Assessment of Heavy Metal Accumulation in Wastewater–Receiving Soil–Exotic and Indigenous Vegetable Systems and Its Potential Health Risks: A Case Study from Blantyre, Malawi
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.2.1. Collection and Preservation of Wastewater Sample
2.2.2. Collection of Soil Sample
2.2.3. Collection of Vegetable Sample
2.3. Sample Preparation
2.3.1. Wastewater Samples
2.3.2. Soil Sample
2.3.3. Vegetable Samples
2.4. Analytical Procedure
2.5. Health Risk Assessment
2.6. Data Analysis
3. Results and Discussion
3.1. Concentration of Heavy Metals in Wastewater
3.2. Concentrations of Heavy Metals in Soil
3.3. Concentrations of Heavy Metals in Vegetables
3.4. Principal Component Analysis
3.5. Health Risk Assessments
3.5.1. Daily Intake Rate
3.5.2. Target Health Quotient and Health Risk Index
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kesari, K.K.; Kumar, S.; Meena, R.; Rajendran, V.; Sharma, A.; Bhattacharya, P.; Singh, A.; Bandopadhyay, S. Wastewater treatment and reuse: A review of its applications and health implications. Water Air Soil Pollut. 2021, 232, 208. [Google Scholar] [CrossRef]
- Silva, J.A. Wastewater treatment and reuse for sustainable water resources management: A systematic literature review. Sustainability 2023, 15, 10940. [Google Scholar] [CrossRef]
- Singh, A. A review of wastewater irrigation: Environmental implications. Resour. Conserv. Recycl. 2021, 168, 105454. [Google Scholar] [CrossRef]
- FAO. Coping with Water Scarcity: An Action Framework; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- UNESCO/UN-Water. The United Nations World Water Development Report 2017: Wastewater: The Untapped Resource; UNESCO: Paris, France, 2017. [Google Scholar]
- Santos, A.F.; Alvarenga, P.; Gando-Ferreira, L.M.; Quina, M.J. Urban Wastewater as a Source of Reclaimed Water for Irrigation: Barriers and Future Possibilities. Environments 2023, 10, 17. [Google Scholar] [CrossRef]
- Negassa, B.; Dadi, D.; Soboksa, N.E.; Fekadu, S. Presence of heavy metals in vegetables irrigated with wastewater-impacted rivers and its health risks in Ethiopia: Systematic review. Environ. Health Insights 2025, 19, 11786302241310661. [Google Scholar] [CrossRef]
- Pires, S.M.; Desta, B.N.; Mughini-Gras, L.; Mmbaga, B.T.; Fayemi, O.E.; Salvador, E.M.; Gobena, T.; Majowicz, S.E.; Hald, T.; Hoejskov, P.S.; et al. Burden of foodborne diseases: Think global, act local. Curr. Opin. Food Sci. 2021, 39, 152–159. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO’s first ever global estimates of foodborne diseases find children under 5 account for almost one third of deaths. Saudi Med. J. 2016, 37, 109–110. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724672/ (accessed on 13 October 2025).
