Quantification of Visual Attention by Using Eye-Tracking Technology for Soundscape Assessment Through Physiological Response
Abstract
1. Introduction
- (1)
- Is there a novel methodology to quantify visual attention as static and dynamic objects based on eye movement measurements?
- (2)
- Do the results of visual attention evaluation using the conventional questionnaire method and those using the physiological measurement method proposed in this study differ?
- (3)
- Is the visual attention quantification method proposed in this study appropriate for evaluating the overall quality and restoration of soundscapes?
2. Methods
2.1. Quantification Methods for Visual Attention
2.2. Stimuli
2.2.1. Audio–Visual Data Collection
2.2.2. Reproduction of Audio–Visual Environment Through Virtual-Reality Techniques
2.3. Experimental Design
2.3.1. Participants
2.3.2. Questionnaires
2.3.3. Procedure
2.4. Data Analysis
3. Results
3.1. Visual Attention Response
3.1.1. Physiological Response from Eye-Tracking Technology
3.1.2. Psychological Responses to Questionnaire
3.1.3. Relationship Between Physical Characteristics and Visual Response
3.2. Soundscape Perception
3.2.1. Soundscape Assessment
3.2.2. Restoration Responses Obtained Through Soundscape Experience
4. Discussion
4.1. Comparison Between Questionnaire and Physiological Soundscape Evaluation Approaches
4.2. Limitations and Further Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulles, M.P.J.; Biesiot, W.; Stewart, R. Adverse effects of environmental noise on health: An interdisciplinary approach. Environ. Int. 1990, 16, 437–445. [Google Scholar] [CrossRef]
- Clark, C.; Paunovic, K. WHO environmental noise guidelines for the European Region: A systematic review on environmental noise and quality of life, wellbeing and mental health. Int. J. Environ. Res. Public Health 2018, 15, 2400. [Google Scholar] [CrossRef]
- European Union Directive. Directive/EC of the European Parliament and the Council of 18 Relating to the Assessment and Management of Environmental Noise; European Union: Maastricht, The Netherlands, 2002; Volume 189, Available online: http://data.europa.eu/eli/dir/2002/49/oj (accessed on 29 September 2024).
- World Health Organization. Environmental Noise Guidelines for the European Region; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Kang, J.; Aletta, F.; Gjestland, T.T.; Brown, L.A.; Botteldooren, D.; Schulte-Fortkamp, B.; Lercher, P.; van Kamp, I.; Genuit, K.; Fiebig, A.; et al. Ten questions on the soundscapes of the built environment. Build. Environ. 2016, 108, 284–294. [Google Scholar] [CrossRef]
- Kang, J.; Schulte-Fortkamp, B. Soundscape and the Built Environment, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- ISO 12913-1; Acoustics—Soundscape—Part 1: Definition and Conceptual Framework. International Organization for Standardization: Geneva, Switzerland, 2014.
- Aletta, F.; Kang, J.; Axelsson, Ö. Soundscape descriptors and a conceptual framework for developing predictive soundscape models. Landsc. Urban Plan. 2016, 149, 65–74. [Google Scholar] [CrossRef]
- ISO 12913-2; Acoustics—Soundscape Part 2: Data Collection and Reporting Requirements. International Organization for Standardization: Geneva, Switzerland, 2018.
- Jo, H.I.; Jeon, J.Y. Effect of the appropriateness of sound environment on urban soundscape assessment. Build. Environ. 2020, 179, 106975. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. Compatibility of quantitative and qualitative data-collection protocols for urban soundscape evaluation. Sustain. Cities Soc. 2021, 74, 103259. [Google Scholar] [CrossRef]
- Mitchell, A.; Oberman, T.; Aletta, F.; Erfanian, M.; Kachlicka, M.; Lionello, M.; Kang, J. The soundscape indices (SSID) protocol: A method for urban soundscape surveys—Questionnaires with acoustical and contextual information. Appl. Sci. 2020, 10, 2397. [Google Scholar] [CrossRef]
- ISO 12913-3; Acoustics—Soundscape Part 3: Data Analysis. International Organization for Standardization: Geneva, Switzerland, 2019.
