Thermal Comfort Conditions and Mortality in Brazil
Abstract
:1. Introduction
2. Methods
2.1. Mortality Data
2.2. Weather Data
2.3. Thermal Indices
- Discomfort index (DI): This index merges average air temperature and relative humidity to gauge outdoor comfort levels. Values under 15 and above 26.5 signal discomfort, while those between 15 and 20 are considered comfortable, and values from 20 to 26.5 indicate slight discomfort. The DI combines air temperature and relative humidity to assess thermal comfort. One of its strengths lies in its simplicity and its long history of use in public health research. However, DI does not account for wind speed, which can be a critical factor in moderating heat stress, especially in warmer regions like Brazil. This limitation may reduce its ability to capture thermal discomfort in areas with high winds, where wind chill could affect perceived temperature.
- Net effective temperature (NET): This index evaluates outdoor thermal comfort by factoring in air temperature, relative humidity, and wind speed. A NET value between 17 and 21 denotes comfort, with specific ranges indicating mild discomfort in colder conditions and discomfort in hotter conditions. Its ability to factor in wind speed makes it more accurate in representing outdoor thermal comfort in various climatic conditions, especially in tropical regions where wind can mitigate heat stress. However, NET is more complex to calculate, and its interpretation may be less intuitive than simpler indices like DI or HI, potentially limiting its broader use in public health studies.
- Humidex (H): By combining air temperature and vapor pressure, the humidex provides a measure of thermal discomfort. Values below 29 suggest no discomfort, those between 30 and 39 imply mild discomfort, and values exceeding 45 points to hazardous discomfort levels. The humidex is well-suited to assess heat stress in regions with high humidity, as it reflects the combined impact of heat and moisture on human comfort. However, like DI, humidex does not consider wind speed, which may lead to an incomplete assessment of thermal stress in windy environments. Additionally, humidex values can sometimes overestimate discomfort in regions with extremely high humidity levels, which may exaggerate the associated health risks.
- Heat index (HI): This index, derived from air temperature and relative humidity, indicates levels of thermal discomfort. Values under 27 are deemed comfortable, while those over 32 are classified as dangerous. One of HI’s strengths is its familiarity and extensive use in heat-health warning systems, which makes it practical for public health applications. However, similar to DI and the humidex, HI does not include wind speed, which may limit its applicability in windy or cooler regions where wind plays a significant role in moderating thermal discomfort.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, X.; Wang, S.; Hu, Y.; Yue, M.; Zhang, T.; Liu, Y.; Tian, J.; Shang, K. Impact of Ambient Temperature on Morbidity and Mortality: An Overview of Reviews. Sci. Total Environ. 2017, 586, 241–254. [Google Scholar] [CrossRef]
