Metabolic and Inflammatory Response in Post-Traumatic Stress Disorder (PTSD): A Systematic Review on Peripheral Neuroimmune Biomarkers
Abstract
:1. Introduction
- The presence of a dysregulated inflammatory response in individuals with PTSD versus controls, focusing on specific blood inflammatory biomarkers, as IL-1β, TNF-α, IL-6 and INF-γ, as well as on the potential harmful role on endothelial tissue integrity produced by the decreased clearance of ROS and the reduced antioxidant activity, involving CAT, glutathione peroxidase (GPX) and SOD activities;
- The role of tryptophan metabolism, or the serotonergic and kynurenine pathways, in the understanding of inflammation in PTSD;
- The usefulness of these molecular patterns as potential biomarkers of this disorder.
2. Materials and Methods
2.1. Literature Search
2.2. Eligibility Criteria
- Human studies;
- Studies involving subjects with a clinical diagnosis of PTSD;
- Studies involving a healthy control (HC) group;
- Studies that included only subjects aged > 17 years;
- Articles in English.
2.3. Screening and Selection Process
3. Results
3.1. Characteristics of the Study Samples
3.1.1. Population
3.1.2. Type of Trauma
3.1.3. Mean Ages
3.2. PTSD Diagnosis
3.3. Biomarkers
3.3.1. Biological Sample
3.3.2. IL-6
3.3.3. IL-1β
3.3.4. TNF-α
3.3.5. IFN-γ
3.3.6. Kynurenine and Tryptophan
3.3.7. Melatonin
3.3.8. Superoxide Dismutase (SOD)
3.3.9. Catalase (CAT)
3.3.10. Glutathione Peroxidase (GPX)
3.3.11. ROS/Quinolinic Acid
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Text-Revision (DSM-5 TR), 5th ed.; American Psychiatric Press: Washington, DC, USA, 2022. [Google Scholar]
- Passos, I.C.; Vasconcelos-Moreno, M.P.; Costa, L.G.; Kunz, M.; Brietzke, E.; Quevedo, J.; Salum, G.; Magalhães, P.V.; Kapczinski, F.; Kauer-Sant’Anna, M. Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2015, 2, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Carmassi, C.; Rucci, P.; Ciapparelli, A.; Paggini, R.; Ramacciotti, C.E.; Conversano, C.; Balestrieri, M.; Marazziti, D. Lifetime subthreshold mania is related to suicidality in posttraumatic stress disorder. CNS Spectr. 2009, 14, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Koenen, K.C.; Ratanatharathorn, A.; Ng, L.; McLaughlin, K.A.; Bromet, E.J.; Stein, D.J.; Karam, E.G.; Ruscio, A.M.; Benjet, C.; Scott, K.; et al. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol. Med. 2017, 47, 2260–2274. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Amidfar, M.; Won, E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 91, 103–112. [Google Scholar] [CrossRef]
- Carmassi, C.; Barberi, F.M.; Cordone, A.; Maglio, A.; Dell’Oste, V.; Dell’Osso, L. Trauma, PTSD and post-traumatic stress spectrum: 15 years’ experience on a multidimensional approach to trauma related psychopathology. J. Psychopathol. 2020, 26, 4–11. [Google Scholar] [CrossRef]
- Dell’Osso, L.; Carmassi, C.; Musetti, L.; Socci, C.; Shear, M.K.; Conversano, C.; Maremmani, I.; Perugi, G. Lifetime mood symptoms and adult separation anxiety in patients with complicated grief and/or post-traumatic stress disorder: A preliminary report. Psychiatry Res. 2012, 198, 436–440. [Google Scholar] [CrossRef]
- Stratta, P.; Capanna, C.; Dell’Osso, L.; Carmassi, C.; Patriarca, S.; Di Emidio, G.; Riccardi, I.; Collazzoni, A.; Rossi, A. Resilience and coping in trauma spectrum symptoms prediction: A structural equation modeling approach. Personal. Individ. Differ. 2015, 77, 55–61. [Google Scholar] [CrossRef]
