ICNIRP Guidelines’ Exposure Assessment Method for 5G Millimetre Wave Radiation May Trigger Adverse Effects
Abstract
:1. Introduction
2. Methods
3. Results
3.1. ICNIRP Guidelines
3.2. Brillouin Precursors
“5G will be defined in a set of standardized specifications that are agreed on by international bodies–most notably the 3GPP [the 3rd Generation Partnership Project] and ultimately by the ITU [International Telecommunications Union]. The ITU defined criteria for IMT-2020—commonly regarded as 5G—and selected a set of compatible technologies which will support… Enhanced mobile broadband: Including peak download speeds of at least 20 Gbps…”p. 3 [original emphasis]
3.3. Research
“The FIFTH generation of wireless communication technology (5G) promises to facilitate transmission at data rates up to a factor of 100 times higher than 4G. For that purpose, higher frequencies (including mmW bands), broadband modulation schemes, and thus faster signals with steeper rise and fall times will be employed, potentially in combination with pulsed operation for time domain multiple access…The thresholds for frequencies above 10 MHz set in current exposure guidelines (ICNIRP 1998, IEEE 2005, 2010) are intended to limit tissue heating. However, short pulses can lead to important temperature oscillations, which may be further exacerbated at high frequencies (>10 GHz, fundamental to 5G), where the shallow penetration depth leads to intense surface heating and a steep, rapid rise in temperature…”.[26]
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.-N.R.; Gao, B.; Zhang, X.; Huang, K. Beam Management in Millimeter-Wave Communications for 5G and Beyond. IEEE Access 2020, 8, 13282–13293. [Google Scholar] [CrossRef]
- ICNIRP, ICNIRP Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [CrossRef] [PubMed]
- GSMA 5G Spectrum: GSMA Public Policy Position; GSMA: London, UK, 2022.
- Neufeld, E.; Carrasco, E.; Murbach, M.; Balzano, Q.; Christ, A.; Kuster, N. Theoretical and numerical assessment of maximally allowable power-density averaging area for conservative electromagnetic exposure assessment above 6 GHz. Bioelectromagnetics 2018, 39, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Thielens, A.; Bell, D.; Mortimore, D.B.; Greco, M.K.; Martens, L.; Joseph, W. Exposure of Insects to Radio-Frequency Electromagnetic Fields from 2 to 120 GHz. Sci. Rep. 2018, 8, 3924. [Google Scholar] [CrossRef] [PubMed]
- International Commission on the Biological Effects of Electromagnetic Fields (ICBE-EMF); Belyaev, I.; Blackman, C.; Chamberlin, K.; DeSalles, A.; Dasdag, S.; Fernández, C.; Hardell, L.; Héroux, P.; Kelley, E.; et al. Scientific evidence invalidates health assumptions underlying the FCC and ICNIRP exposure limit determinations for radiofrequency radiation: Implications for 5G. Environ. Health 2022, 21, 92. [Google Scholar] [CrossRef]
- Gandhi, O.; Riazi, A. Absorption of Millimeter Waves by Human Beings and its Biological Implications. IEEE Trans. Microw. Theory Tech. 1986, 34, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Christ, A.; Samaras, T.; Neufeld, E.; Kuster, N. RF-INDUCED TEMPERATURE INCREASE IN A STRATIFIED MODEL OF THE SKIN FOR PLANE-WAVE EXPOSURE AT 6–100 GHZ. Radiat. Prot. Dosim. 2020, 188, 350–360. [Google Scholar] [CrossRef]
- Karipidis, K.K. The New ARPANSA Radiofrequency Standard (RPS S-1), ARPANSA Guidelines Consultation Forum; ARPANSA: Melbourne, Australia, 2020.
