Observations in Hypermobile Children: An Exploratory Case—Control Study. International Journal of Environmental Research and Public Health. 2025; 22(12):1776. https://doi.org/10.3390/ijerph22121776
Chicago/Turabian StyleMaarj, Muhammad, Verity Pacey, Louise Tofts, Antoni Fellas, Matthew Clapham, and Andrea Coda. 2025. "Lower Limb Biomechanical Observations in Hypermobile Children: An Exploratory Case—Control Study" International Journal of Environmental Research and Public Health 22, no. 12: 1776. https://doi.org/10.3390/ijerph22121776
APA StyleMaarj, M., Pacey, V., Tofts, L., Fellas, A., Clapham, M., & Coda, A. (2025). Lower Limb Biomechanical Observations in Hypermobile Children: An Exploratory Case—Control Study. International Journal of Environmental Research and Public Health, 22(12), 1776. https://doi.org/10.3390/ijerph22121776