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016, 6, 603–621. [Google Scholar] [CrossRef]
- Palego, L.; Giannaccini, G.; Betti, L. Neuroendocrine Response to Psychosocial Stressors, Inflammation Mediators and Brain-periphery Pathways of Adaptation. Cent. Nerv. Syst. Agents Med. Chem. 2021, 21, 2–19. [Google Scholar] [CrossRef]
- Miller, A.H. Mechanisms of cytokine-induced behavioral changes: Psychoneuroimmunology at the translational interface. Brain Behav. Immun. 2009, 23, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Levin, S.G.; Godukhin, O.V. Modulating Effect of Cytokines on Mechanisms of Synaptic Plasticity in the Brain. Biochemistry 2017, 82, 264–274. [Google Scholar] [CrossRef]
- Karanikas, E. Psychologically Traumatic Oxidative Stress; A Comprehensive Review of Redox Mechanisms and Related Inflammatory Implications. Psychopharmacol. Bull. 2021, 51, 65–86. [Google Scholar]
- Levine, A.B.; Levine, L.M.; Levine, T.B. Posttraumatic stress disorder and cardiometabolic disease. Cardiology 2014, 127, 1–19. [Google Scholar] [CrossRef]
- Hori, H.; Kim, Y. Inflammation and post-traumatic stress disorder. Psychiatry Clin. Neurosci. 2019, 73, 143–153. [Google Scholar] [CrossRef]
- Katrinli, S.; Oliveira, N.C.S.; Felger, J.C.; Michopoulos, V.; Smith, A.K. The role of the immune system in posttraumatic stress disorder. Transl. Psychiatry 2022, 12, 313. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 105906. [Google Scholar]
- Mehta, N.D.; Stevens, J.S.; Li, Z.; Gillespie, C.F.; Fani, N.; Michopoulos, V.; Felger, J.C. Inflammation, reward circuitry and symptoms of anhedonia and PTSD in trauma-exposed women. Soc. Cogn. Affect. Neurosci. 2020, 15, 1046–1055. [Google Scholar] [CrossRef]
- Paul, M.A.; Love, R.J.; Jetly, R.; Richardson, J.D.; Lanius, R.A.; Miller, J.C.; MacDonald, M.; Rhind, S.G. Blunted Nocturnal Salivary Melatonin Secretion Profiles in Military-Related Posttraumatic Stress Disorder. Front. Psychiatry 2019, 10, 882. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Xu, H.; Cao, C.; Liu, P.; Luo, S.; Duan, Q.; Ellenbroek, B.; Zhang, X. Characteristics of pro- and anti-inflammatory cytokines alteration in PTSD patients exposed to a deadly earthquake. J. Affect. Disord. 2019, 248, 52–58. [Google Scholar] [CrossRef]
- Imai, R.; Hori, H.; Itoh, M.; Lin, M.; Niwa, M.; Ino, K.; Ogawa, S.; Ishida, M.; Sekiguchi, A.; Matsui, M.; et al. Inflammatory markers and their possible effects on cognitive function in women with posttraumatic stress disorder. J. Psychiatr. Res. 2018, 102, 192–200. [Google Scholar] [CrossRef]
- Imai, R.; Hori, H.; Itoh, M.; Lin, M.; Niwa, M.; Ino, K.; Ogawa, S.; Sekiguchi, A.; Kunugi, H.; Akechi, T.; et al. Relationships of blood proinflammatory markers with psychological resilience and quality of life in civilian women with posttraumatic stress disorder. Sci. Rep. 2019, 9, 17905. [Google Scholar] [CrossRef] [PubMed]
- Agorastos, A.; Hauger, R.L.; Barkauskas, D.A.; Lerman, I.R.; Moeller-Bertram, T.; Snijders, C.; Haji, U.; Patel, P.M.; Geracioti, T.D.; Chrousos, G.P.; et al. Relations of combat stress and posttraumatic stress disorder to 24-h plasma and cerebrospinal fluid interleukin-6 levels and circadian rhythmicity. Psychoneuroendocrinology 2019, 100, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.K.; Fonda, J.R.; Hauger, R.L.; Pinna, G.; Anderson, G.M.; Valovski, I.T.; Rasmusson, A.M. Composite contributions of cerebrospinal fluid GABAergic neurosteroids, neuropeptide Y and interleukin-6 to PTSD symptom severity in men with PTSD. Neurobiol. Stress 2020, 12, 100220. [Google Scholar] [CrossRef] [PubMed]
