The Combined Effect of Acute Interval and Cognitive Training on Visual-Spatial Abilities in Women: Preliminary Insights for Health Promotion
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
- (1)
- HIIT session followed by cognitive training;
- (2)
- LVIT session followed by cognitive training;
- (3)
- COG session, consisting of the same time period as the HIIT session (1), with listening to music followed by cognitive training;
- (4)
- CTRL session, consisting of the same time period as the LVIT session (2), with listening to music.
2.3. Procedures
2.3.1. Anthropometry and Physical Activity
2.3.2. Cognitive Performance
Metzler and Shepard Test (MS)
Paper Folding and Cutting Test (PFC)
Mental Rotation Test (MRT)
2.3.3. Experimental Treatment
High-Intensity Interval Training (HIIT)
Low Volume Interval Training (LVIT)
Cognitive Training
2.4. Statistics
3. Results
3.1. Main Characteristics of the Subjects
3.2. Physiological, Mechanical, and Fatigue Data During Training Sessions
3.3. Cognitive Performance Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IT | Interval Training |
HIIT | High-Intensity Interval Training |
CT | Cognitive Training |
LVIT | Low-Volume Interval Training |
COG | Cognitive Session |
CTRL | Control Session |
MS | Metzler and Shepard Test |
PFC | Paper Folding and Cutting Test |
MRT | Mental Rotation Test |
V′O2max | Maximal Oxygen Consumption |
V′O2peak | Peak Oxygen Consumption |
BMI | Body Mass Index |
PAR | Physical Activity Rating |
FP | Follicular Phase |
LP | Luteal Phase |
MP | Menstrual Phase |
OC | Oral Contraceptive Use |
References
- Gomez-Pinilla, F.; Hillman, C. The Influence of Exercise on Cognitive Abilities. In Comprehensive Physiology; Terjung, R., Ed.; Wiley: Hoboken, NJ, USA, 2013; pp. 403–428. [Google Scholar]
- Hernández-Mendo, A.; Reigal, R.E.; López-Walle, J.M.; Serpa, S.; Samdal, O.; Morales-Sánchez, V.; Juárez-Ruiz de Mier, R.; Tristán-Rodríguez, J.L.; Rosado, A.F.; Falco, C. Physical Activity, Sports Practice, and Cognitive Functioning: The Current Research Status. Front. Psychol. 2019, 10, 2658. [Google Scholar] [CrossRef]
- Ben-Zeev, T.; Hirsh, T.; Weiss, I.; Gornstein, M.; Okun, E. The Effects of High-Intensity Functional Training (HIFT) on Spatial Learning, Visual Pattern Separation and Attention Span in Adolescents. Front. Behav. Neurosci. 2020, 14, 577390. [Google Scholar] [CrossRef] [PubMed]
- Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef] [PubMed]
- Lambourne, K.; Tomporowski, P. The Effect of Exercise-Induced Arousal on Cognitive Task Performance: A Meta-Regression Analysis. Brain Res. 2010, 1341, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Tallis, J.; Miller, A.; Clarke, N.D.; Guimarães-Ferreira, L.; Duncan, M.J. The Effect of Exercise Intensity on Cognitive Performance during Short Duration Treadmill Running. J. Hum. Kinet. 2016, 51, 27–35. [Google Scholar] [CrossRef]
- Alves, C.R.R.; Gualano, B.; Takao, P.P.; Avakian, P.; Fernandes, R.M.; Morine, D.; Takito, M.Y. Effects of Acute Physical Exercise on Executive Functions: A Comparison Between Aerobic and Strength Exercise. J. Sport Exer. Psychol. 2012, 34, 539–549. [Google Scholar] [CrossRef]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The Effects of Acute Exercise on Cognitive Performance: A Meta-Analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef]
- Shors, T.J.; Olson, R.L.; Bates, M.E.; Selby, E.A.; Alderman, B.L. Mental and Physical (MAP) Training: A Neurogenesis-Inspired Intervention That Enhances Health in Humans. Neurobiol. Learn. Mem. 2014, 115, 3–9. [Google Scholar] [CrossRef]
- Skelly, L.E.; Bailleul, C.; Gillen, J.B. Physiological Responses to Low-Volume Interval Training in Women. Sports Med.-Open 2021, 7, 99. [Google Scholar] [CrossRef]