- Furnham, A. Response bias, social desirability and dissimulation. Pers. Individ. Dif. 1986, 7, 385–400. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Jo, H.I.; Lee, K. Potential restorative effects of urban soundscapes: Personality traits, temperament, and perceptions of VR urban environments. Landsc. Urban Plan. 2021, 214, 104188. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. Overall environmental assessment in urban parks: Modelling audio-visual interaction with a structural equation model based on soundscape and landscape indices. Build. Environ. 2021, 204, 108166. [Google Scholar] [CrossRef]
- Erfanian, M.; Mitchell, A.J.; Kang, J.; Aletta, F. The psychophysiological implications of soundscape: A systematic review of empirical literature and a research agenda. Int. J. Environ. Res. Public Health 2019, 16, 3533. [Google Scholar] [CrossRef] [PubMed]
- Hume, K.; Ahtamad, M. Physiological responses to and subjective estimates of soundscape elements. Appl. Acoust. 2013, 74, 275–281. [Google Scholar] [CrossRef]
- Medvedev, O.; Shepherd, D.; Hautus, M.J. The restorative potential of soundscapes: A physiological investigation. Appl. Acoust. 2015, 96, 20–26. [Google Scholar] [CrossRef]
- Li, Z.; Kang, J. Sensitivity analysis of changes in human physiological indicators observed in soundscapes. Landsc. Urban Plan. 2019, 190, 103593. [Google Scholar] [CrossRef]
- Li, Z.; Ba, M.; Kang, J. Physiological indicators and subjective restorativeness with audio-visual interactions in urban soundscapes. Sustain. Cities Soc. 2021, 75, 103360. [Google Scholar] [CrossRef]
- Li, H.; Xie, H.; Woodward, G. Soundscape components, perceptions, and EEG reactions in typical mountainous urban parks, Urban For. Urban Green 2021, 64, 127269. [Google Scholar] [CrossRef]
- Carles, J.; Bernáldez, F.; de Lucio, J. Audio-visual interactions and soundscape preferences. Landsc. Res. 1992, 17, 52–56. [Google Scholar] [CrossRef]
- Li, H.; Lau, S.K. A review of audio-visual interaction on soundscape assessment in urban built environments. Appl. Acoust. 2020, 166, 107372. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Jo, H.I. Effects of audio-visual interactions on soundscape and landscape perception and their influence on satisfaction with the urban environment. Build. Environ. 2020, 169, 106544. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Lau, S.K. Comprehensive audio-visual environmental effects on residential soundscapes and satisfaction: Partial least square structural equation modeling approach. Landsc. Urban Plan. 2022, 220, 104351. [Google Scholar] [CrossRef]
- Schulte-Fortkamp, B. The daily rhythm of the soundscape “Nauener Platz” in Berlin. J. Acoust. Soc. Am. 2010, 127 (Suppl. S3), 1774. [Google Scholar] [CrossRef]
- Aletta, F.; Lavia, L.R.; Witchel, H.J. Urban sound planning in Brighton and Hove. In Proceedings of the Forum Acusticum, Krakow, Poland, 7–12 September 2014; pp. 7–12. [Google Scholar]
- Kang, J. On the diversity of urban waterscape. In Proceedings of the Acoustics 2012 Nantes Conference, Nantes, France, 23–27 April 2012. [Google Scholar]
- Liu, J.; Kang, J.; Behm, H.; Luo, T. Effects of landscape on soundscape perception: Soundwalks in city parks. Landsc. Urban Plan. 2014, 123, 30–40. [Google Scholar] [CrossRef]
