Chronic Effects of Different Intensities of Interval Training on Hemodynamic, Autonomic and Cardiorespiratory Variables of Physically Active Elderly People
Abstract
:1. Introduction
Present Study
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measures
2.3.1. Analyses of Hemodynamic and Autonomic Variables
2.3.2. Analyses of Estimated Oxygen Consumption
2.4. Training Protocols
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations, Directions for Further Research and Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Organization World Health World Health Statistics 2016: Monitoring Health for Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2016.
- Chang, E.; Kannoth, S.; Levy, S.; Wang, S.; Lee, J.E.; Becca, R.L. Global Reach of Ageism on Older Persons’ Health: A Systematic Review. PLoS ONE 2020, 15, e0220857. [Google Scholar] [CrossRef]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical Activity and Public Health in Older Adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1094–1105. [Google Scholar] [CrossRef]
- Ogliari, G.; Mahinrad, S.; Stott, D.J.; Jukema, W.; Mooijaart, S.P.; Macfarlane, P.W.; Clark, E.N.; Kearney, P.M.; Westendorp, R.G.J.; Craen, A.J.M.; et al. Resting Heart Rate, Heart Rate Variability and Functional Decline in Old Age. CMAJ 2015, 187, E442–E449. [Google Scholar] [CrossRef]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circulation 2019, 124, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Mccraty, R.; Shaffer, F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-Regulatory Capacity, and Health Risk. Glob. Advan. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Ballesta-García, I.; Martínez-González-Moro, I.; Ramos-Campo, D.J.; Carrasco-Poyatos, M. High-Intensity Interval Circuit Training versus Moderate-Intensity Continuous Training on Cardiorespiratory Fitness in Middle-Aged and Older Women: A Randomized Controlled Trial. Int. J. Env. Res. Public. Health 2020, 17, 1805. [Google Scholar] [CrossRef]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumi, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy Men and Women. JAMA 2009, 301, 2024–2031. [Google Scholar] [CrossRef]
- Schroeder, E.C.; Franke, W.D.; Rick, L.S.; Lee, D. Comparative Effectiveness of Aerobic, Resistance, and Combined Training on Cardiovascular Disease Risk Factors: A Randomized Controlled Trial. PLoS ONE 2019, 14, e0210292. [Google Scholar] [CrossRef]
- Scartoni, F.R.; Rabelo, M.F.P.; Silva, S.N.R.; Sant’Ana, L.O.; Scudese, E.; Ramos, A.M.; Senna, G.W.; Garcia, A.A.; Dantas, E.H.M. Physical Conditioning Index on Active Elderly Population. Biomed. J. Sci. Tech. Res. 2018, 11, 8–11. [Google Scholar] [CrossRef]
- Sant’Ana, L.O.; Machado, S.; Ribeiro, A.A.S.; Reis, N.R.; Campos, Y.A.C.; Silva, J.G.V.; Scartoni, F.R.; Brown, A.F.; Monteiro, E.R.; Novaes, J.S.; et al. Effects of Cardiovascular Interval Training in Healthy Elderly Subjects: A Systematic Review. Front. Physiol. 2020, 11, 739. [Google Scholar] [CrossRef]
- Geus, E.J.C.; Gianaros, P.J.; Brindle, R.C.; Jennings, J.R.; Berntson, G.G. Should Heart Rate Variability Be “Corrected” for Heart Rate? Biological, Quantitative, and Interpretive Considerations. Psychophysiology 2019, 56, e13287. [Google Scholar] [CrossRef] [PubMed]