- Son, J.Y.; Liu, J.C.; Bell, M.L. Temperature-Related Mortality: A Systematic Review and Investigation of Effect Modifiers. Environ. Res. Lett. 2019, 14, 073004. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, Y.; Ye, T.; Gasparrini, A.; Tong, S.; Overcenco, A.; Urban, A.; Schneider, A.; Entezari, A.; Vicedo-Cabrera, A.M.; et al. Global, Regional, and National Burden of Mortality Associated with Non-Optimal Ambient Temperatures from 2000 to 2019: A Three-Stage Modelling Study. Lancet Planet. Health 2021, 5, e415–e425. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gasparrini, A.; Li, S.; Sera, F.; Vicedo-Cabrera, A.M.; de Sousa Zanotti Stagliorio Coelho, M.; Saldiva, P.H.N.; Lavigne, E.; Tawatsupa, B.; Punnasiri, K.; et al. Quantifying Excess Deaths Related to Heatwaves under Climate Change Scenarios: A Multicountry Time Series Modelling Study. PLoS Med. 2018, 15, e1002629. [Google Scholar] [CrossRef] [PubMed]
- Alahmad, B.; Khraishah, H.; Royé, D.; Vicedo-Cabrera, A.M.; Guo, Y.; Papatheodorou, S.I.; Achilleos, S.; Acquaotta, F.; Armstrong, B.; Bell, M.L.; et al. Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries. Circulation 2023, 147, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Guo, Y.; Sera, F.; Vicedo-Cabrera, A.M.; Huber, V.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; Lavigne, E.; Matus Correa, P.; et al. Projections of Temperature-Related Excess Mortality under Climate Change Scenarios. Lancet Planet. Health 2017, 1, e360–e367. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Scovronick, N.; Sera, F.; Royé, D.; Schneider, R.; Tobias, A.; Astrom, C.; Guo, Y.; Honda, Y.; Hondula, D.M.; et al. The Burden of Heat-Related Mortality Attributable to Recent Human-Induced Climate Change. Nat. Clim. Change 2021, 11, 492–500. [Google Scholar] [CrossRef]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.L.; Pearlmutter, D. Outdoor Human Comfort and Thermal Stress: A Comprehensive Review on Models and Standards. Urban Clim. 2016, 18, 33–57. [Google Scholar] [CrossRef]
- Raymond, C.; Matthews, T.; Horton, R.M. The Emergence of Heat and Humidity Too Severe for Human Tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef]
- Jingesi, M.; Lan, S.; Hu, J.; Dai, M.; Huang, S.; Chen, S.; Liu, N.; Lv, Z.; Ji, J.; Li, X.; et al. Association between Thermal Stress and Cardiovascular Mortality in the Subtropics. Int. J. Biometeorol. 2023, 67, 2093–2106. [Google Scholar] [CrossRef]
- Psistaki, K.; Dokas, I.M.; Paschalidou, A.K. Analysis of the Heat- and Cold-Related Cardiovascular Mortality in an Urban Mediterranean Environment through Various Thermal Indices. Environ. Res. 2023, 216, 114831. [Google Scholar] [CrossRef] [PubMed]
- Limesand, S.W.; Camacho, L.E.; Kelly, A.C.; Antolic, A.T. Impact of Thermal Stress on Placental Function and Fetal Physiology. Anim. Reprod. 2018, 15 (Suppl. 1), 886–898. [Google Scholar] [CrossRef] [PubMed]
- Gillerot, L.; Rozario, K.; de Frenne, P.; Oh, R.; Ponette, Q.; Bonn, A.; Chow, W.; Godbold, D.; Steinparzer, M.; Haluza, D.; et al. Forests Are Chill: The Interplay between Thermal Comfort and Mental Wellbeing. Landsc. Urban Plan 2024, 242, 104933. [Google Scholar] [CrossRef]
- Rey, G.; Fouillet, A.; Bessemoulin, P.; Frayssinet, P.; Dufour, A.; Jougla, E.; Hémon, D. Heat Exposure and Socio-Economic Vulnerability as Synergistic Factors in Heat-Wave-Related Mortality. Eur. J. Epidemiol. 2009, 24, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Assessing Heat-Related Health Risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Urban, A.; Kyselý, J. Comparison of UTCI with Other Thermal Indices in the Assessment of Heat and Cold Effects on Cardiovascular Mortality in the Czech Republic. Int. J. Environ. Res. Public Health 2014, 11, 952–967. [Google Scholar] [CrossRef]