- Ben-Zeev, T.; Okun, E. High-Intensity Functional Training: Molecular Mechanisms and Benefits. Neuromolecular Med. 2021, 23, 335–338. [Google Scholar] [CrossRef]
- Menglu, S.; Suyong, Y.; Xiaoyan, W.; Schöllhorn, W.I.; Dong, Z. Cognitive Effectiveness of High-Intensity Interval Training for Individuals with Methamphetamine Dependence: A Study Protocol for Randomised Controlled Trial. Trials 2021, 22, 650. [Google Scholar] [CrossRef]
- Karlsen, T.; Aamot, I.-L.; Haykowsky, M.; Rognmo, Ø. High Intensity Interval Training for Maximizing Health Outcomes. Prog. Cardiovasc. Dis. 2017, 60, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Kwok, M.M.Y.; Ng, S.S.M.; Man, S.S.; So, B.C.L. The Effect of Aquatic High Intensity Interval Training on Cardiometabolic and Physical Health Markers in Women: A Systematic Review and Meta-Analysis. J. Exerc. Sci. Fit. 2022, 20, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.; Seery, N.; Canty, D. A Heuristic Framework of Spatial Ability: A Review and Synthesis of Spatial Factor Literature to Support Its Translation into STEM Education. Educ. Psychol. Rev. 2018, 30, 947–972. [Google Scholar] [CrossRef]
- Chueh, T.-Y.; Huang, C.-J.; Hsieh, S.-S.; Chen, K.-F.; Chang, Y.-K.; Hung, T.-M. Sports Training Enhances Visuo-Spatial Cognition Regardless of Open-Closed Typology. PeerJ 2017, 5, e3336. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, S.; Jansen, P. Laterality-Specific Training Improves Mental Rotation Performance in Young Soccer Players. Front. Psychol. 2018, 27, 220. [Google Scholar] [CrossRef]
- Wang, C.-H.; Tsai, C.-L.; Tu, K.-C.; Muggleton, N.G.; Juan, C.-H.; Liang, W.-K. Modulation of Brain Oscillations during Fundamental Visuo-Spatial Processing: A Comparison between Female Collegiate Badminton Players and Sedentary Controls. Psychol. Sport Exerc. 2015, 16, 121–129. [Google Scholar] [CrossRef]
- Wang, B.; Guo, W.; Zhou, C. Selective Enhancement of Attentional Networks in College Table Tennis Athletes: A Preliminary Investigation. PeerJ 2016, 4, e2762. [Google Scholar] [CrossRef]
- Voyer, D.; Jansen, P. Motor Expertise and Performance in Spatial Tasks: A Meta-Analysis. Hum. Mov. Sci. 2017, 54, 110–124. [Google Scholar] [CrossRef]
- Klotzbier, T.J.; Schott, N. Mental rotation abilities of gymnasts and soccer players: A comparison of egocentric and object-based transformations. An exploratory and preliminary study. Front. Psychol. 2024, 5, 1355381. [Google Scholar] [CrossRef]
- Li, L.; Smith, D.M. Neural Efficiency in Athletes: A Systematic Review. Front. Behav. Neurosci. 2021, 5, 698555. [Google Scholar] [CrossRef]
- Boone, A.P.; Hegarty, M. Sex Differences in Mental Rotation Tasks: Not Just in the Mental Rotation Process! J. Exp. Psychol. Learn. Mem. Cogn. 2017, 43, 1005–1019. [Google Scholar] [CrossRef]
- Toth, A.J.; Campbell, M.J. Investigating Sex Differences, Cognitive Effort, Strategy, and Performance on a Computerised Version of the Mental Rotations Test via Eye Tracking. Sci. Rep. 2019, 9, 19430. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide Trends in Insufficient Physical Activity from 2001 to 2016: A Pooled Analysis of 358 Population-Based Surveys with 1·9 Million Participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, B.; Gan, L.; Ke, L.; Fu, Y.; Di, Q.; Ma, X. Effects of Online Bodyweight High-Intensity Interval Training Intervention and Health Education on the Mental Health and Cognition of Sedentary Young Females. Int. J. Environ. Res. Public Health 2021, 18, 302. [Google Scholar] [CrossRef]
- Laxdal, A. The Sex Gap in Sports and Exercise Medicine Research: Who Does Research on Females? Scientometrics 2023, 128, 1987–1994. [Google Scholar] [CrossRef]