- Izadi, M.R.; Afousi, A.G.; Fard, M.A.; Bigi, M.A.B. High-Intensity Interval Training Lowers Blood Pressure and Improves Apelin and NOx Plasma Levels in Older Treated Hypertensive Individuals. J. Physiol. Bioch. 2017, 74, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Benda, N.M.M.; Seeger, J.P.H.; Stevens, G.G.C.F.; Hijmans-Kersten, B.T.P.; Van Dijk, A.P.J.; Bellersen, L. Effects of High-Intensity Interval Training versus Continuous Training on Physical Fitness, Cardiovascular Function, and Quality of Life in Heart Failure Patients. PLoS ONE 2015, 10, e0141256. [Google Scholar] [CrossRef] [PubMed]
- Chaves, P.H.; Varadhan, R.; Lipsitz, L.A.; Stein, P.K.; Windhan, B.G.; Jing, T.; Fleisher, L.A.; Guralnik, J.M.; Fried, L.P. Physiological Complexity Underlying Heart Rate Dynamics and Frailty Status in Community-Dwelling Older Women. J. Am. Geriatr. Soc. 2008, 56, 1698–1703. [Google Scholar] [CrossRef] [PubMed]
- Boidin, M.; Gayda, M.; Henri, C.; Hayami, D.; Trachsel, L.D.; Besnier, F.; Lalongé, J.; Juneau, M.; Nigam, A. Effects of Interval Training on Risk Markers for Arrhythmic Death: A Randomized Controlled Trial. Clin. Rehabil. 2019, 33, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Salinas-Rodríguez, A.; Manrique-Espinoza, B.; Palazuelos-González, R.; Rivera-almaraz, A.; Jáuregui, A. Physical Activity and Sedentary Behavior Trajectories and Their Associations with Quality of Life, Disability, and All-Cause Mortality. Eur. Rev. Aging Phys. Act. 2022, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pichot, V.; Roche, F.; Denis, C.; Garet, M.; Duverney, D.; Costes, F.; Barthelemy, J.C. Interval Training in Elderly Men Increases Both Heart Rate Variability and Baroreflex Activity. Clin. Auton. Res. 2005, 15, 107–115. [Google Scholar] [CrossRef]
- Grässler, B.; Thielmann, B.; Böckelmann, I.; Hökelmann, A. Effects of Different Exercise Interventions on Heart Rate Variability and Cardiovascular Health Factors in Older Adults: A Systematic Review. Eur. Rev. Aging Phys. Act. 2021, 18, 1–21. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Landolfo, C.; Niebauer, J.; Ozemek, C.; Arena, R.; Lavie, C.J. Promoting Physical Activity and Exercise. J. Am. Coll. Cardiol. 2018, 72, 1622–1639. [Google Scholar] [CrossRef]
- Bottoms, L.; Leighton, D.; Carpenter, R.; Anderson, S.; Langmead, L.; Ramage, J.; Faulkner, J.; Coleman, E.; Fairhurst, C.; Seed, M.; et al. Affective and Enjoyment Responses to 12 Weeks of High Intensity Interval Training and Moderate Continuous Training in Adults with Crohn’s Disease. PLoS ONE 2019, 14, e0222060. [Google Scholar] [CrossRef]
- Castro, A.; Duft, R.G.; Ferreira, M.L.V.; Andrade, A.L.L.D.; Gaspari, A.F.; Silva, L.D.M.; de Oliveira-Nunes, S.G.; Cavaglieri, C.R.; Ghosh, S.; Bouchard, C.; et al. Association of Skeletal Muscle and Serum Metabolites with Maximum Power Output Gains in Response to Continuous Endurance or High-Intensity Interval Training Programs: The TIMES Study—A Randomized Controlled Trial. PLoS ONE 2019, 14, e0212115. [Google Scholar] [CrossRef]
- Frazão, D.T.; de Farias Junior, L.F.; Dantas, T.C.B.; Krinski, K.; Elsangedy, H.M.; Prestes, J.; Hardcastle, S.J.; Costa, E.C. Feeling of Pleasure to High-Intensity Interval Exercise Is Dependent of the Number of Work Bouts and Physical Activity Status. PLoS ONE 2016, 11, e0152752. [Google Scholar] [CrossRef]