- Küffer, A.; Straus, L.D.; Prather, A.A.; Inslicht, S.S.; Richards, A.; Shigenaga, J.K.; Madden, E.; Metzler, T.J.; Neylan, T.C.; O’Donovan, A. Altered overnight levels of pro-inflammatory cytokines in men and women with posttraumatic stress disorder. Psychoneuroendocrinology 2019, 102, 114–120. [Google Scholar] [CrossRef]
- Brahmajothi, M.V.; Abou-Donia, M.B. PTSD Susceptibility and Challenges: Pathophysiological Consequences of Behavioral Symptoms. Mil. Med. 2020, 185 (Suppl. 1), 279–285. [Google Scholar] [CrossRef]
- Maloley, P.M.; England, B.R.; Sayles, H.; Thiele, G.M.; Michaud, K.; Sokolove, J.; Cannon, G.W.; Reimold, A.M.; Kerr, G.S.; Baker, J.F.; et al. Post-traumatic stress disorder and serum cytokine and chemokine concentrations in patients with rheumatoid arthritis. Semin. Arthritis Rheum. 2019, 49, 229–235. [Google Scholar] [CrossRef]
- Štefanović, L.B.; Kalinić, D.; Mimica, N.; Beer Ljubić, B.; Aladrović, J.; Mandelsamen Perica, M.; Curić, M.; Grošić, P.F.; Delaš, I. Oxidative status and the severity of clinical symptoms in patients with post-traumatic stress disorder. Ann. Clin. Biochem. 2015, 52 Pt 1, 95–104. [Google Scholar] [CrossRef]
- Gola, H.; Engler, H.; Sommershof, A.; Adenauer, H.; Kolassa, S.; Schedlowski, M.; Groettrup, M.; Elbert, T.; Kolassa, I.T. Posttraumatic stress disorder is associated with an enhanced spontaneous production of pro-inflammatory cytokines by peripheral blood mononuclear cells. BMC Psychiatry 2013, 13, 40. [Google Scholar] [CrossRef]
- Vidović, A.; Gotovac, K.; Vilibić, M.; Sabioncello, A.; Jovanović, T.; Rabatić, S.; Folnegović-Šmalć, V.; Dekaris, D. Repeated assessments of endocrine- and immune-related changes in posttraumatic stress disorder. Neuroimmunomodulation 2011, 18, 199–211. [Google Scholar] [CrossRef]
- Oganesyan, L.P.; Mkrtchyan, G.M.; Sukiasyan, S.H.; Boyajyan, A.S. Classic and alternative complement cascades in post-traumatic stress disorder. Bull. Exp. Biol. Med. 2009, 148, 859–861. [Google Scholar] [CrossRef]
- Von Känel, R.; Begré, S.; Abbas, C.C.; Saner, H.; Gander, M.L.; Schmid, J.P. Inflammatory biomarkers in patients with posttraumatic stress disorder caused by myocardial infarction and the role of depressive symptoms. Neuroimmunomodulation 2010, 17, 39–46. [Google Scholar] [CrossRef]
- Hoge, E.A.; Brandstetter, K.; Moshier, S.; Pollack, M.H.; Wong, K.K.; Simon, N.M. Broad spectrum of cytokine abnormalities in panic disorder and posttraumatic stress disorder. Depress. Anxiety 2009, 26, 447–455. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, D.; Guan, Z.; Wang, X. Disturbance of serum interleukin-2 and interleukin-8 levels in posttraumatic and non-posttraumatic stress disorder earthquake survivors in northern China. Neuroimmunomodulation 2007, 14, 248–254. [Google Scholar] [CrossRef]
- Von Känel, R.; Hepp, U.; Kraemer, B.; Traber, R.; Keel, M.; Mica, L.; Schnyder, U. Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J. Psychiatr. Res. 2007, 41, 744–752. [Google Scholar] [CrossRef]
- Woods, A.B.; Page, G.G.; O’Campo, P.; Pugh, L.C.; Ford, D.; Campbell, J.C. The mediation effect of posttraumatic stress disorder symptoms on the relationship of intimate partner violence and IFN-gamma levels. Am. J. Community Psychol. 2005, 36, 159–175. [Google Scholar] [CrossRef]