- Dintsi, B.S.; Letsoalo, M.R.; Ambushe, A.A. Bioaccumulation and human health risk assessment of arsenic and chromium species in water-soil-vegetables system in Lephalale, Limpopo Province, South Africa. Minerals 2023, 13, 930. [Google Scholar] [CrossRef]
- MathuMitha, M.; Mohan, R.; Sangeetha, R.; George, S.; Ragumaran, M. A review on the effect of heavy metal contamination and its impact on the environment. Int. J. Zool. Investig. 2021, 7, 762–771. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Kaonga, C.C.; Kosamu, I.B.M.; Lakudzala, D.D.; Mbewe, R.; Thole, B.; Monjerezi, M.; Chidya, R.C.G.; Kuyeli, S.; Sajidu, S.M.I. A review of heavy metals in soil and aquatic systems of urban and semi-urban areas in Malawi with comparisons to other selected countries. Afr. J. Environ. Sci. Technol. 2017, 11, 448–460. [Google Scholar] [CrossRef]
- Simfukwe, K.; Msukwa, A.V.; Mphande, J.; Hasimuna, O.J.; Limuwa, M.M.; Kaunda, E. Is the concentration of heavy metals in sun-dried Engraulicypris sardella (Günther, 1868) in Malawi a human health risk? Environ. Chall. 2024, 11, 100567. [Google Scholar] [CrossRef]
- Rashid, A.; Ahmad, I.; Rafiq, A.; Iqbal, N.; Khan, A.; Shahzad, A.; Noor, S.; Khan, A.; Khan, M.; Khan, S. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Oladimeji, T.E.; Oyedemi, M.; Emetere, M.E.; Agboola, O.; Adeoye, J.B.; Odunlami, O.A. Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon 2024, 10, e40370. [Google Scholar] [CrossRef] [PubMed]
- Manwani, S.; Devi, P.; Singh, T.; Yadav, C.S.; Awasthi, K.K.; Bhoot, N.; Awasthi, G. Heavy metals in vegetables: A review of status, human health concerns, and management options. Environ. Sci. Pollut. Res. 2023, 30, 71940–71956. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.; Das, A. Heavy metals in agricultural cultivated products irrigated with wastewater in India: A review. AQUA—Water Infrastruct. Ecosyst. Soc. 2023, 72, 851. [Google Scholar] [CrossRef]
- Singh, R.; Singh, P.K.; Madheshiya, P.; Khare, A.K.; Tiwari, S. Heavy metal contamination in the wastewater irrigated soil and bioaccumulation in cultivated vegetables: Assessment of human health risk. J. Food Compos. Anal. 2024, 128, 106054. [Google Scholar] [CrossRef]
- Obijianya, C.C.; Yakamercan, E.; Karimi, M.; Veluru, S.; Simko, I.; Eshkabilov, S.; Simsek, H. Agricultural irrigation using treated wastewater: Challenges and opportunities. Water 2025, 17, 2083. [Google Scholar] [CrossRef]
- Abdulai, M.; Tanko, M.; Andani, A. Impact of municipal wastewater use on urban and peri-urban agricultural productivity: The endogenous treatment-effects approach. World Dev. Sustain. 2025, 6, 100224. [Google Scholar] [CrossRef]
- Gashaye, D.; Yildiz, F. Wastewater-irrigated urban vegetable farming in Ethiopia: A review on their potential contamination and health effects. Food Sci. Technol. 2020, 8, 1772629. [Google Scholar] [CrossRef]
- Makanjuola, O.M.; Bada, B.S.; Ogunbanjo, O.O. Heavy metal speciation and health risk assessment of soil and jute mallow (Corchorus olitorus) collected from a farm settlement in Nigeria. J. Agric. Chem. Environ. 2019, 8, 201–223. [Google Scholar] [CrossRef]
- Kraslawski, A.; Avramenko, Y.; Chipofya, V. Comparison of pollutant levels in effluent from wastewater treatment plants in Blantyre, Malawi. J. Environ. Manag. 2010, 91, 1234–1241. [Google Scholar]
- Malikula, R.S.; Kaonga, C.C.; Mapoma, H.W.T.; Chiipa, P.; Thulu, F.G.D. Heavy metals and nutrients loads in water, soil, and crops irrigated with effluent from WWTPs in Blantyre City, Malawi. Water 2022, 14, 121. [Google Scholar] [CrossRef]
- Collet, S.; Yesaya, M.; Tilley, E. SFD Report Blantyre Malawi Final Report. Sustainable Sanitation Alliance 2018. Available online: https://www.susana.org/_resources/documents/default/3-3545-7-1550665329.pdf (accessed on 23 May 2025).