- Sun, K.; De Coensel, B.; Filipan, K.; Aletta, F.; Van Renterghem, T.; De Pessemier, T.; Joseph, W.; Botteldooren, D. Classification of soundscapes of urban public open spaces. Landsc. Urban Plan. 2019, 189, 139–155. [Google Scholar] [CrossRef]
- Hong, J.Y.; Jeon, J.Y. Influence of urban contexts on soundscape perceptions: A structural equation modeling approach. Landsc. Urban Plan. 2015, 141, 78–87. [Google Scholar] [CrossRef]
- Itti, L.; Rees, G.; Tsotsos, J.K. Neurobiology of Attention, 1st ed.; Elsevier Academic Press: Burlington, MA, USA, 2005. [Google Scholar]
- Lamme, V.A.F. Why visual attention and awareness are different. Trends Cogn. Sci. 2003, 7, 12–18. [Google Scholar] [CrossRef]
- Sun, K.; Echevarria Sanchez, G.M.; De Coensel, B.; Van Renterghem, T.; Talsma, D.; Botteldooren, D. Personal audiovisual aptitude influences the interaction between landscape and soundscape appraisal. Front. Psychol. 2018, 9, 780. [Google Scholar] [CrossRef]
- Botteldooren, D.; Boes, M.; Oldoni, D.; De Coensel, B. The role of paying attention to sounds in soundscape perception. J. Acoust. Soc. Am. 2012, 131, 3382. [Google Scholar] [CrossRef]
- Jo, H.I.; Jeon, J.Y. The influence of human behavioral characteristics on soundscape perception in urban parks: Subjective and observational approaches. Landsc. Urban Plan. 2020, 203, 103890. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, M.; Zhao, B. Audio-visual interactive evaluation of the forest landscape based on eye-tracking experiments. Urban For. Urban Green. 2019, 46, 126476. [Google Scholar] [CrossRef]
- Ren, X.; Kang, J. Interactions between landscape elements and tranquility evaluation based on eye tracking experiments (L). J. Acoust. Soc. Am. 2015, 138, 3019–3022. [Google Scholar] [CrossRef] [PubMed]
- Rassell, A.; Robinson, J.; Verhagen, D.; Pink, S.; Redmond, S.; Stadler, J. Seeing, sensing sound: Eye tracking soundscapes in Saving Private Ryan and Monsters, Inc. In Making Sense of Cinema: Empirical Studies into Film Spectators and Spectatorship; Reinhard, C.D., Olson, C.J., Eds.; Bloomsbury Publishing Academic: New York, NY, USA, 2016; pp. 139–164. [Google Scholar]
- Scott, N.; Zhang, R.; Le, D.; Moyle, B. A review of eye-tracking research in tourism. Curr. Issues Tourism 2019, 22, 1244–1261. [Google Scholar] [CrossRef]
- King, A.J.; Bol, N.; Cummins, R.G.; John, K.K. Improving visual behavior research in communication science: An overview, Review, and Reporting Recommendations for Using Eye-Tracking Methods [Review]. Commun. Methods Meas. 2019, 13, 149–177. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Sipatchin, A.; Wahl, S.; Rifai, K. Accuracy and precision of the HTC VIVE PRO eye tracking in head-restrained and head-free conditions. Invest. Ophthalmol. Vis. Sci. 2020, 61, 5071. [Google Scholar]
- Jeon, J.Y.; Jo, H.I.; Lee, K. Psycho-physiological restoration with audio-visual interactions through virtual reality simulations of soundscape and landscape experiences in urban, waterfront, and green environments. Sustain. Cities Soc. 2023, 99, 104929. [Google Scholar] [CrossRef]
- Puyana-Romero, V.; Ciaburro, G.; Brambilla, G.; Garzón, C.; Maffei, L. Representation of the soundscape quality in urban areas through colours. Noise Mapp. 2019, 6, 8–21. [Google Scholar] [CrossRef]
- Krzywinski, M. Image Color Summarizer: RBG, HSV, LCH & Lab Image Color Statistics and Clustering—Simple and Easy. 2018. Available online: https://mk.bcgsc.ca/color-summarizer/ (accessed on 29 September 2024).