- Poon, E.T.C.; Wongpipit, W.; Ho, R.S.T.; Wong, S.H.S. Interval Training versus Moderate-Intensity Continuous Training for Cardiorespiratory Fitness Improvements in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis. J. Sport. Sci. 2021, 39, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Vanzella, L.M.; Dagostinho, D.B.B.; Figueiredo, M.P.F.; Castrillón, C.I.M.; Junior, J.N.; Vanderlei, L.C.M. Periodized Aerobic Interval Training Modifies Geometric Indices of Heart Rate Variability in Metabolic Syndrome. Medicina 2019, 55, 532. [Google Scholar] [CrossRef] [PubMed]
- Bruseghini, P.; Tam, E.; Calabria, E.; Milanese, C.; Capelli, C.; Galvani, C. High-Intensity Interval Training Does Not Have Compensatory Effects on Physical Activity Levels in Older Adults. Int. J. Envir Res. Public. Health 2020, 17, 1083. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.; Brown, A.W.; Brown, M.M.B.; Alcorn, A.; Noles, C.; Winwood, L.; Resuehr, H.; George, B.; Jeansonne, M.M.; Allison, D.B. High-Intensity Interval vs. Moderate-Intensity Training for Improving Cardiometabolic Health in Overweight or Obese Males: A Randomized Controlled Trial. PLoS ONE 2015, 10, e0138853. [Google Scholar] [CrossRef] [PubMed]
- Vanzella, L.M.; Linares, S.N.; Miranda, R.A.T.; da Silva, A.K.F.; Christófaro, D.G.D.; Netto Junior, J.; Vanderlei, L.C.M. Effects of a New Approach of Aerobic Interval Training on Cardiac Autonomic Modulation and Cardiovascular Parameters of Metabolic Syndrome Subjects. Arch. Endocrinol. Metab. 2019, 63, 148–156. [Google Scholar] [CrossRef]
- Enette, L.; Vogel, T.; Merle, S.; Valard-Guiguet, A.G.; Ozier-Lafontaine, N.; Neviere, R.; Leuly-Joncart, C.; Fanon, J.L.; Lang, P.O. Effect of 9 Weeks Continuous vs. Interval Aerobic Training on Plasma BDNF Levels, Aerobic Fitness, Cognitive Capacity and Quality of Life among Seniors with Mild to Moderate Alzheimer’s Disease: A Randomized Controlled Trial. Eur. Rev. Aging Phys. Act. 2020, 17, 2. [Google Scholar] [CrossRef]
- Santos, A.; Lonsdale, C.; Lubans, D.; Vasconcellos, D.; Kapsal, N.; Vis-Dunbar, M.; Jung, M.E. Rates of Compliance and Adherence to High-Intensity Interval Training in Insufficiently Active Adults: A Systematic Review and Meta-Analysis Protocol. BMC 2020, 9, 1–6. [Google Scholar] [CrossRef]
- Sant’Ana, L.O.; Vianna, J.M.; Reis, N.; Ribeiro, A.A.S.; Soares, B.O.; Novaes, J.S.; Scartoni, F.R.; Machado, S. Eight Weeks of Interval Training Led to No Improvement in Cardiovascular Variables in the Elderly. Open Sport. Sci. J. 2020, 13, 73–80. [Google Scholar] [CrossRef]
- Battaglia, G.; Giustino, V.; Messina, G.; Faraone, M.; Brusa, J.; Bordonali, A.; Barbagallo, M.; Palma, A.; Dominguez, L.J. Walking in Natural Environments as Geriatrician’s Recommendation for Fall Prevention: Preliminary Outcomes from the “Passiata Day” Model. Sustainability 2020, 12, 2684. [Google Scholar] [CrossRef]
- Sant’Ana, L.O.; Scartoni, F.R.; Portilho, L.F.; Scudese, E.; Oliveira, C.Q.; Senna, G.W. Comparison of Cardiovascular Variables in Active Elderly in Different Physical Modalities. Braz. J. Exerc. Physiol. 2019, 18, 186–194. [Google Scholar] [CrossRef]