- Sajidu, S.M.I.; Masamba, W.R.L.; Henry, E.M.T.; Kuyeli, S.M. Water quality assessment in streams and wastewater treatment plants of Blantyre, Malawi. Phys. Chem. Earth Parts A/B/C 2007, 32, 1391–1398. [Google Scholar] [CrossRef]
- Alegbe, P.J.; Appiah-Brempong, M.; Awuah, E. Heavy Metal Contamination in Vegetables and Associated Health Risks. Sci. Afr. 2025, 27, e02603. [Google Scholar] [CrossRef]
- Baird, R.; Eaton, A.D.; Rice, E.W.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Hassan, J.; Rajib, M.M.R.; Khan, M.N.-E.-A.; Khandaker, S.; Zubayer, M.; Ashab, K.R.; Kuba, T.; Marwani, H.M.; Asiri, A.M.; Hasan, M.M.; et al. Assessment of Heavy Metals Accumulation by Vegetables Irrigated with Different Stages of Textile Wastewater for Evaluation of Food and Health Risk. J. Environ. Manag. 2024, 353, 120206. [Google Scholar] [CrossRef]
- Khan, M.N.; Aslam, M.A.; Bin Muhsinah, A.; Uddin, J. Heavy Metals in Vegetables: Screening Health Risks of Irrigation with Wastewater in Peri-Urban Areas of Bhakkar, Pakistan. Toxics 2023, 11, 460. [Google Scholar] [CrossRef] [PubMed]
- van den Berge, P. Good Agricultural Practice in Irrigation Management; Technical Guide No. 2522; Research Institute of Organic Agriculture (FiBL): Frick, Switzerland, 2020; ISBN 978-3-03736-162-7. [Google Scholar]
- Abbas, M.T.; Wadaan, M.A.; Ullah, H.; Farooq, M.; Fozia, F.; Ahmad, I.; Khan, M.F.; Baabbad, A.; Ullah, Z. Bioaccumulation and Mobility of Heavy Metals in the Soil–Plant System and Health Risk Assessment of Vegetables Irrigated by Wastewater. Sustainability 2023, 15, 15321. [Google Scholar] [CrossRef]
- Kania, H.; Saternus, M. Evaluation and Current State of Primary and Secondary Zinc Production—A Review. Appl. Sci. 2023, 13, 2003. [Google Scholar] [CrossRef]
- Traven, L.; Marinac-Pupavac, S.; Žurga, P.; Linšak, Z.; Žeželj, S.P.; Glad, M.; Linšak, D.T.; Cenov, A. Arsenic (As), copper (Cu), zinc (Zn) and selenium (Se) in northwest Croatian seafood: A health risks assessment. Toxicol. Rep. 2023, 11, 413–419. [Google Scholar] [CrossRef]
- Eduah, J.O.; Arthur, A.; Dogbatse, J.A.; Amoako-Attah, I.; Essibu, J.K. Comparative assessment of copper pollution, bioavailability, and ecological risks in soil-cacao systems under organic versus conventional management. Soil Environ. Health 2024, 2, 100093. [Google Scholar] [CrossRef]
- Lu, J.; Cai, H.; Zhang, X.; Fu, Y. Release flux of heavy metals from river sediments at different flow rates. Water Supply 2022, 22, 542–554. [Google Scholar] [CrossRef]
- MS 214:2005, ICS 13.030.40 (First Revision); Malawi Standard, Drinking Water—Specification. Malawi Standards Board: Blantyre, Malawi, 2005.
- Sonone, S.S.; Jadhav, S.; Sankhla, M.S.; Kumar, R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food chain. Lett. Appl. NanoBioSci. 2021, 10, 2148–2166. [Google Scholar] [CrossRef]
- Collao, J.; García-Encina, P.A.; Blanco, S.; Bolado-Rodríguez, S.; Fernandez Gonzalez, N. Current concentrations of Zn, Cu, and As in piggery wastewater compromise nutrient removals in microalgae–bacteria photobioreactors due to altered microbial communities. Biology 2022, 11, 1176. [Google Scholar] [CrossRef] [PubMed]
- Tytła, M.; Widziewicz-Rzońca, K. Ecological and Human Health Risk Assessment of Heavy Metals in Sewage Sludge Produced in Silesian Voivodeship, Poland: A Case Study. Environ. Monit. Assess. 2023, 195, 1373. [Google Scholar] [CrossRef]