- Hong, J.Y.; Lam, B.; Ong, Z.T.; Ooi, K.; Gan, W.S.; Kang, J.; Feng, J.; Tan, S.T. Quality assessment of acoustic environment reproduction methods for cinematic virtual reality in soundscape applications. Build. Environ. 2019, 149, 1–14. [Google Scholar] [CrossRef]
- Payne, S.R. The production of a perceived restorativeness soundscape scale. Appl. Acoust. 2013, 74, 255–263. [Google Scholar] [CrossRef]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Clay, V.; König, P.; König, S. Eye tracking in virtual reality. J. Eye Mov. Res. 2019, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Rådsten-Ekman, M.; Axelsson, Ö.; Nilsson, M.E. Effects of sounds from water on perception of acoustic environments dominated by road-traffic noise. Acta Acust. U. Acust. 2013, 99, 218–225. [Google Scholar] [CrossRef]
- Mayfrank, L.; Mobashery, M.; Kimmig, H.; Fischer, B. The role of fixation and visual attention in the occurrence of express saccades in man. Eur. Arch. Psychiatry Neurol. Sci. 1986, 235, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Romano Bergstrom, J.C.; Olmsted-Hawala, E.L.; Jans, M.E. Age-related differences in eye tracking and usability performance: Website usability for older adults. Int. J. Hum-Comput. Int. 2013, 29, 541–548. [Google Scholar] [CrossRef]
- Hunfalvay, M.; Bolte, T.; Singh, A.; Greenstein, E.; Murray, N.P.; Carrick, F.R. Age-based developmental biomarkers in eye movements: A retrospective analysis using machine learning. Brain Sci. 2024, 14, 686. [Google Scholar] [CrossRef] [PubMed]
- Svobodova, K.; Vondrus, J.; Filova, L.; Besta, M. The role of familiarity with the landscape in visual landscape preferences. J. Landsc. Stud. 2011, 4, 11–24. [Google Scholar]
- Davies, W.J.; Adams, M.D.; Bruce, N.S.; Cain, R.; Carlyle, A.; Cusack, P.; Hall, D.A.; Hume, K.I.; Irwin, A.; Jennings, P.; et al. Perception of soundscapes: An interdisciplinary approach. Appl. Acoust. 2013, 74, 224–231. [Google Scholar] [CrossRef]
Parameter | Visual Parameter [%] | Acoustic Parameter [dB] | |||||
---|---|---|---|---|---|---|---|
Site | Green | Water | Sky | Grey | LAeq | LCeq-Aeq | LA5-A95 |
Urban | |||||||
(a) High-density commercial area | 7 | 0 | 18 | 73 | 75.9 | 12.4 | 16.5 |
(b) Low-density commercial area | 3 | 0 | 25 | 70 | 70.6 | 11.5 | 17.4 |
(c) Business area | 0 | 0 | 18 | 62 | 74.2 | 12.9 | 20.6 |
Waterfront | |||||||
(d) River | 8 | 8 | 45 | 0 | 50.7 | 27.2 | 10.3 |
(e) Wetland | 10 | 1 | 47 | 0 | 45.4 | 16.4 | 7.1 |
(f) Ocean | 0 | 0 | 47 | 0 | 44.3 | 12.7 | 5.2 |
Green space | |||||||
(g) Forest | 40 | 2 | 7 | 0 | 48.9 | 10.1 | 11.6 |