- de Freitas, C.R.; Grigorieva, E.A. A Comparison and Appraisal of a Comprehensive Range of Human Thermal Climate Indices. Int. J. Biometeorol. 2017, 61, 487–512. [Google Scholar] [CrossRef]
- Kuchcik, M. Mortality and Thermal Environment (UTCI) in Poland—Long-Term, Multi-City Study. Int. J. Biometeorol. 2021, 65, 1529–1541. [Google Scholar] [CrossRef]
- Cheshire, W.P. Thermoregulatory Disorders and Illness Related to Heat and Cold Stress. Auton. Neurosci. 2016, 196, 91–104. [Google Scholar] [CrossRef]
- Gasparrini, A.; Masselot, P.; Scortichini, M.; Schneider, R.; Mistry, M.N.; Sera, F.; Macintyre, H.L.; Phalkey, R.; Vicedo-Cabrera, A.M. Small-Area Assessment of Temperature-Related Mortality Risks in England and Wales: A Case Time Series Analysis. Lancet Planet. Health 2022, 6, e557–e564. [Google Scholar] [CrossRef]
- Gasparrini, A.; Armstrong, B.; Kenward, M.G. Distributed Lag Non-linear Models. Stat. Med. 2010, 29, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Sera, F.; Guo, Y.; Chung, Y.; Arbuthnott, K.; Tong, S.; Tobias, A.; Lavigne, E.; de Sousa Zanotti Stagliorio Coelho, M.; Nascimento Saldiva, P.H.; et al. A Multi-Country Analysis on Potential Adaptive Mechanisms to Cold and Heat in a Changing Climate. Environ. Int. 2018, 111, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, N.; Hajat, S.; Armstrong, B. Socioeconomic Differentials in the Temperature–Mortality Relationship in São Paulo, Brazil. Int. J. Epidemiol. 2003, 32, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ren, Y.; Huang, Q.; Zhao, D.-Y.; Tong, Z.-J.; Chang, W.-J. Thermal Response Separation for Bridge Long-Term Monitoring Systems Using Multi-Resolution Wavelet-Based Methodologies. J. Civ. Struct. Health Monit. 2020, 10, 527–541. [Google Scholar] [CrossRef]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot Weather and Heat Extremes: Health Risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Racinais, S.; Hosokawa, Y.; Akama, T.; Bermon, S.; Bigard, X.; Casa, D.J.; Grundstein, A.; Jay, O.; Massey, A.; Migliorini, S.; et al. Consensus Statement on Recommendations and Regulations for Sport Events in the Heat. Br. J. Sports Med. 2023, 57, 8–25. [Google Scholar] [CrossRef]
- Crandall, C.G.; Wilson, T.E. Human Cardiovascular Responses to Passive Heat Stress. Compr. Physiol. 2015, 5, 17–43. [Google Scholar] [CrossRef]
- Jung, W.S.; Kim, S.W.; Park, H.Y.; Kim, J.; Lim, K. Effects of Acute Exposure to Thermal Stress on Cardiorespiratory Function, Skeletal Muscle Oxygenation, and Exercise Performance in Healthy Males. Int. J. Environ. Res. Public Health 2021, 18, 7404. [Google Scholar] [CrossRef]
- Zafeiratou, S.; Samoli, E.; Analitis, A.; Gasparrini, A.; Stafoggia, M.; De’Donato, F.K.; Rao, S.; Zhang, S.; Breitner, S.; Masselot, P.; et al. Assessing Heat Effects on Respiratory Mortality and Location Characteristics as Modifiers of Heat Effects at a Small Area Scale in Central-Northern Europe. Environ. Epidemiol. 2023, 7, E269. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; D’Amato, M.; Annesi-Maesano, I. Climate Change and Respiratory Diseases. Eur. Respir. Rev. 2014, 23, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Momtazmanesh, S.; Moghaddam, S.; Ghamari, S.; Rad, E.; Rezaei, N.; Shobeiri, P.; Aali, A. Global Burden of Chronic Respiratory Diseases and Risk Factors, 1990–2019: An Update from the Global Burden of Disease Study 2019. EClinicalMedicine 2023, 59, 101936. [Google Scholar] [CrossRef] [PubMed]
