PCBs, PCNs, and PCDD/Fs in Soil around an Industrial Park in Northwest China: Levels, Source Apportionment, and Human Health Risk
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Analysis
2.3. Quality Assurance and Quality Control
2.4. Data Analysis
3. Results and Discussion
3.1. PCB, PCN, and PCDD/F Concentrations
3.2. PCB, PCN, and PCDD/F Patterns
3.2.1. PCBs
Compound | Countries and Regions | Industrial Thermal Processes | Concentration | TEQ | Reference | ||
---|---|---|---|---|---|---|---|
dl-PCBs a | id-PCBs b | CB-209 | |||||
PCBs | North China | municipal solid waste incinerator | 4.97–43.2 | 24.8–241 | / c | 0.02–0.18 | [20] |
North China | comprehensive industrial area | 13.9–229 | / c | / c | 0.12–0.94 | [21] | |
Dilovasi, Turkey | heavily industrial area | / c | 39600 | 100 | 0.012–10.2 | [22] | |
Hatay-Iskenderun, Turkey | iron–steel plant | / c | 7100 | n.d. d | / c | [23] | |
Oissel, France | incinerator | / c | 50.3 | 0.44 | / c | [44] | |
Notre-Dame de Gravenchon, France | refineries, chemical industries, and an incinerator | / c | 150 | n.d. d | / c | [44] | |
Slovakia | waste incinerator, metallurgical plants | 0.14–14 | 1.2–211 | / c | 0.069–6.3 | [45] | |
Riyadh, Saudi Arabia | cement kiln, oil refinery, electric power plant, and steel industry | 44–691 | 116–4219 | / c | 0.34–1.97 | [24] | |
Dammam, Saudi Arabia | cement kiln, oil refinery, steel industry, and desalination plant | 38–360 | 104–871 | / c | 0.34–1.06 | [24] | |
Northwest China | comprehensive industrial area | 1.99–29.9 | 9.76–151 | n.d.–1120 | 0.004–0.27 | This study | |
Σ75PCNs e | Σ32PCNs f | CN-75 | |||||
PCNs | North China | municipal solid waste incinerator | 890–5410 | / c | / c | 0.008–0.13 | [27] |
North China | comprehensive industrial area | 2194.4 | 283.2 | n.d. d –104.8 | 0.02–0.92 | [21] | |
Aliaga, Turkey | electric-arc furnaces | / c | 700 | 5.9 | / c | [26] | |
Tarragona, Spain | chemical/petrochemical area | 0–371.5 g | / c | n.d. d –19.8 | / c | [25] | |
Hatay-Iskenderun, Turkey | iron–steel plant | / c | 40–940 | 5 | / c | [23] | |
Dilovasi, Turkey | heavily industrial area | / c | 40–7070 | 2–300 | 0.0001–1.48 | [22] | |
Northwest China | comprehensive industrial area | 141–832 | 51.9–520 | 3.16–227 | 0.02–0.38 | This study | |
PCDD/Fs | OCDD | OCDF | |||||
PCDD/Fs | Northeast China | municipal solid waste incinerator | 41.4 | 12.5 | 7.02 | 2.00 | [28] |
North China | comprehensive industrial area | 101.8 | 28.5 | 19.3 | 1.53–17.19 | [21] | |
North China | iron–steel plant | 13–320 | 4.0–120 | 0.1–6.3 | 0.16–4.5 | [29] | |
Pearl River Delta, China | comprehensive industrial area | 1320 | 983 | 5.93 | 4.80 | [31] | |
Slovakia | waste incinerator, metallurgical plants | 20–1027 | 28.02 | 1.46 | 0.28–15.9 | [45] | |
Piemonte, Italy | secondary aluminum smelter | 23–3104 | 12.6–145 | 1.56–113 | 0.2–64.0 | [30] | |
Northwest China | comprehensive industrial area | 3.60–156 | 0.56–34.4 | 1.19–118 | 0.14–1.51 | This study |
3.2.2. PCNs
3.2.3. PCDD/Fs
3.3. Positive Matrix Factorization (PMF)
3.4. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, K.C.; de Voogt, P. Persistent organic pollutants (POPs): State of the science. Environ. Pollut. 1999, 100, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Te, B.; Yiming, L.; Tianwei, L.; Huiting, W.; Pengyuan, Z.; Wenming, C.; Jun, J. Polychlorinated biphenyls in a grassland food network: Concentrations, biomagnification, and transmission of toxicity. Sci. Total Environ. 2020, 709, 135781. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.S.; Crespo, J.G.; Afonso, C.A.M. Dioxins sources and current remediation technologies—A review. Environ. Int. 2008, 34, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Wang, K.; Kang, J.; Zhao, L. Analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in pentachlorophenol and sodium pentachlorophenate. Environ. Chem. 1995, 14, 317–321. [Google Scholar]