- Chaoua, S.; Boussaa, S.; El Gharmali, A.; Boumezzough, A. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J. Saudi Soc. Agric. Sci. 2019, 18, 429–436. [Google Scholar] [CrossRef]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and environmental effects of heavy metals. J. King Saud Univ. Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2020, 10, 8434. [Google Scholar] [CrossRef]
- Manzoor, J.; Sharma, M.; Wani, K.A. Heavy metals in vegetables and their impact on the nutrient quality of vegetables: A review. J. Plant Nutr. 2018, 41, 1744–1763. [Google Scholar] [CrossRef]
- Ulhassan, Z.; Gill, R.A.; Huang, H.; Ali, S.; Mwamba, T.M.S.; Li, S.; Zhou, W. Selenium mitigates the chromium toxicity in Brassica napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system. Plant Physiol. Biochem. 2019, 145, 142–152. [Google Scholar] [CrossRef]
- Ugulu, I.; Yildiz, D.; Dogan, Y.; Baslar, S. Determination of heavy metal accumulation in wastewater irrigated pumpkin (Cucurbita maxima Duch.) by spectroscopic method. Arab. J. Geosci. 2022, 15, 1238. [Google Scholar] [CrossRef]
- Asrade, B.; Ketema, G. Determination of the Selected Heavy Metal Content and Its Associated Health Risks in Selected Vegetables Marketed in Bahir Dar Town, Northwest Ethiopia. J. Food Qual. 2023, 2023, 7370171. [Google Scholar] [CrossRef]
- Aidoo, E.N.; Appiah, S.K.; Awashie, G.E.; Boateng, A.; Darko, G. Geographically weighted principal component analysis for characterising the spatial heterogeneity and connectivity of soil heavy metals in Kumasi, Ghana. Heliyon 2021, 7, e08039. [Google Scholar] [CrossRef]
- Sipos, B.; Nagy, G.; Barócsi, A.; Kardos, M. High phytoremediation and translocation potential of an invasive weed species (Amaranthus retroflexus) in Europe in metal-contaminated areas. Environ. Monit. Assess. 2023, 195, 790. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Khalid, S.; Abbas, G.; Shahid, N.; Nadeem, M.; Sabir, M.; Aslam, M.; Dumat, C. Heavy metal stress and crop productivity. In Crop Production and Global Environmental Issues; Hakeem, K.R., Ed.; Springer: Cham, Switzerland, 2015; pp. 1–30. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Wei, H.; Li, X.; Duan, Z. Heavy metals in agricultural soils: Sources, influencing factors, and distribution patterns. Toxics 2024, 12, 63. [Google Scholar] [CrossRef]
- Hatami, S.; Mousavi, Z.; Ziarati, P. Health risk assessment of heavy metals (lead and cadmium) in transgenic corn in Tehran. Biol. Environ. Pollut. 2022, 2, 49–59. [Google Scholar] [CrossRef]
- Pasricha, S.; Mathur, V.; Garg, A.; Lenka, S.; Verma, K.; Agarwal, S. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators. Environ. Chall. 2021, 4, 100197. [Google Scholar] [CrossRef]
- Heshmati, A.; Mehri, F.; Karami-Momtaz, J.; Khaneghah, A.M. Concentration and risk assessment of potentially toxic elements, lead and cadmium, in vegetables and cereals consumed in western Iran. J. Food Prot. 2020, 83, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Abdu, N.; Sharhabil, Y. The use of wastewater for irrigation: Pros and cons for human health in developing countries. Total Environ. Res. Themes 2023, 6, 100044. [Google Scholar] [CrossRef]