(h) Valley | 41 | 4 | 4 | 0 | 67.2 | 6.3 | 10.0 |
(i) Temple | 37 | 0 | 10 | 3 | 51.7 | 16.6 | 21.5 |
Parameter | Visual Parameter [%] | Acoustic Parameter [dB] | |||||
---|---|---|---|---|---|---|---|
Site | Green | Water | Sky | Grey | LAeq | LCeq-Aeq | LA5-A95 |
Number of fixations [num] | |||||||
Vehicle | −0.18 ** | −0.34 ** | −0.11 ** | 0.53 ** | 0.49 ** | −0.11 ** | 0.47 ** |
Building | −0.40 ** | −0.46 ** | −0.12 ** | 0.85 ** | 0.67 ** | −0.28 ** | 0.46 ** |
People | −0.43 ** | −0.51 ** | −0.13 ** | 0.89 ** | 0.73 ** | −0.21 ** | 0.50 ** |
Vegetation | 0.59 ** | −0.25 ** | −0.61 ** | −0.05 | −0.19 ** | 0.49 ** | −0.14 ** |
Water space | −0.14 ** | 0.71 ** | 0.50 ** | −0.56 ** | −0.40 ** | −0.05 | −0.04 |
Sky | −0.47 ** | 0.52 ** | 0.71 ** | −0.33 ** | −0.12 ** | −0.22 ** | 0.23 ** |
Time duration of fixations [s] | |||||||
Vehicle | −0.23 ** | −0.37 ** | −0.11 * | 0.59 ** | 0.52 ** | −0.13 ** | 0.49 ** |
Building | −0.41 ** | −0.48 ** | −0.13 ** | 0.86 ** | 0.68 ** | −0.25 ** | 0.42 ** |
People | −0.43 ** | −0.49 ** | −0.11 ** | 0.85 ** | 0.69 ** | −0.21 ** | 0.47 ** |
Vegetation | 0.77 ** | −0.21 ** | −0.66 ** | −0.26 ** | −0.43 ** | 0.52 ** | −0.45 ** |
Water space | −0.09 * | 0.67 ** | 0.35 ** | −0.47 ** | −0.41 ** | 0.02 | 0.01 |
Sky | −0.41 ** | 0.50 ** | 0.66 ** | −0.33 ** | −0.12 ** | −0.23 ** | 0.17 ** |
Subjective response | |||||||
Vehicle | −0.34 ** | −0.45 ** | −0.15 ** | 0.81 ** | 0.70 ** | −0.21 ** | 0.51 ** |
Building | −0.41 ** | −0.46 ** | −0.12 ** | 0.87 ** | 0.71 ** | −0.27 ** | 0.51 ** |
People | −0.23 ** | −0.56 ** | −0.32 ** | 0.85 ** | 0.68 ** | −0.04 | 0.45 ** |
Vegetation | 0.37 ** | 0.12 ** | −0.09 * | −0.42 ** | −0.34 ** | 0.14 ** | −0.42 ** |
Water space | −0.05 | 0.74 ** | 0.44 ** | −0.63 ** | −0.47 ** | 0.03 | −0.10 * |
Sky | −0.14 ** | 0.39 ** | 0.46 ** | −0.45 ** | −0.28 ** | −0.12 ** | −0.05 |
Physiological Response | Subjective Response | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Methodology | Eye Tracking | Questionnaire | ||||||||||
Item | Number of Fixations [num] | Time Duration of Fixations [s] | Identification | |||||||||
Adjusted R2 | 0.41 | 0.53 | 0.38 | 0.12 | 0.41 | 0.53 | 0.37 | 0.11 | 0.42 | 0.51 | 0.39 | 0.14 |
Dimension | PL | EV | OI | AP | PL | EV | OI | AP | PL | EV | OI | AP |
Traffic noise | −0.20 * | −0.35 ** | −0.20 * | −0.15 | −0.17 | 0.37 ** | −0.17 | −0.11 | - | - | - | - |
Other noise | −0.31 ** | 0.03 | −0.15 | −0.06 | −0.30 ** | 0.04 | −0.16 | −0.05 | −0.35 ** | 0.14 ** | −0.26 ** | −0.05 |