- Bronnikova, E.M.; Kulyamina, O.S.; Vinogradova, M.V.; Shatsky, A.A.; Ponyashova, A.S. Physical Activity of the Older Population as a Factor of Active Longevity. Laplage Em Rev. 2021, 7, 198–206. [Google Scholar] [CrossRef]
- Lepretre, P.M.; Vogel, T.; Brechat, P.; Dufour, S.; Richard, R.; Kaltenbach, G.; Berthel, M.; Lonsdorfer, J. Impact of Short-Term Aerobic Interval Training on Maximal Exercise in Sedentary Aged Subjects. Int. J. Clin. Pract. 2009, 63, 1472–1478. [Google Scholar] [CrossRef]
- Molmen, H.E.; Wisloff, U.; Aamot, I.L.; Stoylen, A.; Ingul, C.B. Aerobic Interval Training Compensates Age Related Decline in Cardiac Function. Scand. Cardiovasc. J. 2012, 46, 163–171. [Google Scholar] [CrossRef]
- Adamson, S.; Kavaliauskas, M.; Yamagishi, T.; Phillips, S.; Lorimer, R.; Babraj, J. Extremely Short Duration Sprint Interval Training Improves Vascular Health in Older Adults. Sport. Sci. Health 2019, 15, 123–131. [Google Scholar] [CrossRef]
- Kang, M.; Ragan, B.G.; Park, J.H. Issues in Outcomes Research: An Overview of Randomization Techniques for Clinical Trials. J. Athl. Train. 2008, 43, 215–221. [Google Scholar] [CrossRef]
- Kurtz, T.W.; Griffin, K.A.; Bidani, A.K.; Davisson, R.L.; Hall, J.E. Recommendations for Blood Pressure Measurements in Animals: Summary of an AHA Scientific Statement from the Council on High Blood Pressure Research, Professional and Public Education Subcommittee. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 478–479. [Google Scholar] [CrossRef]
- Ansari, M.; Javadi, H.; Pourbehi, M.; Mogharrabi, M.; Rayzan, M.; Semnani, S.; Jallatat, S.; Amini, A.; Abbaszadeh, M.; Barekat, M.; et al. The Association of Rate Pressure Product (RPP) and Myocardial Perfusion Imaging (MPI) Findings: A Preliminary Study. Perfusion 2012, 27, 207–213. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 1996, 93, 1043–1065.
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef]
- Billman, G.E. The LF / HF Ratio Does Not Accurately Measure Cardiac Sympatho-Vagal Balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Draghici, A.E.; Taylor, J.A. The Physiological Basis and Measurement of Heart Rate Variability in Humans. J. Physiol. Anthr. 2016, 35, 22. [Google Scholar] [CrossRef] [PubMed]
- Quintana, D.S.; Heathers, J.A.; Kemp, A.H. On the Validity of Using the Polar RS800 Heart Rate Monitor for Heart Rate Variability Research. Eur. J. Appl. Physiol. 2012, 112, 4179–4180. [Google Scholar] [CrossRef] [PubMed]
- Topouchian, J.A.; El Assaad, M.A.; Orobinskaia, L.V.; El Feghali, R.N.; Asmar, R.G. Validation of Two Automatic Devices for Self-Measurement of Blood Pressure According to the International Protocol of the European Society of Hypertension: The Omron M6 (HEM-7001-E) and the Omron R7 (HEM 637-IT). Blood Press. Monit. 2006, 6, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.A.; Silveira, H.S.; Carvalho, A.; Hellmuth, C.G.S.; Santos, T.M.; Martins, J.V.; Cavalcanti, J.L.S.; Laks, J.; Deslandes, A.C. Assessment of Cardiorespiratory Fitness Using Submaximal Protocol in Older Adults with Mood Disorder and Parkinson’s Disease. Rev. Psiq. Clín. 2012, 40, 88–92. [Google Scholar] [CrossRef]
- Swain, D.P.; Leutholtz, B.C.; King, M.E.; Haas, L.A.; Branch, J.D. Relationship between % Heart Rate Reserve and %VO2 Reserve in Treadmill Exercise. Med. Sci. Sport. Exerc. 1998, 30, 318–321. [Google Scholar] [CrossRef]