- Crandall, C.G.; González-Alonso, J. Cardiovascular Function in the Heat-Stressed Human. Acta Physiol. 2010, 199, 407–423. [Google Scholar] [CrossRef] [PubMed]
- Marchand, M.; Gin, K. The Cardiovascular System in Heat Stroke. CJC Open 2022, 4, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Balmain, B.N.; Sabapathy, S.; Louis, M.; Morris, N.R. Aging and Thermoregulatory Control: The Clinical Implications of Exercising under Heat Stress in Older Individuals. Biomed. Res. Int. 2018, 2018, 8306154. [Google Scholar] [CrossRef]
- Kenny, G.P.; Yardley, J.; Brown, C.; Sigal, R.J.; Jay, O. Heat Stress in Older Individuals and Patients with Common Chronic Diseases. CMAJ 2010, 182, 1053–1060. [Google Scholar] [CrossRef]
- Meade, R.D.; Akerman, A.P.; Notley, S.R.; McGinn, R.; Poirier, P.; Gosselin, P.; Kenny, G.P. Physiological Factors Characterizing Heat-Vulnerable Older Adults: A Narrative Review. Environ. Int. 2020, 144, 105909. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Yu, W. The Lag Effects and Vulnerabilities of Temperature Effects on Cardiovascular Disease Mortality in a Subtropical Climate Zone in China. Int. J. Environ. Res. Public Health 2014, 11, 3982–3994. [Google Scholar] [CrossRef]
- Yang, J.; Ou, C.Q.; Ding, Y.; Zhou, Y.X.; Chen, P.Y. Daily Temperature and Mortality: A Study of Distributed Lag Non-Linear Effect and Effect Modification in Guangzhou. Environ. Health 2012, 11, 63. [Google Scholar] [CrossRef]
- Collaco, J.M.; Appel, L.J.; McGready, J.; Cutting, G.R. The Relationship of Lung Function with Ambient Temperature. PLoS ONE 2018, 13, e0191409. [Google Scholar] [CrossRef]
- Donaldson, G.; Seemungal, T.; Jeffries, D.; Wedzicha, J. Effect of Temperature on Lung Function and Symptoms in Chronic Obstructive Pulmonary Disease. Eur. Respir. J. 1999, 13, 844–849. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, W.J.; Jia, N.; Richardson, S.; Huang, C. Viral Respiratory Infections in a Rapidly Changing Climate: The Need to Prepare for the next Pandemic. EBioMedicine 2023, 93, 104593. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yoon, H.Y. Impact of ambient temperature on respiratory disease: A case-crossover study in Seoul. Respir. Res. 2024, 25, 1–11. [Google Scholar] [CrossRef]
- Liu, J.; Varghese, B.M.; Hansen, A.; Zhang, Y.; Driscoll, T.; Morgan, G.; Dear, K.; Gourley, M.; Capon, A.; Bi, P. Heat exposure and cardiovascular health outcomes: A systematic review and meta-analysis. Lancet Planet. Health 2022, 6, e484–e495. [Google Scholar] [CrossRef]
- Quick, M. The impacts of extreme heat events on non-accidental, cardiovascular, and respiratory mortality: An analysis of 12 Canadian cities from 2000 to 2020. Health Rep. 2024, 35, 3–15. [Google Scholar] [CrossRef]
- Kenny, G.P.; Wilson, T.E.; Flouris, A.D.; Fujii, N. Heat exhaustion. Handb. Clin. Neurol. 2018, 157, 505–529. [Google Scholar] [CrossRef] [PubMed]
- El Chakhtoura, N.G.; Bonomo, R.A.; Jump, R.L.P. Influence of Aging and Environment on Presentation of Infection in Older Adults. Infect. Dis. Clin. N. Am. 2017, 31, 593–608. [Google Scholar] [CrossRef]