- Tezcan, E.; Atmaca, M.; Kuloglu, M.; Ustundag, B. Free radicals in patients with post-traumatic stress disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2003, 253, 89–91. [Google Scholar] [CrossRef]
- Baker, D.G.; Ekhator, N.N.; Kasckow, J.W.; Hill, K.K.; Zoumakis, E.; Dashevsky, B.A.; Chrousos, G.P.; Geracioti, T.D., Jr. Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation 2001, 9, 209–217. [Google Scholar] [CrossRef]
- Maes, M.; Lin, A.H.; Delmeire, L.; Van Gastel, A.; Kenis, G.; De Jongh, R.; Bosmans, E. Elevated serum interleukin-6 (IL-6) and IL-6 receptor concentrations in posttraumatic stress disorder following accidental man-made traumatic events. Biol. Psychiatry 1999, 45, 833–839. [Google Scholar] [CrossRef]
- O’Donovan, A.; Chao, L.L.; Paulson, J.; Samuelson, K.W.; Shigenaga, J.K.; Grunfeld, C.; Weiner, M.W.; Neylan, T.C. Altered inflammatory activity associated with reduced hippocampal volume and more severe posttraumatic stress symptoms in Gulf War veterans. Psychoneuroendocrinology 2015, 51, 557–566. [Google Scholar] [CrossRef]
- Ogłodek, E.A.; Just, M.J.; Szromek, A.R.; Araszkiewicz, A. Assessing the serum concentration levels of NT-4/5, GPX-1, TNF-α, and l-arginine as biomediators of depression severity in first depressive episode patients with and without posttraumatic stress disorder. Pharm. Rep. 2017, 69, 1049–1058. [Google Scholar] [CrossRef]
- Blessing, E.M.; Reus, V.; Mellon, S.H.; Wolkowitz, O.M.; Flory, J.D.; Bierer, L.; Lindqvist, D.; Dhabhar, F.; Li, M.; Qian, M.; et al. Biological predictors of insulin resistance associated with posttraumatic stress disorder in young military veterans. Psychoneuroendocrinology 2017, 82, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Jergović, M.; Bendelja, K.; Savić Mlakar, A.; Vojvoda, V.; Aberle, N.; Jovanovic, T.; Rabatić, S.; Sabioncello, A.; Vidović, A. Circulating levels of hormones, lipids, and immune mediators in post-traumatic stress disorder—A 3-month follow-up study. Front. Psychiatry 2015, 6, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neupane, S.P.; Bramness, J.G.; Lien, L. Comorbid post-traumatic stress disorder in alcohol use disorder: Relationships to demography, drinking and neuroimmune profile. BMC Psychiatry 2017, 17, 312. [Google Scholar] [CrossRef] [PubMed]
- Bruenig, D.; Mehta, D.; Morris, C.P.; Lawford, B.; Harvey, W.; McD Young, R.; Voisey, J. Correlation between interferon γ and interleukin 6 with PTSD and resilience. Psychiatry Res. 2018, 260, 193–198. [Google Scholar] [CrossRef]
- Bersani, F.S.; Wolkowitz, O.M.; Lindqvist, D.; Yehuda, R.; Flory, J.; Bierer, L.M.; Makotine, I.; Abu-Amara, D.; Coy, M.; Reus, V.I.; et al. Global arginine bioavailability, a marker of nitric oxide synthetic capacity, is decreased in PTSD and correlated with symptom severity and markers of inflammation. Brain Behav. Immun. 2016, 52, 153–160. [Google Scholar] [CrossRef]
- Lindqvist, D.; Dhabhar, F.S.; Mellon, S.H.; Yehuda, R.; Grenon, S.M.; Flory, J.D.; Bierer, L.M.; Abu-Amara, D.; Coy, M.; Makotkine, I.; et al. Increased pro-inflammatory milieu in combat related PTSD—A new cohort replication study. Brain Behav. Immun. 2017, 59, 260–264. [Google Scholar] [CrossRef]