- Collin, S.; Baskar, A.; Geevarghese, D.M.; Ali, M.N.V.S.; Bahubali, P.; Choudhary, R.; Lvov, V.; Tovar, G.I.; Senatov, F.; Koppala, S.; et al. Bioaccumulation of lead (Pb) and its effects in plants: A review. J. Hazard. Mater. Lett. 2022, 3, 100064. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, Z.; Zhang, H.; Wang, Y.; Song, M.; Wu, J.; Wang, Y. Lead accumulation and its subcellular distribution in edible parts of leafy vegetables. Chemosphere 2021, 262, 127848. [Google Scholar] [CrossRef]
- Peng, J.-S.; Gong, J.-M. Vacuolar sequestration capacity and long-distance metal transport in plants. Front. Plant Sci. 2014, 5, 19. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Zunaidi, A.A.; Lim, L.H.; Metali, F. Comparative assessment of the heavy metal phytoextraction potential of vegetables from agricultural soils: A field experiment. Heliyon 2023, 9, e13547. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Jiang, W.; Wang, X.; Shahid, S.; Saba, N.; Ahmad, M.; Dar, A.; Masood, S.U.; Imran, M.; Mustafa, A. Mechanistic impact of zinc deficiency in human development. Front. Nutr. 2022, 9, 717064. [Google Scholar] [CrossRef]
- Feyisa, G.; Mekassa, B.; Merga, L.B. Human Health Risks of Heavy Metals Contamination of a Water–Soil–Vegetables Farmland System in Toke Kutaye of West Shewa, Ethiopia. Toxicol. Rep. 2025, 14, 102061. [Google Scholar] [CrossRef]
- Kong, Y.; Liu, J.; Pan, J.; Ruan, X.; Wang, Y. Migration Characteristics and Health Risk Assessment of Heavy Metals in Soil Vegetable System in a Typical Wastewater Irrigation Area. J. Food Compos. Anal. 2025, 143, 107564. [Google Scholar] [CrossRef]
- Liu, C.; Meng, X.-F.; Yang, J.-X.; Zheng, G.-D.; Xia, T.-X.; Bian, J.-L.; Jia, X.-Y. Heavy Metal Concentrations and Health Risk Assessment of Vegetables in the High-Risk Area of Atmospheric Deposition in Henan Province. J. Plant Nutr. Fertil. 2021, 27, 2170–2183. [Google Scholar] [CrossRef]
- Tőzsér, D.; Filep, T.; Varga, G.; Szabó, S. A meta-analysis on the heavy metal uptake in Amaranthus species. Environ. Sci. Pollut. Res. 2023, 30, 85102–85112. [Google Scholar] [CrossRef]
- Rahmdel, S.; Karami, M.; Sadeghi, E.; Sharafi, K.; Dehghani, M.H. Heavy metals (Pb, Cd, Cu, Zn, Ni, Co) in leafy vegetables collected from production sites: Their potential health risk to the general population in Shiraz, Iran. Environ. Monit. Assess. 2018, 190, 650. [Google Scholar] [CrossRef]






| Heavy Metals | Cd (mg/L) | Cr (mg/L) | Pb (mg/L) | Zn (mg/L) | Cu (mg/L) |
|---|---|---|---|---|---|
| Soche | BDL | BDL | BDL | 0.01 ± 0.0009 | 0.02 ± 0.0179 |
| MBS | 0.05 | 0.05 | 0.05 | 5 | 2 |
| WHO Guidelines | 0.05 | 0.003 | 0.01 | 0.2 | 2 |
| Heavy Metals | Cd (mg/kg) | Cr (mg/kg) | Pb (mg/kg) | Zn (mg/kg) | Cu (mg/kg) |
|---|---|---|---|---|---|
| Soche | 0.24 ± 0.013 | 38.14 ± 1.351 | 11.57 ± 0.063 | 56.40 ± 0.543 | 23.62 ± 0.554 |
| WHO | 0.8 | 100 | 85 | 36 | 50 |
| Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | ||||
|---|---|---|---|---|---|---|
| Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
| 1 | 3.960 | 79.202 | 79.202 | 3.960 | 79.202 | 79.202 |
| 2 | 0.859 | 17.170 | 96.372 | |||
| 3 | 0.140 | 2.801 | 99.174 | |||
| 4 | 0.032 | 0.641 | 99.814 | |||
| 5 | 0.009 | 0.186 | 100.000 | |||
| Component | |
|---|---|
| 1 | |
| Zinc | 0.989 |
| Copper | 0.985 |
| Chromium | 0.971 |
| Lead | 0.923 |
| Cadmium | 0.467 |
| Name of Vegetable | Portion of Vegetable | Daily Intake Rate (mg/kg/day) | |||||
|---|---|---|---|---|---|---|---|
| Cr | Cd | Pb | Zn | Cu | Total DIR | ||