- Stechemesser, A.; Wenz, L. Inequality in Behavioural Heat Adaptation: An Empirical Study with Mobility Data from the Transport System in New York City, NY, USA. Lancet Planet. Health 2023, 7, e798–e808. [Google Scholar] [CrossRef] [PubMed]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Din, M.F.M.; Lee, Y.Y.; Ponraj, M.; Ossen, D.R.; Iwao, K.; Chelliapan, S. Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate. J. Therm. Biol. 2014, 41, 6–15. [Google Scholar] [CrossRef]
- Rothfusz, L.P. The Heat Index Equation; National Weather Service Technical Attachment (SR 90-23): College Park, MD, USA, 1990. [Google Scholar]
Health Outcome | Age | Number of Deaths (%) 1 | ||
---|---|---|---|---|
Men | Women | All Sex | ||
All-cause | 0–14 | 123,948 (4.32) | 94,750 (2.91) | 218,698 (7.61) |
15–45 | 387,952 (13.51) | 136,920 (0.39) | 524,872 (18.27) | |
46–65 | 444,165 (15.46) | 270,087 (1.04) | 714,252 (24.87) | |
>65 | 734,314 (25.57) | 722,730 (25.16) | 1,457,044 (50.73) | |
All ages | 1,666,025 (58.01) | 1,206,059 (41.99) | 2,872,084 (100) | |
Respiratory | 0–14 | 9554 (3.44) | 7938 (2.53) | 17,492 (6.29) |
15–45 | 13,511 (4.86) | 8069 (0.32) | 21,580 (7.77) | |
46–65 | 30,212 (10.87) | 19,407 (0.66) | 49,619 (17.86) | |
>65 | 100,198 (36.06) | 92,878 (33.42) | 193,076 (69.48) | |
All ages | 151,185 (54.41) | 126,695 (45.59) | 277,880 (100) | |
Circulatory | 0–14 | 1852 (0.23) | 1682 (0.13) | 3534 (0.45) |
15–45 | 34,549 (4.36) | 23,814 (0.08) | 58,363 (7.36) | |
46–65 | 134,814 (17) | 87,699 (0.3) | 222,513 (28.05) | |
>65 | 256,733 (32.37) | 268,236 (33.82) | 524,969 (66.18) | |
All ages | 418,555 (52.77) | 374,655 (47.23) | 793,210 (100) |
Variable | Min | Q1 | Mean | SD | Q3 | Max | |
---|---|---|---|---|---|---|---|
Weather parameters | Temperature (°C) | 1.25 | 21.60 | 23.59 | 3.79 | 26.23 | 34.92 |
Relative humidity (%) | 20.00 | 69.75 | 77.76 | 13.64 | 88.50 | 100 | |
Wind speed (m/s) | 0.10 | 2.05 | 2.99 | 1.25 | 3.72 | 17.62 | |
Thermal indices | Discomfort index | 2.39 | 20.71 | 22.41 | 3.24 | 24.74 | 31.95 |
Net effective temperature | −12.17 | 15.85 | 18.26 | 4.59 | 21.64 | 31.49 | |
Humidex | −1.45 | 27.01 | 30.74 | 6.27 | 35.30 | 52.24 | |
Heat index | 1.00 | 22.00 | 24.59 | 4.80 | 28.00 | 52.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Requia, W.J.; Damasceno da Silva, R.M.; Hoinaski, L.; Amini, H. Thermal Comfort Conditions and Mortality in Brazil. Int. J. Environ. Res. Public Health 2024, 21, 1248. https://doi.org/10.3390/ijerph21091248
Requia WJ, Damasceno da Silva RM, Hoinaski L, Amini H. Thermal Comfort Conditions and Mortality in Brazil. International Journal of Environmental Research and Public Health. 2024; 21(9):1248. https://doi.org/10.3390/ijerph21091248
Chicago/Turabian StyleRequia, Weeberb J., Reizane Maria Damasceno da Silva, Leonardo Hoinaski, and Heresh Amini. 2024. "Thermal Comfort Conditions and Mortality in Brazil" International Journal of Environmental Research and Public Health 21, no. 9: 1248. https://doi.org/10.3390/ijerph21091248
APA StyleRequia, W. J., Damasceno da Silva, R. M., Hoinaski, L., & Amini, H. (2024). Thermal Comfort Conditions and Mortality in Brazil. International Journal of Environmental Research and Public Health, 21(9), 1248. https://doi.org/10.3390/ijerph21091248