- Lindqvist, D.; Wolkowitz, O.M.; Mellon, S.; Yehuda, R.; Flory, J.D.; Henn-Haase, C.; Bierer, L.M.; Abu-Amara, D.; Coy, M.; Neylan, T.C.; et al. Proinflammatory milieu in combat-related PTSD is independent of depression and early life stress. Brain Behav. Immun. 2014, 42, 81–88. [Google Scholar] [CrossRef]
- De Oliveira, J.F.; Wiener, C.D.; Jansen, K.; Portela, L.V.; Lara, D.R.; Souza, L.D.M.; da Silva, R.A.; Moreira, F.P.; Oses, J.P. Serum levels of interleukins IL-6 and IL-10 in individuals with posttraumatic stress disorder in a population-based sample. Psychiatry Res. 2018, 260, 111–115. [Google Scholar] [CrossRef]
- Teche, S.P.; Rovaris, D.L.; Aguiar, B.W.; Hauck, S.; Vitola, E.S.; Bau, C.H.D.; Freitas, L.H.; Grevet, E.H. Resilience to traumatic events related to urban violence and increased IL10 serum levels. Psychiatry Res. 2017, 250, 136–140. [Google Scholar] [CrossRef]
- Ogłodek, E.A.; Szota, A.M.; Moś, D.M.; Araszkiewicz, A.; Szromek, A.R. Serum concentrations of chemokines (CCL-5 and CXCL-12), chemokine receptors (CCR-5 and CXCR-4), and IL-6 in patients with posttraumatic stress disorder and avoidant personality disorder. Pharm. Rep. 2015, 67, 1251–1258. [Google Scholar] [CrossRef]
- Jergović, M.; Tomičević, M.; Vidović, A.; Bendelja, K.; Savić, A.; Vojvoda, V.; Rac, D.; Lovrić-Čavar, D.; Rabatić, S.; Jovanovic, T.; et al. Telomere shortening and immune activity in war veterans with posttraumatic stress disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 54, 275–283. [Google Scholar] [CrossRef]
- Ogłodek, E.A. Evaluation of ADMA, carbonyl groups, CAT and NKA in depressed patients with and without posttraumatic stress disorder. Pharm. Rep. 2017, 69, 730–737. [Google Scholar] [CrossRef]
- Tucker, P.; Ruwe, W.D.; Masters, B.; Parker, D.E.; Hossain, A.; Trautman, R.P.; Wyatt, D.B. Neuroimmune and cortisol changes in selective serotonin reuptake inhibitor and placebo treatment of chronic posttraumatic stress disorder. Biol. Psychiatry 2004, 56, 121–128. [Google Scholar] [CrossRef]
- Spivak, B.; Shohat, B.; Mester, R.; Avraham, S.; Gil-Ad, I.; Bleich, A.; Valevski, A.; Weizman, A. Elevated levels of serum interleukin-1 beta in combat-related posttraumatic stress disorder. Biol. Psychiatry 1997, 42, 345–348. [Google Scholar] [CrossRef]
- Park, J.; Marvar, P.J.; Liao, P.; Kankam, M.L.; Norrholm, S.D.; Downey, R.M.; McCullough, S.A.; Le, N.A.; Rothbaum, B.O. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. J. Physiol. 2017, 595, 4893–4908. [Google Scholar] [CrossRef]
- Guo, M.; Liu, T.; Guo, J.C.; Jiang, X.L.; Chen, F.; Gao, Y.S. Study on serum cytokine levels in posttraumatic stress disorder patients. Asian Pac. J. Trop. Med. 2012, 5, 323–325. [Google Scholar] [CrossRef]
- Dalgard, C.; Eidelman, O.; Jozwik, C.; Olsen, C.H.; Srivastava, M.; Biswas, R.; Eudy, Y.; Rothwell, S.W.; Mueller, G.P.; Yuan, P.; et al. The MCP-4/MCP-1 ratio in plasma is a candidate circadian biomarker for chronic post-traumatic stress disorder. Transl. Psychiatry 2017, 7, e1025. [Google Scholar] [CrossRef]
- Newton, T.L.; Fernandez-Botran, R.; Miller, J.J.; Burns, V.E. Interleukin-6 and soluble interleukin-6 receptor levels in posttraumatic stress disorder: Associations with lifetime diagnostic status and psychological context. Biol. Psychol. 2014, 99, 150–159. [Google Scholar] [CrossRef]
- Renner, V.; Schellong, J.; Bornstein, S.; Petrowski, K. Stress-induced pro- and anti-inflammatory cytokine concentrations in female PTSD and depressive patients. Transl. Psychiatry 2022, 12, 158. [Google Scholar] [CrossRef]