Human sound | 0.21 ** | 0.28 ** | 0.09 | 0.19 ** | 0.21 ** | 0.28 ** | 0.08 | 0.17 * | 0.19 ** | 0.29 ** | 0.04 | 0.15 |
Natural sound | 0.35 ** | 0.03 | 0.32 ** | 0.32 ** | 0.32 ** | 0.05 | 0.29 ** | 0.28 ** | 0.31 ** | 0.04 | 0.29 ** | 0.24 ** |
Vehicle | −0.03 | 0.10 * | −0.02 | −0.02 | −0.03 | 0.07 | −0.04 | −0.02 | −0.08 | 0.17 * | 0.01 | −0.16 |
Building | 0.13 | −0.12 | 0.08 | 0.19 | 0.05 | 0.04 | −0.08 | 0.02 | −0.01 | 0.01 | 0.09 | 0.03 |
People | −0.11 | 0.24 ** | −0.16 | −0.16 | −0.01 | 0.13 * | −0.02 | 0.01 | −0.02 | 0.18 ** | 0.01 | 0.01 |
Vegetation | −0.01 | 0.03 | −0.05 | −0.04 | 0.09 * | 0.06 | 0.02 | 0.08 | 0.04 | −0.10 ** | 0.10 ** | 0.10 * |
Water space | −0.02 | 0.10 * | −0.04 | −0.06 | 0.05 | 0.13 ** | −0.01 | 0.01 | −0.09 | 0.02 | −0.06 | −0.10 |
Sky | 0.03 | −0.09 * | 0.06 | 0.07 | 0.08 * | −0.06 | 0.05 | 0.09 | 0.14 ** | −0.04 | 0.14 ** | 0.18 ** |
Physiological Response | Subjective Response | ||||||||
---|---|---|---|---|---|---|---|---|---|
Methodology | Eye Tracking | Questionnaire | |||||||
Item | Number of Fixations [num] | Time Duration of Fixations [s] | Identification | ||||||
Adjusted R2 | 0.42 | 0.33 | 0.28 | 0.43 | 0.33 | 0.28 | 0.42 | 0.31 | 0.27 |
Dimension | PRSS | Valence | Arousal | PRSS | Valence | Arousal | PRSS | Valence | Arousal |
Traffic noise | −0.10 | 0.09 | 0.10 | −0.08 | 0.10 | 0.12 | - | - | - |
Other noise | −0.04 | −0.37 ** | 0.26 ** | −0.05 | −0.37 ** | 0.25 ** | −0.05 | −0.28 ** | 0.27 ** |
Human sound | 0.09 | 0.18 ** | −0.03 | 0.10 | 0.17 ** | −0.01 | 0.04 | 0.14 * | 0.01 |
Natural sound | 0.40 ** | 0.39 ** | −0.08 | 0.36 ** | 0.36 ** | −0.07 | 0.36 ** | 0.33 ** | −0.09 |
Vehicle | −0.13 ** | −0.08 | 0.06 | −0.13 ** | −0.09 * | 0.06 | −0.03 | −0.01 | 0.01 |
Building | 0.06 | 0.05 | −0.10 | −0.13 * | 0.01 | −0.10 | −0.19 * | −0.05 | 0.17 * |
People | −0.18 * | −0.05 | 0.27 ** | −0.02 | 0.01 | 0.19 ** | −0.03 | 0.01 | 0.05 |
Vegetation | 0.03 | 0.03 | 0.05 | 0.04 | 0.06 | −0.05 | 0.05 | 0.04 | −0.03 |
Water space | −0.10 | −0.04 | 0.13 * | 0.04 | −0.03 | 0.10 * | 0.01 | −0.03 | 0.13 * |
Sky | 0.14 ** | 0.17 ** | −0.08 | 0.14 ** | 0.17 ** | −0.09 * | 0.16 ** | 0.09 * | −0.09 * |
Dimension | Soundscape Quality | Psychological Response | |||||
---|---|---|---|---|---|---|---|
Pleasantness | Eventfulness | Overall Impression | Appropriateness | PRSS | Valence | Arousal | |
Adjusted R2 | 0.43 | 0.53 | 0.40 | 0.14 | 0.42 | 0.33 | 0.29 |
Subjective response: sound perception | |||||||
Traffic noise | - | - | - | - | - | - | - |
Other noise | −0.32 ** | 0.12 | −0.23 ** | −0.02 | −0.23 ** | −0.28 ** | 0.23 ** |