- Liu, W.; Li, H.; Tao, F.; Li, S.; Tian, Z.; Xie, H. Formation and contamination of PCDD/Fs, PCBs, PeCBz, HxCBz and polychlorophenols in the production of 2,4-D products. Chemosphere 2013, 92, 304–308. [Google Scholar] [CrossRef]
- Anezaki, K.; Nakano, T. Concentration levels and congener profiles of polychlorinated biphenyls, pentachlorobenzene, and hexachlorobenzene in commercial pigments. Environ. Sci. Pollut. Res. 2014, 21, 998–1009. [Google Scholar] [CrossRef]
- Hu, D.; Hornbuckle, K.C. Inadvertent Polychlorinated Biphenyls in Commercial Paint Pigments. Environ. Sci. Technol. 2010, 44, 2822–2827. [Google Scholar] [CrossRef]
- Karstensen, K.H. Formation, release and control of dioxins in cement kilns. Chemosphere 2008, 70, 543–560. [Google Scholar] [CrossRef]
- Ni, Y.; Zhang, H.; Fan, S.; Zhang, X.; Zhang, Q.; Chen, J. Emissions of PCDD/Fs from municipal solid waste incinerators in China. Chemosphere 2009, 75, 1153–1158. [Google Scholar] [CrossRef]
- Yu, B.-W.; Jin, G.-Z.; Moon, Y.-H.; Kim, M.-K.; Kyoung, J.-D.; Chang, Y.-S. Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea. Chemosphere 2006, 62, 494–501. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Li, J.; Min, Y.; Yang, L.; Zheng, M.; Wu, Y.; Yang, Y.; Qin, L.; Liu, G. Polychlorinated naphthalenes in human milk: Health risk assessment to nursing infants and source analysis. Environ. Int. 2020, 136, 105436. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hu, J.; Ma, Y.; Wang, S.J.; Wang, Y.; Jin, J. Determination of Dioxin-like Compounds in Soil by Accelerated Solvent Extraction-Silica Gel Column Cleanup-Basic Alumina Column Separation Coupled with Gas ChromatographyTriple Quadrupole Mass Spectrometry. Chin. J. Anal. Chem. 2017, 12, 799–808. [Google Scholar]
- USEPA. Method 1613: Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS; USEPA: Washington, DC, USA, 1994. [Google Scholar]
- USEPA. Method 1668, Revision A: Chlorinated Biphenyl Congeners in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS; USEPA: Washington, DC, USA, 2003. [Google Scholar]
- USEPA. EPA Positive Matrix Factorization (PMF) 5.0, Fundamentals and User Guide EPA 600/R-14/108; USEPA: Washington, DC, USA, 2014. [Google Scholar]
- USEPA. Risk-Assessment Guidance for Superfund. Volume 1. Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals); USEPA: Washington, DC, USA, 1991. [Google Scholar]
- USEPA. Regional Screening Levels (RSLs)—Generic Tables (June 2017); USEPA: Washington, DC, USA, 2017. [Google Scholar]
- Van den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Noma, Y.; Yamamoto, T.; Sakai, S.-I. Congener-Specific Composition of Polychlorinated Naphthalenes, Coplanar PCBs, Dibenzo-p-dioxins, and Dibenzofurans in the Halowax Series. Environ. Sci. Technol. 2004, 38, 1675–1680. [Google Scholar] [CrossRef]
- Liu, W.; Li, H.; Tian, Z.; Xie, H.; Hu, J. Spatial distribution of polychlorinated biphenyls in soil around a municipal solid waste incinerator. J. Environ. Sci. 2013, 25, 1636–1642. [Google Scholar] [CrossRef]
- Wu, J.; Hu, J.; Wang, S.; Jin, J.; Wang, R.; Wang, Y.; Jin, J. Levels, sources, and potential human health risks of PCNs, PCDD/Fs, and PCBs in an industrial area of Shandong Province, China. Chemosphere 2018, 199, 382–389. [Google Scholar] [CrossRef]
- Cetin, B. Investigation of PAHs, PCBs and PCNs in soils around a Heavily Industrialized Area in Kocaeli, Turkey: Concentrations, distributions, sources and toxicological effects. Sci. Total Environ. 2016, 560–561, 160–169. [Google Scholar] [CrossRef]