- Toft, H.; Bramness, J.; Tilden, T.; Bolstad, I.; Lien, L. Persistent level of mental distress in PTSD patients is not reflected in cytokine levels 1 year after the treatment. Acta Neuropsychiatr. 2021, 33, 254–260. [Google Scholar] [CrossRef]
- Davis, J.; Maes, M.; Andreazza, A.; McGrath, J.J.; Tye, S.J.; Berk, M. Towards a classification of biomarkers of neuropsychiatric disease: From encompass to compass. Mol. Psychiatry 2015, 20, 152–153. [Google Scholar] [CrossRef] [PubMed]
- Speer, K.; Upton, D.; Semple, S.; McKune, A. Systemic low-grade inflammation in posttraumatic stress disorder: A systematic review. J. Inflamm. Res. 2018, 11, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streiner, D.L. Sample size and power in psychiatric research. Can. J. Psychiatry 1991, 36, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Bachi, A.; Dalle-Donne, I.; Scaloni, A. Redox proteomics: Chemical principles, methodological approaches and biological/biomedical promises. Chem. Rev. 2013, 113, 596–698. [Google Scholar] [CrossRef]
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Milzani, A.; Gagliano, N.; Colombo, R.; Giustarini, D.; Rossi, R. Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid. Redox Signal. 2008, 10, 445–473. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Colombo, G.; Giustarini, D.; Milzani, A. Protein S-glutathionylation: A regulatory device from bacteria to humans. Trends Biochem. Sci. 2009, 34, 85–96. [Google Scholar] [CrossRef]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J. Amino Acids 2016, 2016, 8952520. [Google Scholar] [CrossRef]
- Badawy, A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef] [Green Version]
Study | Years | Country | N Sample | Population | Type of Trauma | Mean Age (PTSD/HC) | Measured Markers | Biologic Sample | Assessment | Main Findings | |
---|---|---|---|---|---|---|---|---|---|---|---|
Total | PTSD | ||||||||||
Mehta et al. [18] | 2020 | USA | 56 | 18 | Women with socioeconomic difficulties; drug-free | Various | 38.8/40.1 | IL-6; IL-1β; TNF-α | Plasma | PSS | No difference, but IL-6 was among predictors of MRI striatum-PFC images in most traumatized women |
Paul et al. [19] | 2019 | Canada | 14 | 7 | Veterans; controlled psychotropic drug assumption | War | 37.57/34.14 | Melatonin | Salivary | CAPS-V | ↓ Nocturne-melatonin in PTSD patients |
Wang et al. [20] | 2019 | China | 187 | 51 | Earthquake Survivors; no anti-inflammatory drugs | Earthquake | 48.8/49.96 | TNF⍺; IL-6; INF-γ, IL-β | Serum | PCLS | ↑ TNF-α and IL-1β in PTSD patients |
Imai et al. [21] | 2018 | Japan | 105 | 40 | General population (female); 27.5% were taking psychotropic drugs | Various | 38.3/36.4 | TNF-α; IL-6; IL-1β | Serum | PDS; IES-R | ↑ IL-6 in PTSD patients |
Imai et al. [22] | 2019 | Japan | 129 | 56 | General population (female); most were receiving psychotropic drugs | Various | 39.2/35.6 | TNFα; IL-6 | Serum | PDS; IES-R | ↑ IL-6 in PTSD patients |
Agorastos et al. [23] | 2019 | USA | 35 | 12 | Veterans (male); drug-free | War | 27.3/31.7 | IL-6 | Liquor and plasma | CAPS; SCID-I | No difference, but disrupted circadian IL-6 rhythm |
Kim et al. [24] | 2020 | USA | 30 | 13 | Veterans; drug-free | War | 40.1/35.0 | IL-6 | Liquor | PTSD CAPS-IV | No difference, but trend towards ↑ IL6 (p = 0.08) |
Kuffer et al. [25] | 2019 | USA | 85 | 43 | General population; drug-free | Various | 30.63/30.48 | TNF-α; IL-6 | Plasma | CAPS | No difference |