- Cicchi, R.; Kapsokalyvas, D.; Pavone, F.S. Chapter 20-Nonlinear Microscopy in Clinical Dermatology. In Imaging in Dermatology; Hamblin, M.R., Avci, P., Gupta, G.K., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 269–280. [Google Scholar]
- Jiang, W.C.; Zhang, H.; Xu, Y.; Jiang, C.; Xu, Y.; Liu, W.; Tan, Y. Cutaneous vessel features of sensitive skin and its underlying functions. Skin. Res. Technol. 2020, 26, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Lintzeri, D.A.; Karimian, N.; Blume-Peytavi, U.; Kottner, J. Epidermal thickness in healthy humans: A systematic review and me-ta-analysis. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1191–1200. [Google Scholar] [CrossRef]
- Pleshko, P.; Palócz, I. Experimental Observation of Sommerfeld and Brillouin Precursors in the Microwave Domain. Phys. Rev. Lett. 1969, 22, 1201–1204. [Google Scholar] [CrossRef]
- Jakobsen, P.K.; Mansuripur, M. On the nature of the Sommerfeld–Brillouin forerunners (or precursors). Quantum Stud. Math. Found. 2019, 7, 315–339. [Google Scholar] [CrossRef] [Green Version]
- Albanese, R.; Blaschak, J.; Medina, R.; Penn, J. Ultrashort electromagnetic signals: Biophysical questions, safety issues, and medical opportunities. Aviat. Space, Environ. Med. 1994, 65, A116020. [Google Scholar]
- Albanese, R.; Penn, J.; Medina, R. Ultrashort Pulse Response in Nonlinear Dispersive Media. In Ultra-Wideband, Short-Pulse Electromagnetics; Bertoni, H.L., Carin, L., Felsen, L.B., Eds.; Springer: Boston, MA, USA, 1993; pp. 259–265. [Google Scholar]
- Alejos, A.V.; Dawood, M.; Falcone, F.; Gallego, E.A. In Radio channel characterization of intra-body propagation under frequency dispersive perspective. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 2294–2298. [Google Scholar]
- Alejos, A.V.; Aguirre, E.; Dawood, M.; Falcone, F. Review of specific absorption definition considering the evolution of the Brillouin precursors. In Proceedings of the 2014 IEEE Antennas and Propagation International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 1200–1201. [Google Scholar]
- Fogg, I. Benchmarking the Global 5G Experience; Open Signal: London, UK; Boston, MA, USA; Victoria, BC, Canada, 2022. [Google Scholar]
- Sarieddeen, H.; Saeed, N.; Al-Naffouri, T.Y.; Alouini, M.-S. Next Generation Terahertz Communications: A Rendezvous of Sensing, Imaging, and Localization. IEEE Commun. Mag. 2020, 58, 69–75. [Google Scholar] [CrossRef]
- Hardell, L.; Nilsson, M. Case report: The microwave syndrome after installation of 5G emphasizes the need for protection from radiofrequency radiation. Ann. Case Rep. 2023, 8, 1112. [Google Scholar]
- Perov, S.Y.; Rubtsova, N.B.; Belaya, O.V. Status of the Neuroendocrine System in Animals Chronically Exposed to Electromagnetic Fields of 5G Mobile Network Base Stations. Bull. Exp. Biol. Med. 2022, 174, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Oughstun, K.E. Brillouin Precursors 101. In Microwave News; Slesin, L., Ed.; Louis Slesin: New York, NY, USA, 2002; Volume XXII, pp. 10–11. Available online: https://www.microwavenews.com/about-us (accessed on 28 February 2023).