- Odabasi, M.; Bayram, A.; Elbir, T.; Seyfioglu, R.; Dumanoglu, Y.; Ornektekin, S. Investigation of Soil Concentrations of Persistent Organic Pollutants, Trace Elements, and Anions Due to Iron–Steel Plant Emissions in an Industrial Region in Turkey. Water Air Soil Pollut. 2010, 213, 375–388. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Usman, A.R.A.; El-Saeid, M.H.; Al-Turki, A.M.; Hassanin, A.S.; El-Mubarak, A.H. Levels, Sources, and Risk Assessment of Polychlorinated Biphenyls (PCBs) in Soils from Industrial Areas: A Case Study from Saudi Arabia. Polycycl. Aromat. Compd. 2018, 38, 420–433. [Google Scholar] [CrossRef]
- Nadal, M.; Schuhmacher, M.; Domingo, J.L. Levels of metals, PCBs, PCNs and PAHs in soils of a highly industrialized chemical/petrochemical area: Temporal trend. Chemosphere 2007, 66, 267–276. [Google Scholar] [CrossRef]
- Odabasi, M.; Dumanoglu, Y.; Kara, M.; Altiok, H.; Elbir, T.; Bayram, A. Polychlorinated naphthalene (PCN) emissions from scrap processing steel plants with electric-arc furnaces. Sci. Total Environ. 2017, 574, 1305–1312. [Google Scholar] [CrossRef]
- Tian, Z.; Li, H.; Xie, H.; Tang, C.; Han, Y.; Liu, W. Concentration and distribution of PCNs in ambient soil of a municipal solid waste incinerator. Sci. Total Environ. 2014, 491–492, 75–79. [Google Scholar] [CrossRef]
- Meng, B.; Ma, W.-L.; Liu, L.-Y.; Zhu, N.-Z.; Song, W.-W.; Lo, C.Y.; Li, J.; Kannan, K.; Li, Y.-F. PCDD/Fs in soil and air and their possible sources in the vicinity of municipal solid waste incinerators in northeastern China. Atmos. Pollut. Res. 2016, 7, 355–362. [Google Scholar] [CrossRef]
- Zhou, T.; Bo, X.; Qu, J.; Wang, L.; Zhou, J.; Li, S. Characteristics of PCDD/Fs and metals in surface soil around an iron and steel plant in North China Plain. Chemosphere 2019, 216, 413–418. [Google Scholar] [CrossRef]
- Colombo, A.; Benfenati, E.; Bugatti, S.G.; Celeste, G.; Lodi, M.; Rotella, G.; Senese, V.; Fanelli, R. Concentrations of PCDD/PCDF in soil close to a secondary aluminum smelter. Chemosphere 2011, 85, 1719–1724. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, P.; Huang, W.; Li, X.; Zhang, G. PCDD/PCDF pollution in soils and sediments from the Pearl River Delta of China. Chemosphere 2009, 75, 1186–1195. [Google Scholar] [CrossRef]
- Takasuga, T.; Senthilkumar, K.; Matsumura, T.; Shiozaki, K.; Sakai, S. Isotope dilution analysis of polychlorinated biphenyls (PCBs) in transformer oil and global commercial PCB formulations by high resolution gas chromatography–high resolution mass spectrometry. Chemosphere 2006, 62, 469–484. [Google Scholar] [CrossRef]
- Jahnke, J.C.; Hornbuckle, K.C. PCB Emissions from Paint Colorants. Environ. Sci. Technol. 2019, 53, 5187–5194. [Google Scholar] [CrossRef]
- Ctistis, G.; Schön, P.; Bakker, W.; Luthe, G. PCDDs, PCDFs, and PCBs co-occurrence in TiO2 nanoparticles. Environ. Sci Pollut Res 2016, 23, 4837–4843. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, M.; Cai, M.; Nie, Z.; Zhang, B.; Liu, W.; Du, B.; Dong, S.; Hu, J.; Xiao, K. Atmospheric emission of polychlorinated biphenyls from multiple industrial thermal processes. Chemosphere 2013, 90, 2453–2460. [Google Scholar] [CrossRef]
- Tremolada, P.; Guazzoni, N.; Comolli, R.; Parolini, M.; Lazzaro, S.; Binelli, A. Polychlorinated biphenyls (PCBs) in air and soil from a high-altitude pasture in the Italian Alps: Evidence of CB-209 contamination. Environ. Sci. Pollut. Res. 2015, 22, 19571–19583. [Google Scholar] [CrossRef]
- Howell, N.L.; Suarez, M.P.; Rifai, H.S.; Koenig, L. Concentrations of polychlorinated biphenyls (PCBs) in water, sediment, and aquatic biota in the Houston Ship Channel, Texas. Chemosphere 2008, 70, 593–606. [Google Scholar] [CrossRef]