Brahmajothi et al. [26] | 2020 | USA | 40 | 20 | Veterans; no information about psychotropic drug treatment | War | Not available | IL-6; TNF-α | Plasma | CAPS | ↑ TNF-α and IL-6 in PTSD patients |
Maloney et al. [27] | 2019 | USA | 1460 | 170 | Veterans with Rheumatoid Arthritis; assumption of anti-arthritis drugs | War | 59.3/64.9 | IL-1β; IL-6; INF-γ; TNFα | Serum | ICD9 | ↑IL-1β in PTSD patients |
Borovac et al. [28] | 2015 | Croatia | 80 | 50 | Veterans (male); under treatment with sertraline | War | 47.1/46.2 | eSOD; eGPX | Serum | DSM-IV; ICD10 | ↓ eSOD and eGPX in PTSD patients |
Gola et al. [29] | 2013 | Germany | 60 | 35 | Refugees; 37/31% were taking psychotropic medications | War | 32/29 | IL-6; TNF-α | Plasma | CAPS | No difference |
Vidovic et al. [30] | 2011 | Croatia | 64 | 39 | Veterans (male); drug-free | War | 38.5/32.6 | IL-6; TNF-α | Serum | CAPS | ↑ TNF-α and IL-6 in PTSD patients |
Oganesyan et al. [31] | 2009 | Armenia | 62 | 31 | General population; drug-free | Various | 42/39 | IL-6; IL-1β; TNF-α | Serum | ICD-10 | ↑ TNF-α, IL-1β and IL-6 in PTSD patients |
Von Kanel et al. [32] | 2010 | Switzerland | 44 | 15 | General population; in both groups the 10–13% was taking antidepressants | Myocardial infarction | 58.3/58.6 | IL-6 | Plasma | CAPS | ↑ IL-6 in PTSD patients |
Hoge et al. [33] | 2009 | USA | 76 | 28 | General population drug-free | Various | 41.2/41.7 | INF-γ | Plasma | SCID DSM IV | No difference |
Song et al. [34] | 2007 | China | 64 | 34 | Earthquake survivors, drug-free | Earthquake | 40.4/37.6 | IL-6 | Serum | DSM IV | No difference;Positive correlation with symptom severity |
Von Kanel et al. [35] | 2007 | Switzerland | 28 | 14 | General population; drug-free | Various | 33/33 | IL-6; IL-1β; TNF-α | Plasma | CAPS | ↑ TNF-α and IL-1β in PTSD patients |
Woods et al. [36] | 2005 | USA | 94 | 39 | Abused women; no information on psychotropic drug treatment | Interpersonal violence | 45.2/46 | INF-γ | Blood | DSM-IV-R | ↑ IFN-γ in PTSD patients |
Tezcan et al. [37] | 2003 | Turkey | 28 | 14 | General population; drug-free | Various | 32.48/29.88 | SOD; CAT | Plasma | CAPS | No difference |
Baker et al. [38] | 2001 | USA | 20 | 11 | Veterans (male); drug-free | War | 42.2/41.3 | IL-6 | Liquor and plasma | SCID DSM-III-R | ↑ Liquor IL6 in PTSD patients, no differences in plasmatic IL-6 |
Maes et al. [39] | 1999 | Belgium | 45 | 13 | General population; no information on psychotropic drug treatment | Fire/a multiplecollision car crash | 47/45.3 | IL-6 | Serum | DSM III-R | ↑ IL-6 in PTSD patients |
O’Donovan et al. [40] | 2014 | USA | 205 | 40 | Veterans; no information on psychotropic drug treatment | War | 42.12/45 | IL-6 | Plasma | CAPS | No difference; |
Oglodek et al. [41] | 2016 | Poland | 460* | 60 | General population; drug-free | Various | 46.8/42.4 | TNF-α, GPX-1 | Serum | ICD10 | ↑ TNF-α, ↓ GPX-1 in PTSD and in PTSD + depressive patients |
Blessing et al. [42] | 2017 | USA | 166 | 83 | Veterans (male); controlled psychotropic drug assumption | War zones exposition | 33/32.5 | IL-6, TNF-α | Serum | CAPS | ↑ TNF-α and IL-6 in PTSD patients |
Jergovic et al. [43] | 2015 | Croatia | 101 | 69 | Veterans (male); under psychotropic medication and treatment-resistant | War | 47.12/45.56 | IL-1β; IL-6; TNF-α; INF-γ | Serum | ICD10 | No difference |