- Galvani, C.; Bruseghini, P.; Annoni, I.; Demarie, S.; Salvati, A.; Faina, M. Excess Post-Exercise Oxygen Consumption after Different Moderate Physical Activities in a Healthy Female Population. Med. Sport. 2013, 66, 163–178. [Google Scholar]
- Jackson, A.; Blair, S.; Mahar, M.; Wier, L.; Ross, R.; Stuteville, J. Prediction of Functional Aerobic Capacity without Exercise Testing. Med. Sci. Sports Exerc. 1990, 22, 863–870. [Google Scholar] [CrossRef]
- Shepard, R.N.; Metzler, J. Mental Rotation of Three-Dimensional Objects. Science 1971, 171, 701–703. [Google Scholar] [CrossRef]
- Thorndike, R.L.; Hagen, E.P.; Sattler, J.M. Stanford-Binet Intelligence Scale, 4th ed.; Riverside Publishing: Chicago, IL, USA; Itasca, IL, USA, 1986. [Google Scholar]
- Vandenberg, S.G.; Kuse, A.R. Mental Rotations, a Group Test of Three-Dimensional Spatial Visualization. Percept. Mot. Skills 1978, 47, 599–604. [Google Scholar] [CrossRef]
- Jansen, P.; Pietsch, S. Physical Activity Improves Mental Rotation Performance. Creat. Educ. 2010, 01, 58–61. [Google Scholar] [CrossRef]
- Stransky, D.; Wilcox, L.M.; Dubrowski, A. Mental rotation: Cross-task training and generalization. J. Exp. Psychol. Appl. 2010, 16, 349–360. [Google Scholar] [CrossRef]
- Burgomaster, K.A.; Hughes, S.C.; Heigenhauser, G.J.F.; Bradwell, S.N.; Gibala, M.J. Six Sessions of Sprint Interval Training Increases Muscle Oxidative Potential and Cycle Endurance Capacity in Humans. J. Appl. Physiol. 2005, 98, 1985–1990. [Google Scholar] [CrossRef]
- Borg, E.; Kaijser, L. A Comparison between Three Rating Scales for Perceived Exertion and Two Different Work Tests. Scand. J. Med. Sci. Sports 2006, 16, 57–69. [Google Scholar] [CrossRef]
- Gillen, J.; Skelly, L.E.; Tan, R.; Martin, B.; Percival, M.; Tarnopolsky, M.; Gibala, M. Sex Specific Adaptations to Very Low-Volume High Intensity Interval Training in Overweight Men and Women. Med. Sci. Sports Exerc. 2014, 46, 2686. [Google Scholar] [CrossRef]
- Carroll, J. Human Cognitive Abilities: A Survey of Factor-Analytical Studies; Cambridge University Press: New York, NY, USA, 1993. [Google Scholar]
- Alves, C.R.R.; Tessaro, V.H.; Teixeira, L.A.C.; Murakava, K.; Roschel, H.; Gualano, B.; Takito, M.Y. Influence of Acute High-Intensity Aerobic Interval Exercise Bout on Selective Attention and Short-Term Memory Tasks. Percept. Mot. Skills 2014, 118, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Curlik, D.M.; Shors, T.J. Training Your Brain: Do Mental and Physical (MAP) Training Enhance Cognition through the Process of Neurogenesis in the Hippocampus? Neuropharmacology 2013, 64, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Rahe, J.; Petrelli, A.; Kaesberg, S.; Fink, G.; Kessler, J.; Kalbe, E. Effects of Cognitive Training with Additional Physical Activity Compared to Pure Cognitive Training in Healthy Older Adults. Clin. Interv. Aging 2015, 10, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Puri, S.; Shaheen, M.; Grover, B. Nutrition and cognitive health: A life course approach. Front. Public. Health 2023, 27, 1023907. [Google Scholar] [CrossRef]
- Etnier, J.L.; Salazar, W.; Landers, D.M.; Petruzzello, S.J.; Han, M.; Nowell, P. The Influence of Physical Fitness and Exercise upon Cognitive Functioning: A Meta-Analysis. J. Sport Exer. Psychol. 1997, 19, 249–277. [Google Scholar] [CrossRef]
- Chang, Y.-K.; Etnier, J.L.; Barella, L.A. Exploring the Relationship Between Exercise-Induced Arousal and Cognition Using Fractionated Response Time. Res. Q. Exerc. Sport 2009, 80, 78–86. [Google Scholar] [CrossRef]