- Huo, S.; Li, C.; Xi, B.; Yu, Z.; Yeager, K.M.; Wu, F. Historical record of polychlorinated biphenyls (PCBs) and special occurrence of PCB 209 in a shallow fresh-water lake from eastern China. Chemosphere 2017, 184, 832–840. [Google Scholar] [CrossRef]
- Hartmann, P.C.; Quinn, J.G.; Cairns, R.W.; King, J.W. Polychlorinated biphenyls in Narragansett Bay surface sediments. Chemosphere 2004, 57, 9–20. [Google Scholar] [CrossRef]
- Praipipat, P.; Rodenburg, L.A.; Cavallo, G.J. Source Apportionment of Polychlorinated Biphenyls in the Sediments of the Delaware River. Environ. Sci. Technol. 2013, 47, 4277–4283. [Google Scholar] [CrossRef]
- Rowe, A.A.; Totten, L.A.; Xie, M.; Fikslin, T.J.; Eisenreich, S.J. Air−Water Exchange of Polychlorinated Biphenyls in the Delaware River. Environ. Sci. Technol. 2007, 41, 1152–1158. [Google Scholar] [CrossRef]
- Hermanson, M.H.; Hann, R.; Johnson, G.W. Polychlorinated Biphenyls in Tree Bark near Former Manufacturing and Incineration Facilities in Sauget, Illinois, United States. Environ. Sci. Technol. 2016, 50, 6207–6215. [Google Scholar] [CrossRef]
- Xu, C.; Hu, J.; Wu, J.; Wei, B.; Zhu, Z.; Yang, L.; Zhou, T.; Jin, J. Polychlorinated naphthalenes, polychlorinated dibenzo-p-dioxins and dibenzofurans, and polychlorinated biphenyls in soils in an industrial park in Northwestern China: Levels, source apportionment, and potential human health risks. Ecotoxicol. Environ. Saf. 2020, 188, 109895. [Google Scholar] [CrossRef]
- Motelay-Massei, A.; Ollivon, D.; Garban, B.; Teil, M.J.; Blanchard, M.; Chevreuil, M. Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere 2004, 55, 555–565. [Google Scholar] [CrossRef]
- Dömötörová, M.; Sejáková, Z.S.; Kočan, A.; Čonka, K.; Chovancová, J.; Fabišiková, A. PCDDs, PCDFs, dioxin-like PCBs and indicator PCBs in soil from five selected areas in Slovakia. Chemosphere 2012, 89, 480–485. [Google Scholar] [CrossRef]
- Anh, H.Q.; Watanabe, I.; Minh, T.B.; Takahashi, S. Unintentionally produced polychlorinated biphenyls in pigments: An updated review on their formation, emission sources, contamination status, and toxic effects. Sci. Total Environ. 2021, 755, 142504. [Google Scholar] [CrossRef]
- Huang, J.; Yu, G.; Yamauchi, M.; Matsumura, T.; Yamazaki, N.; Weber, R. Congener-specific analysis of polychlorinated naphthalenes (PCNs) in the major Chinese technical PCB formulation from a stored Chinese electrical capacitor. Environ. Sci. Pollut. Res. 2015, 22, 14471–14477. [Google Scholar] [CrossRef]
- Breivik, K.; Sweetman, A.; Pacyna, J.M.; Jones, K.C. Towards a global historical emission inventory for selected PCB congeners—A mass balance approach. Sci. Total Environ. 2007, 377, 296–307. [Google Scholar] [CrossRef]
- Cui, S.; Fu, Q.; Ma, W.-L.; Song, W.-W.; Liu, L.-Y.; Li, Y.-F. A preliminary compilation and evaluation of a comprehensive emission inventory for polychlorinated biphenyls in China. Sci. Total Environ. 2015, 533, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Harner, T.; Pozo, K.; Shoeib, M.; Wania, F.; Muir, D.C.G.; Barrie, L.A.; Jones, K.C. Polychlorinated Naphthalenes in the Global Atmospheric Passive Sampling (GAPS) Study. Environ. Sci. Technol. 2007, 41, 2680–2687. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, M.; Liu, W.; Liu, G.; Xiao, K.; Li, C. Estimation and characterization of unintentionally produced persistent organic pollutant emission from converter steelmaking processes. Environ. Sci. Pollut. Res. 2014, 21, 7361–7368. [Google Scholar] [CrossRef]
- Hu, J.; Zheng, M.; Liu, W.; Li, C.; Nie, Z.; Liu, G.; Zhang, B.; Xiao, K.; Gao, L. Characterization of polychlorinated naphthalenes in stack gas emissions from waste incinerators. Environ. Sci. Pollut. Res. 2013, 20, 2905–2911. [Google Scholar] [CrossRef]