- Heath, E.H. ACSM’s Guidelines for Exercise Testing and Prescription, 7th Edition. Med. Sci. Sport. Exerc. 2005, 37, 2018. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-Predicted Maximal Heart Rate Revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef]
- Karvonen, M.; Kentala, E.; Mustala, O. The Effects of Training on Heart Rate. A Longitudinal Study. Ann. Med. Exp. Biol. Fennal 1957, 35, 307–315. [Google Scholar]
- Borg, G.A.V. Psychophysical Bases of Perceived Exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences FRANZ. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P.; Medicine, A.C. of S. American College of Sports Medicine Position Stand. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sport. Exer. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.R. Exercise and Hypertension. Med. Sci. Sport. Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Magal, M.; Scheinowitz, M. Benefits and Risks Associated with Physical Activity. In ACSM’s Guidelines For Exercise Testing and Prescription; Riebe, D., Ehrman, J.K., Liguori, G., Magal, M., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2018; Volume 101, pp. 1–21. [Google Scholar]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018, 77, 71–159. [Google Scholar] [CrossRef]
- Nemoto, K.; Gen-n, H.; Masuki, S.; Okazaki, K.; Nose, H. Effects of High-Intensity Interval Walking Training on Physical Fitness and Blood Pressure in Middle-Aged and Older People. Mayo Clin. Proc. 2007, 82, 803–811. [Google Scholar] [CrossRef]
Variables | TGA | TGB | CG |
---|---|---|---|
M ± SD | M ± SD | M ± SD | |
Age (years) | 65.1 ± 4.3 | 73.1 ± 7.2 | 68.2 ± 6.6 |
Weight (kg) | 81.9 ± 13.1 | 74.2 ± 7.3 | 75.8 ± 5.2 |
Height (m) | 1.71 ± 0.06 | 1.69 ± 0.06 | 1.71 ± 0.04 |
BMI (kg/m2) | 27.8 ± 1.4 | 25.8 ± 1.2 | 26.8 ± 1.4 |
HRR (bpm) | 73 ± 11 | 76 ± 14 | 78 ± 7 |
SBP (mm/Hg) | 129 ± 5 | 128 ± 10 | 126 ± 9 |
DBP (mm/Hg) | 80 ± 3 | 77 ± 6 | 80 ± 4 |
TGA | TGB | CG | |||||||
---|---|---|---|---|---|---|---|---|---|
p-Value | ES | ∆% | p-Value | ES | ∆% | p-Value | ES | ∆% | |
HRR | |||||||||
Post 16° | p > 0.099 | −0.06 (Small) | −2% | p = 0.999 | 0.14 (Small) | 3% | p = 0.999 | 0.13 (Small) | −2% |
Post 32° | p = 0.846 | −0.31 (Small) | −5% | p = 0.943 | −0.31 (Small) | −6% | p > 0.999 | 0.14 (Small) | −2% |
SBP | |||||||||
Post 16° | p = 0.316 | −0.86 (Large) | 4% | p = 0.851 | 0.67 (Medium) | −5% | p = 0.639 | 0.51 (Medium) | 4% |
Post 32° | p = 0.148 | −1.11 (Large) | 6% | p = 0.991 | −0.29 (Small) | −2% | p > 0.999 | 0.08 (Small) | 0.1% |
DBP | |||||||||
Post 16° | p > 0.999 | 0.12 (Small) | 0.1% | p > 0.999 | −0.04 (Small) | −0.1% | p = 0.999 | 0.23 (Small) | 1% |
Post 32° | p = 0.999 | −0.20 (Small) | −0.1% | p > 0.999 | 0.00 (Small) | 0.1% | p > 0.999 | 0.08 (Small) | −0.1% |
MBP | |||||||||
Post 16° | p = 0.416 | 0.75 (Medium) | −3% | p = 0.860 | −0.71 (Medium) | −4% | p = 0.821 | 0.51 (Medium) | 3% |
Post 32° | p = 0.103 | −1.10 (Large) | −4% | p = 0.997 | −0.29 (Small) | −2% | p > 0.999 | 0.09 (Small) | 0.1% |
DP | |||||||||
Post 16° | p = 0.913 | −0.27 (Small) | −5% | p = 0.961 | −0.15 (Trivial) | −3% | p = 0.905 | 0.12 (Trivial) | 2% |