- McMorris, T.; Sproule, J.; Turner, A.; Hale, B.J. Acute, Intermediate Intensity Exercise, and Speed and Accuracy in Working Memory Tasks: A Meta-Analytical Comparison of Effects. Physiol. Behav. 2011, 102, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; Cureton, K.; Armstrong, L.E.; Kane, G.M.; Sparling, P.B.; Millard-Stafford, M. Short-term Effects of Aerobic Exercise on Executive Processes and Emotional Reactivity. Int. J. Sport Exerc. Psychol. 2005, 3, 131–146. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Dan, I.; Tsuzuki, D.; Kato, M.; Okamoto, M.; Kyutoku, Y.; Soya, H. Acute Moderate Exercise Elicits Increased Dorsolateral Prefrontal Activation and Improves Cognitive Performance with Stroop Test. NeuroImage 2010, 50, 1702–1710. [Google Scholar] [CrossRef] [PubMed]
- Cian, C.; Koulmann, N.; Barraud, P.A.; Raphel, C.; Jimenez, C.; Melin, B. Influence of Variations in Body Hydration on Cognitive Function: Effect of Hyperhydration, Heat Stress, and Exercise-Induced Dehydration. J. Psychophysiol. 2000, 14, 29–36. [Google Scholar] [CrossRef]
- Cian, C.; Barraud, P.A.; Melin, B.; Raphel, C. Effects of Fluid Ingestion on Cognitive Function after Heat Stress or Exercise-Induced Dehydration. Int. J. Psychophysiol. 2001, 42, 243–251. [Google Scholar] [CrossRef]
- Grego, F.; Vallier, J.-M.; Collardeau, M.; Bermon, S.; Ferrari, P.; Candito, M.; Bayer, P.; Magnié, M.-N.; Brisswalter, J. Effects of Long Duration Exercise on Cognitive Function, Blood Glucose, and Counterregulatory Hormones in Male Cyclists. Neurosci. Lett. 2004, 364, 76–80. [Google Scholar] [CrossRef]
- Tomporowski, P.D. Effects of Acute Bouts of Exercise on Cognition. Acta Psychol. 2003, 112, 297–324. [Google Scholar] [CrossRef]
- Tomporowski, P.; Beasman, K.; Ganio, M.; Cureton, K. Effects of Dehydration and Fluid Ingestion on Cognition. Int. J. Sports Med. 2007, 28, 891–896. [Google Scholar] [CrossRef]
- Lemmink, K.A.P.M.; Visscher, C. Effect of Intermittent Exercise on Multiple-Choice Reaction Times of Soccer Players. Percept. Mot. Skills 2005, 100, 85–95. [Google Scholar] [CrossRef]
- Phillips, K.; Silverman, I. Differences in the Relationship of Menstrual Cycle Phase to Spatial Performance on Two- and Three-Dimensional Tasks. Horm. Behav. 1997, 32, 167–175. [Google Scholar] [CrossRef]
- Hlavacova, N.; Wawruch, M.; Tisonova, J.; Jezova, D. Neuroendocrine Activation during Combined Mental and Physical Stress in Women Depends on Trait Anxiety and the Phase of the Menstrual Cycle. Ann. N. Y. Acad. Sci. 2008, 1148, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Wharton, W.; Hirshman, E.; Merritt, P.; Doyle, L.; Paris, S.; Gleason, C. Oral Contraceptives and Androgenicity: Influences on Visuospatial Task Performance in Younger Individuals. Exp. Clin. Psychopharmacol. 2008, 16, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.W.; Kramer, A.F.; Basak, C.; Prakash, R.S.; Roberts, B. Are Expert Athletes ‘Expert’ in the Cognitive Laboratory? A Meta-Analytic Review of Cognition and Sport Expertise. Appl. Cognit. Psychol. 2010, 24, 812–826. [Google Scholar] [CrossRef]
- Kennedy, A.; Dux, P.E.; Mallett, C.J. Exploring the higher-order cognitive capacities of sports coaches. Int. Sport Coach. J. 2021, 9, 271–277. [Google Scholar] [CrossRef]
- Guo, X.; Luo, Z.; Yu, X. A Speed-Accuracy Tradeoff Hierarchical Model Based on Cognitive Experiment. Front. Psychol. 2020, 8, 2910. [Google Scholar] [CrossRef]
- Hottenrott, L.; Möhle, M.; Ide, A.; Ketelhut, S.; Stoll, O.; Hottenrott, K. Recovery from Different High-Intensity Interval Training Protocols: Comparing Well-Trained Women and Men. Sports 2021, 9, 34. [Google Scholar] [CrossRef]