- Liu, G.; Cai, Z.; Zheng, M. Sources of unintentionally produced polychlorinated naphthalenes. Chemosphere 2014, 94, 1–12. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, W.; Li, S.; Meng, C.; Tao, F.; Li, H.; Zhang, B. Concentrations and Profiles of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Air and Soil Samples in the Proximity of a Municipal Solid Waste Incinerator Plant. Environ. Eng. Sci. 2012, 29, 693–699. [Google Scholar] [CrossRef]
- Hu, J.; Zheng, M.; Liu, W.; Li, C.; Nie, Z.; Liu, G.; Xiao, K.; Dong, S. Occupational Exposure to Polychlorinated Dibenzo- p -dioxins and Dibenzofurans, Dioxin-like Polychlorinated Biphenyls, and Polychlorinated Naphthalenes in Workplaces of Secondary Nonferrous Metallurgical Facilities in China. Environ. Sci. Technol. 2013, 47, 7773–7779. [Google Scholar] [CrossRef]
- Da Silva, A.P.; Morais, E.R.; Oliveira, E.C.; Ghisi, N. de C. Does exposure to environmental 2,4-dichlorophenoxyacetic acid concentrations increase mortality rate in animals? A meta-analytic review. Environ. Pollut. 2022, 303, 119179. [Google Scholar] [CrossRef]
- MAPRC. Announcement of the Ministry of Agriculture of the People’s Republic of China; MAPRC: Beijing, China, 2017. [Google Scholar]
- Huang, J.; Hui, Y.; Matsumura, T.; Yu, G.; Deng, S.; Yamauchi, M.; Wu, C.; Yamazaki, N. Detailed analysis of PCBs and PCDD/Fs impurities in a dielectric oil sample (ASKAREL Nr 1740) from an imported transformer in China. Front. Environ. Sci. Eng. 2014, 8, 195–204. [Google Scholar] [CrossRef]
- Yifan, L. Characteristics of PCB congeners and homologues in Chinese transformer oil. China Environ. Sci. 2007, 27, 608–612. [Google Scholar]
- Hu, D.; Martinez, A.; Hornbuckle, K.C. Sedimentary records of non-Aroclor and Aroclor PCB mixtures in the Great Lakes. J. Great Lakes Res. 2011, 37, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.G.M.; Coleman, P.; Jones, J.L.; Jones, K.C.; Lohmann, R. Emission Factors and Importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the Domestic Burning of Coal and Wood in the U.K. Environ. Sci. Technol. 2005, 39, 1436–1447. [Google Scholar] [CrossRef]
- Saba, T.; Su, S. Tracking polychlorinated biphenyls (PCBs) congener patterns in Newark Bay surface sediment using principal component analysis (PCA) and positive matrix factorization (PMF). J. Hazard. Mater. 2013, 260, 634–643. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Hu, J.; Xu, C.; Jin, J. PCBs, PCNs, and PCDD/Fs in Soil around an Industrial Park in Northwest China: Levels, Source Apportionment, and Human Health Risk. Int. J. Environ. Res. Public Health 2023, 20, 3478. https://doi.org/10.3390/ijerph20043478
Li T, Hu J, Xu C, Jin J. PCBs, PCNs, and PCDD/Fs in Soil around an Industrial Park in Northwest China: Levels, Source Apportionment, and Human Health Risk. International Journal of Environmental Research and Public Health. 2023; 20(4):3478. https://doi.org/10.3390/ijerph20043478
Chicago/Turabian StyleLi, Tianwei, Jicheng Hu, Chenyang Xu, and Jun Jin. 2023. "PCBs, PCNs, and PCDD/Fs in Soil around an Industrial Park in Northwest China: Levels, Source Apportionment, and Human Health Risk" International Journal of Environmental Research and Public Health 20, no. 4: 3478. https://doi.org/10.3390/ijerph20043478
APA StyleLi, T., Hu, J., Xu, C., & Jin, J. (2023). PCBs, PCNs, and PCDD/Fs in Soil around an Industrial Park in Northwest China: Levels, Source Apportionment, and Human Health Risk. International Journal of Environmental Research and Public Health, 20(4), 3478. https://doi.org/10.3390/ijerph20043478