Human sound | 0.19 ** | 0.26 ** | 0.04 | 0.15 | 0.12 | 0.18 * | 0.00 |
Natural sound | 0.30 ** | 0.06 | 0.28 ** | 0.24 ** | 0.32 ** | 0.33 ** | −0.06 |
Subjective response: visual perception | |||||||
Vehicle | −0.08 | 0.20 ** | 0.01 | −0.17 | 0.02 | 0.01 | −0.02 |
Building | −0.13 | 0.00 | −0.08 | −0.01 | −0.07 | −0.10 | 0.21 * |
People | 0.04 | 0.11 | 0.06 | 0.04 | 0.02 | 0.03 | −0.01 |
Vegetation | 0.05 | −0.08 * | 0.10 * | 0.09 * | 0.07 | 0.06 | −0.01 |
Water space | −0.09 | −0.01 | −0.07 | −0.08 | −0.09 | −0.07 | 0.10 |
Sky | 0.15 ** | 0.00 | 0.11 ** | 0.16 ** | 0.11 * | 0.06 | −0.06 |
Physiological response: Number of fixations [num] | |||||||
Vehicle | - | - | - | - | - | - | - |
Building | 0.17 | −0.17 * | 0.17 | 0.25 * | 0.17 | 0.10 | −0.07 |
People | - | - | - | - | - | - | - |
Vegetation | −0.10 | 0.06 | −0.18 ** | −0.16 * | −0.12 * | −0.03 | 0.18 ** |
Water space | −0.05 | 0.02 | −0.04 | −0.06 | 0.01 | 0.04 | −0.02 |
Sky | −0.04 | −0.06 | 0.11 | 0.08 | 0.02 | 0.07 | −0.04 |
Physiological response: Time duration of fixations [s] | |||||||
Vehicle | −0.04 | 0.09 * | −0.04 | −0.03 | −0.11 * | −0.09 | 0.03 |
Building | −0.02 | 0.14 * | −0.16 * | −0.10 | −0.09 | 0.00 | −0.08 |
People | −0.06 | 0.17 * | −0.07 | −0.07 | −0.12 | −0.02 | 0.22 ** |
Vegetation | 0.16 ** | 0.01 | 0.15 * | 0.20 ** | 0.10 | 0.07 | −0.18 ** |
Water space | 0.11 | 0.12 * | 0.05 | 0.07 | 0.03 | −0.04 | 0.09 |
Sky | 0.10 | 0.00 | −0.05 | 0.00 | 0.12 | 0.12 | −0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, H.I.; Jeon, J.Y. Quantification of Visual Attention by Using Eye-Tracking Technology for Soundscape Assessment Through Physiological Response. Int. J. Environ. Res. Public Health 2024, 21, 1478. https://doi.org/10.3390/ijerph21111478
Jo HI, Jeon JY. Quantification of Visual Attention by Using Eye-Tracking Technology for Soundscape Assessment Through Physiological Response. International Journal of Environmental Research and Public Health. 2024; 21(11):1478. https://doi.org/10.3390/ijerph21111478
Chicago/Turabian StyleJo, Hyun In, and Jin Yong Jeon. 2024. "Quantification of Visual Attention by Using Eye-Tracking Technology for Soundscape Assessment Through Physiological Response" International Journal of Environmental Research and Public Health 21, no. 11: 1478. https://doi.org/10.3390/ijerph21111478
APA StyleJo, H. I., & Jeon, J. Y. (2024). Quantification of Visual Attention by Using Eye-Tracking Technology for Soundscape Assessment Through Physiological Response. International Journal of Environmental Research and Public Health, 21(11), 1478. https://doi.org/10.3390/ijerph21111478