- Jokela, M.; Singh-Manoux, A.; Ferrie, J.E.; Gimeno, D.; Akbaraly, T.N.; Shipley, M.J.; Head, J.; Elovainio, M.; Marmot, M.G.; Kivimäki, M. The association of cognitive performance with mental health and physical functioning strengthens with age: The Whitehall II cohort study. Psychol. Med. 2010, 40, 837–845. [Google Scholar] [CrossRef]
- Brisswalter, J.; Collardeau, M.; René, A. Effects of Acute Physical Exercise Characteristics on Cognitive Performance. Sports Med. 2002, 32, 555–566. [Google Scholar] [CrossRef]
- Kashihara, K.; Maruyama, T.; Murota, M.; Nakahara, Y. Positive Effects of Acute and Moderate Physical Exercise on Cognitive Function. J. Physiol. Anthropol. 2009, 28, 155–164. [Google Scholar] [CrossRef]
- Winter, B.; Breitenstein, C.; Mooren, F.C.; Voelker, K.; Fobker, M.; Lechtermann, A.; Krueger, K.; Fromme, A.; Korsukewitz, C.; Floel, A.; et al. High Impact Running Improves Learning. Neurobiol. Learn. Mem. 2007, 87, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Fransen, J. There is No Supporting Evidence for a Far Transfer of General Perceptual or Cognitive Training to Sports Performance. Sports Med. 2024, 54, 2717–2724. [Google Scholar] [CrossRef] [PubMed]
TOT (N72) | HIIT (N18) | LVIT (N18) | COG (N18) | CTRL (N18) | |
---|---|---|---|---|---|
Age (yrs) | 21.8 ± 1.2 | 21.3 ± 0.7 | 21.6 ± 0.9 | 22.5 ± 1.7 | 21.7 ± 1.1 |
Height (m) | 1.65 ± 0.05 | 1.66 ± 0.06 | 1.66 ± 0.06 | 1.64 ± 0.05 | 1.65 ± 0.04 |
Weight (kg) | 58.5 ± 6.4 | 58.7 ± 5.6 | 58.5 ± 6.2 | 58.1 ± 6.8 | 58.6 ± 7.3 |
BMI (kg·m−2) | 21.4 ± 2.0 | 21.4 ± 1.6 | 21.3 ± 2.3 | 21.4 ± 1.8 | 21.4 ± 2.3 |
Score PAR | 4.6 ± 1.6 | 5.0 ± 1.0 | 4.3 ± 1.7 | 4.6 ± 2.1 | 4.5 ± 1.2 |
Reversal | N. Item | Rotation | N. Item | Visualization and Spatial Orientation | N. Item |
---|---|---|---|---|---|
Chessboards | 3 | Reconstruction of cubes A | 2 | Change of perspective A | 3 |
Reconstruction of cubes B | 3 | Change of perspective B | 2 | ||
Comparison of cubes | 3 |
Max Power (W) | Mean Power (W) | RPE | ||||
---|---|---|---|---|---|---|
HIIT | LVIT | HIIT | LVIT | HIIT | LVIT | |
W1 | 539.4 ± 111.5 | 514.5 ± 73.2 | 396.6 ± 54.5 | 388.9 ± 44.8 | 4.1 ± 1.6 | 3.1 ± 1.1 |
W2 | 555.8 ± 93.1 | 499.6 ± 71.6 | 379.3 ± 49.7 | 372.8 ± 51.6 | 5.1 ± 1.6 | 4.2 ± 1.6 |
W3 | 513.5 ± 115.8 | 499.6 ± 84.5 | 331.0 ± 58.6 | 356.7 ± 60.7 | 6.4 ± 1.7 | 5.6 ± 2.1 |
W4 | 525.5 ± 111.5 | 324.4 ± 59.5 | 7.7 ± 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvani, C.; Demarie, S.; Tommasini, E.; Antonietti, A.; Zandonai, T.; Bruseghini, P. The Combined Effect of Acute Interval and Cognitive Training on Visual-Spatial Abilities in Women: Preliminary Insights for Health Promotion. Int. J. Environ. Res. Public Health 2025, 22, 1524. https://doi.org/10.3390/ijerph22101524
Galvani C, Demarie S, Tommasini E, Antonietti A, Zandonai T, Bruseghini P. The Combined Effect of Acute Interval and Cognitive Training on Visual-Spatial Abilities in Women: Preliminary Insights for Health Promotion. International Journal of Environmental Research and Public Health. 2025; 22(10):1524. https://doi.org/10.3390/ijerph22101524
Chicago/Turabian StyleGalvani, Christel, Sabrina Demarie, Ester Tommasini, Alessandro Antonietti, Thomas Zandonai, and Paolo Bruseghini. 2025. "The Combined Effect of Acute Interval and Cognitive Training on Visual-Spatial Abilities in Women: Preliminary Insights for Health Promotion" International Journal of Environmental Research and Public Health 22, no. 10: 1524. https://doi.org/10.3390/ijerph22101524
APA StyleGalvani, C., Demarie, S., Tommasini, E., Antonietti, A., Zandonai, T., & Bruseghini, P. (2025). The Combined Effect of Acute Interval and Cognitive Training on Visual-Spatial Abilities in Women: Preliminary Insights for Health Promotion. International Journal of Environmental Research and Public Health, 22(10), 1524. https://doi.org/10.3390/ijerph22101524