Post 32° | p = 0.733 | −0.52 (Medium) | −10% | p = 0.733 | −0.44 (Small) | −9% | p = 0.942 | −0.09 (Trivial) | −1% |
VO2max | |||||||||
Post 16° | p = 0.928 | 0.82 (Large) | 11% | p > 0.999 | 0.31 (Small) | 5% | p = 0.998 | 0.00 (Small) | 0.001% |
Post 32° | p = 0.279 | 1.12 (Large) | 15% | p = 0.804 | 0.38 (Small) | 6% | p > 0.999 | 0.03 (Small) | 0.07% |
TGA | TGB | CG | |||||||
---|---|---|---|---|---|---|---|---|---|
p-Value | ES | ∆% | p-Value | ES | ∆% | p-Value | ES | ∆% | |
RR | |||||||||
Post 16° | p = 0.999 | 0.14 (Small) | 2% | p = 0.991 | 0.26 (Small) | 5% | p = 0.986 | 0.46 (Small) | 3% |
Post 32° | p = 0.116 | 1.36 (Large) | 20% | p = 0.765 | 0.42 (Small) | 8% | p = 0.919 | 0.59 (Medium) | 4% |
RMSSD | |||||||||
Post 16° | p = 0.999 | −0.20 (Small) | −12% | p > 0.999 | −0.01 (Small) | −2% | p = 0.999 | 0.17 (Small) | 10% |
Post 32° | p > 0.999 | 0.12 (Small) | 11% | p > 0.999 | 0.12 (Small) | 14% | p > 0.999 | 0.10 (Small) | 6% |
SDNN | |||||||||
Post 16° | p > 0.999 | −0.06 (Small) | −2% | p = 0.646 | 0.34 (Small) | 25% | p = 0.999 | 0.33 (Small) | 13% |
Post 32° | p = 0.607 | −0.72 (Medium) | −24% | p = 0.219 | 0.75 (Medium) | 54% | p = 0.999 | 0.34 (Small) | 14% |
LF | |||||||||
Post 16° | p = 0.999 | −0.13 (Small) | −5% | p = 0.698 | −1.16 (Large) | −9% | p = 0.805 | 0.54 (Medium) | 14% |
Post 32° | p = 0.556 | −0.49 (Medium) | −19% | p = 0.349 | −4.00 (Large) | −32% | p = 0.981 | 0.30 (Small) | 7% |
HF | |||||||||
Post 16° | p = 0.999 | 0.13 (Small) | 14% | p = 0.605 | 0.98 (Large) | 40% | p = 0.965 | −0.34 (Small) | −27% |
Post 32° | p = 0.139 | 0.50 (Medium) | 52% | p = 0.540 | 1.53 (Large) | 62% | p = 0.993 | −0.27 (Small) | −21% |
LF/HF | |||||||||
Post 16° | p = 0.997 | −0.32 (Small) | −24% | p = 0.983 | −0.58 (Medium) | −20% | p = 0.888 | 1.16 (Large) | 91% |
Post 32° | p = 0.191 | −0.90 (Large) | −68% | p = 0.920 | −0.80 (Large) | −28% | p = 0.999 | 0.25 (Small) | 20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sant’Ana, L.; Monteiro, D.; Budde, H.; Ribeiro, A.A.d.S.; Vieira, J.G.; Monteiro, E.R.; Scartoni, F.R.; Machado, S.; Vianna, J.M. Chronic Effects of Different Intensities of Interval Training on Hemodynamic, Autonomic and Cardiorespiratory Variables of Physically Active Elderly People. Int. J. Environ. Res. Public Health 2023, 20, 5619. https://doi.org/10.3390/ijerph20095619
Sant’Ana L, Monteiro D, Budde H, Ribeiro AAdS, Vieira JG, Monteiro ER, Scartoni FR, Machado S, Vianna JM. Chronic Effects of Different Intensities of Interval Training on Hemodynamic, Autonomic and Cardiorespiratory Variables of Physically Active Elderly People. International Journal of Environmental Research and Public Health. 2023; 20(9):5619. https://doi.org/10.3390/ijerph20095619
Chicago/Turabian StyleSant’Ana, Leandro, Diogo Monteiro, Henning Budde, Aline Aparecida de Souza Ribeiro, João Guilherme Vieira, Estêvão Rios Monteiro, Fabiana Rodrigues Scartoni, Sérgio Machado, and Jeferson Macedo Vianna. 2023. "Chronic Effects of Different Intensities of Interval Training on Hemodynamic, Autonomic and Cardiorespiratory Variables of Physically Active Elderly People" International Journal of Environmental Research and Public Health 20, no. 9: 5619. https://doi.org/10.3390/ijerph20095619