- Lawler, N.B.; Evans, C.W.; Romanenko, S.; Chaudhari, N.; Fear, M.; Wood, F.; Smith, N.M.; Wallace, V.P.; Iyer, K.S. Millimeter waves alter DNA secondary structures and modulate the transcriptome in human fibroblasts. Biomed. Opt. Express 2022, 13, 3131. [Google Scholar] [CrossRef] [PubMed]
- ICNIRP. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- Neufeld, E.; Kuster, N. Systematic Derivation of Safety Limits for Time-Varying 5G Radiofrequency Exposure Based on Analytical Models and Thermal Dose. Heal. Phys. 2018, 115, 705–711. [Google Scholar] [CrossRef]
- Neufeld, E.; Samaras, T.; Kuster, N. Discussion on Spatial and Time Averaging Restrictions Within the Electromagnetic Exposure Safety Framework in the Frequency Range Above 6 GHz for Pulsed and Localized Exposures. Bioelectromagnetics 2020, 41, 164–168. [Google Scholar] [CrossRef]
- Neufeld, E.; Kuster, N. Response to Enders’ comment on “Discussion on spatial and time averaging restrictions within the electromagentic exposure safety framework in the frequency range above 6 GHz for pulse and localized exposures”. Bioelectromagnetics 2020, 41, 483–484. [Google Scholar] [CrossRef]
- Hardell, L. World Health Organization, radiofrequency radiation and health—A hard nut to crack (Review). Int. J. Oncol. 2017, 51, 405–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alejos, A.V.; Dawood, M.; Aguirre, E.; Falcone, F.; Outerelo, D.A.; Naghar, A.; Agzhout, O. Influence of impairments due to dispersive propagation on the antenna design for body-based applications. J. Electromagn. Waves Appl. 2015, 29, 2355–2364. [Google Scholar] [CrossRef]
- Foster, K.R. Vijayalaxmi, Needed: More Reliable Bioeffects Studies at “High Band” 5G Frequencies. Front. Commun. Netw. 2021, 2, 721925. [Google Scholar] [CrossRef]
- Leszczynski, D. Physiological effects of millimeter-waves on skin and skin cells: An overview of the to-date published studies. Rev. Environ. Health 2020, 35, 493–515. [Google Scholar] [CrossRef]
- Leach, V.A.; Weller, S.; Redmayne, M. A novel database of bio-effects from non-ionising radiation. Reviews on Environmental Health 2018, 33, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Blackman, C.; Forge, S. 5G Deployment: State of play in Europe, USA and Asia; European Parliament’s Committee on Industry, Research and Energy: Luxembourg City, Luxembourg, 2019. [Google Scholar]
- Aerts, S.; Deprez, K.; Colombi, D.; Bossche, M.V.D.; Verloock, L.; Martens, L.; Törnevik, C.; Joseph, W. In Situ Assessment of 5G NR Massive MIMO Base Station Exposure in a Commercial Network in Bern, Switzerland. Appl. Sci. 2021, 11, 3592. [Google Scholar] [CrossRef]
- Franci, D.; Coltellacci, S.; Grillo, E.; Pavoncello, S.; Aureli, T.; Cintoli, R.; Migliore, M.D. Experimental Procedure for Fifth Generation (5G) Electromagnetic Field (EMF) Measurement and Maximum Power Extrapolation for Human Exposure Assessment. Environments 2020, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Bonato, M.; Dossi, L.; Chiaramello, E.; Fiocchi, S.; Tognola, G.; Parazzini, M. Stochastic Dosimetry Assessment of the Human RF-EMF Exposure to 3D Beamforming Antennas in indoor 5G Networks. Appl. Sci. 2021, 11, 1751. [Google Scholar] [CrossRef]
Depth of Upper Cutaneous Blood Vessel from Skin Surface (mm) | Depth of Upper Cutaneous Blood Vessel from Skin Surface Sensitive Skin (mm) | Approx. Depth of Preauricular Free Nerve Endings from Healthy Skin Surface (mm) |
---|---|---|
1.15–1.45 | 0.19–0.23 | 0.025 a |
(Cicci et al., 2016, pp. 269–280) [10] | (Jiang et al., 2020, pp. 431, 433) [11] | (Lintzeri et al., 2022, p. 1194 table 1) [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redmayne, M.; Maisch, D.R. ICNIRP Guidelines’ Exposure Assessment Method for 5G Millimetre Wave Radiation May Trigger Adverse Effects. Int. J. Environ. Res. Public Health 2023, 20, 5267. https://doi.org/10.3390/ijerph20075267
Redmayne M, Maisch DR. ICNIRP Guidelines’ Exposure Assessment Method for 5G Millimetre Wave Radiation May Trigger Adverse Effects. International Journal of Environmental Research and Public Health. 2023; 20(7):5267. https://doi.org/10.3390/ijerph20075267
Chicago/Turabian StyleRedmayne, Mary, and Donald R. Maisch. 2023. "ICNIRP Guidelines’ Exposure Assessment Method for 5G Millimetre Wave Radiation May Trigger Adverse Effects" International Journal of Environmental Research and Public Health 20, no. 7: 5267. https://doi.org/10.3390/ijerph20075267