| Amaranthus retroflexus | Stem | 0 | 0 | 0 | 0.13 | 0.04 | 0.17 |
| Leaf | 0.05 | 0.01 | 0 | 0.61 | 0.19 | 0.86 | |
| Brassica napus | Stem | 0.14 | 0 | 0.09 | 0.17 | 0.06 | 0.46 |
| Leaf | 0.05 | 0.01 | 0.05 | 0.30 | 0.14 | 0.55 | |
| Brassica rapa | Stem | 0.12 | 0.01 | 0.14 | 0.38 | 0.11 | 0.76 |
| Leaf | 0.06 | 0.01 | 0 | 0.40 | 0.13 | 0.6 | |
| Brassica rapa subsp. chinensis | Stem | 0.14 | 0 | 0.07 | 0.39 | 0.09 | 0.69 |
| Leaf | 0.22 | 0.01 | 0 | 0.22 | 0.09 | 0.54 | |
| Cucurbita moschata | Stem | 0.16 | 0.01 | 0 | 0.46 | 0.14 | 0.77 |
| Leaf | 0.11 | 0.01 | 0 | 0.44 | 0.18 | 0.74 | |
| Ipomea batatas | Stem | 0.11 | 0 | 0.06 | 0.10 | 0.06 | 0.33 |
| Leaf | 0.06 | 0 | 0.09 | 0.34 | 0.15 | 0.64 | |
| RfD0 (mg/kg/day) (FAO/WHO) | 0.003 | 0.001 | 0.0035 | 0.3 | 0.04 | ||
| Name of Vegetable | Portion of Vegetable | Daily Intake Rate (mg/kg/day) | |||||
|---|---|---|---|---|---|---|---|
| Cr | Cd | Pb | Zn | Cu | HRI = ∑THQ | ||
| Amaranthus retroflexus | Stem | 0 | 0 | 0 | 0.44 | 1.06 | 1.50 |
| Leaf | 16.23 | 8.42 | 0 | 2.05 | 4.87 | 31.57 | |
| Brassica napus | Stem | 48.11 | 0 | 24.98 | 0.58 | 1.38 | 75.04 |
| Leaf | 16.63 | 6.88 | 14.98 | 0.99 | 3.44 | 42.92 | |
| Brassica rapa | Stem | 39.15 | 8.82 | 40.17 | 1.28 | 2.86 | 92.28 |
| Leaf | 19.75 | 6.88 | 0 | 1.33 | 3.34 | 31.29 | |
| Brassica rapa subsp. chinensis | Stem | 46.10 | 4.98 | 18.89 | 1.31 | 2.25 | 74.43 |
| Leaf | 73.91 | 5.33 | 0 | 0.74 | 2.26 | 82.24 | |
| Cucurbita moschata | Stem | 53.28 | 8.42 | 0 | 1.54 | 3.44 | 66.68 |
| Leaf | 37.22 | 6.875 | 0 | 1.48 | 4.47 | 50.04 | |
| Ipomea batatas | Stem | 37.26 | 0 | 17.61 | 0.33 | 1.46 | 56.66 |
| Leaf | 20.57 | 0 | 25.14 | 1.13 | 3.64 | 50.48 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiutula, C.; Mtewa, A.G.; Abraham, A.; Mvula, R.L.S.; Maluwa, A.; Eregno, F.E.; Njalam’mano, J. Assessment of Heavy Metal Accumulation in Wastewater–Receiving Soil–Exotic and Indigenous Vegetable Systems and Its Potential Health Risks: A Case Study from Blantyre, Malawi. Int. J. Environ. Res. Public Health 2025, 22, 1614. https://doi.org/10.3390/ijerph22111614
Chiutula C, Mtewa AG, Abraham A, Mvula RLS, Maluwa A, Eregno FE, Njalam’mano J. Assessment of Heavy Metal Accumulation in Wastewater–Receiving Soil–Exotic and Indigenous Vegetable Systems and Its Potential Health Risks: A Case Study from Blantyre, Malawi. International Journal of Environmental Research and Public Health. 2025; 22(11):1614. https://doi.org/10.3390/ijerph22111614
Chicago/Turabian StyleChiutula, Chimwemwe, Andrew G. Mtewa, Amon Abraham, Richard Lizwe Steven Mvula, Alfred Maluwa, Fasil Ejigu Eregno, and John Njalam’mano. 2025. "Assessment of Heavy Metal Accumulation in Wastewater–Receiving Soil–Exotic and Indigenous Vegetable Systems and Its Potential Health Risks: A Case Study from Blantyre, Malawi" International Journal of Environmental Research and Public Health 22, no. 11: 1614. https://doi.org/10.3390/ijerph22111614
APA StyleChiutula, C., Mtewa, A. G., Abraham, A., Mvula, R. L. S., Maluwa, A., Eregno, F. E., & Njalam’mano, J. (2025). Assessment of Heavy Metal Accumulation in Wastewater–Receiving Soil–Exotic and Indigenous Vegetable Systems and Its Potential Health Risks: A Case Study from Blantyre, Malawi. International Journal of Environmental Research and Public Health, 22(11), 1614. https://doi.org/10.3390/ijerph22111614