Neupane et al. [44] | 2017 | Norway | 187 | 32 | Drugs and alcohol abusers; no information on psychotropic drug treatment | Various | 33.1/35.9 | IL-6; TNF-α; INF-γ Kynurenine/tryptophan | Serum | CIDI and DSM-IV | No difference |
Bruenig et al. [45] | 2018 | Australia | 299 | 159 | Patients of the Greenslopes Hospital of Australia; controlled psychotropic drug assumption | Various | 68.47/69.23 | IL-1β; IL-6; TNF-α; INF-γ | Serum | CAPS-5 | No difference |
Bersani et al. [46] | 2015 | USA | 121 | 56 | Veterans (male); controlled psychotropic drug assumption | War | 33.91/32.81 | IL-1β; IL-6; TNF-α; INF-γ | Serum | CAPS 5 | ↑ TNF-α and IL-6 in PTSD patients |
Lindqvist et al. [47] | 2017 | USA | 61 | 31 | Veterans (male); controlled psychotropic drug assumption | War | 31.2/30.8 | IL-6; TNF-α; INF-γ | Serum | CAPS | ↑ IL-6 in PTSD subjects |
Lindqvist et al. [48] | 2014 | USA | 104 | 52 | Veterans (male); controlled psychotropic drug assumption | War or combat-exposed | 34.1/33.7 | IL-1β; IL-6; TNF-α; INF-γ | Serum | CAPS | ↑ TNF-α, IFN-γ in PTSD patients |
De Oliveira et al. [49] | 2018 | Brazil | 82 | 41 | General Population; drug-free | Various | 27.32/27.2 | IL-6 | Serum | MINI according with DMS-IV | ↑ IL-6 in PTSD patients |
Teche et al. [50] | 2017 | Brazil | 60 | 30 | General population; no information on psychotropic drug assumption | Urban violence | Not available | IL-6 | Serum | MINI | No difference |
Oglodek et al. [51] | 2015 | Poland | 220 | 120 | General population; drug-free | Various | Not available | Il-6 | Plasma | DSM 5 | ↑ IL-6 in PTSD patients |
Jergovic et al. [52] | 2014 | Croatia | 47 | 30 | Veterans; Psychotropic drug assumption | War | 45.9/47.2 | INF-γ, TNF-α, IL-6 | Serum | CAPS | ↑ IFN-γ in PTSD patients |
Oglodek et al. [53] | 2017 | Poland | 460 | 60 | General population; drug-free | Various | 45.2/42.4 | CAT | Serum | DSM5 | ↑ CAT in PTSD patients |
Tucker et al. [54] | 2004 | USA | 107 | 86 | General population; drug-free | Various | Not available | IL-1β | Serum | SCID-IV and CAPS-I | ↑IL-1β in PTSD patients |
Spivak et al. [55] | 1997 | Israel | 38 | 19 | Veterans (male); drug-free | War | 25.3/31 | IL-1β | Serum | SCID-P (DSM-III-R) | ↑IL-1β in PTSD patients |
Park et al. [56] | 2017 | USA | 28 | 14 | Veterans; controlled psychotropic drug assumption | War | 34.4/32.2 | IL-6 | Blood | CAPS-IV | No difference |
Guo et al. [57] | 2012 | China | 100 | 50 | General population; subgroups under psychotropic medication | Various | 42/41 | IL-6-TNF-α | Serum | DSM-IV | ↑ TNF-α and IL-6 in PTSD patients |
Dalgard et al. [58] | 2017 | USA | 27 | 16 | General population; drug-free | Various | 31.5/29.5 | IL-1β; IL-6; TNF-α; INF-γ | Plasma | SCID-I; CAPS-IV | ↑ TNF-α, ↓ IL-1β in PTSD patients |
Newton et al. [59] | 2014 | USA | 63 | 15 | General population (female); no exclusion of psychotropic drug assumption | Interpersonal violence | 53.55/54.9 | IL-6 | Saliva; Plasma | CAPS-IV | No difference; but ↑ IL-6 salivary levels as a signal of anticipatory anxiety in the whole sample |
Renner et al. [60] | 2022 | Germany | 53 | 17 | General population(female); drug-free | Various | 46.88/41.94 | IL-6 | blood | SCID-IV | No difference |
Toft et al. [61] | 2021 | Norway | 81 | 33 | Patients of Modum Bad Psychiatric Center; no exclusion of psychotropic drug assumption | various | 39.6/41.9 | IL-1β; TNF-α | blood | MINI | ↑ IL-1β and TNF-α in PTSD patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Oste, V.; Fantasia, S.; Gravina, D.; Palego, L.; Betti, L.; Dell’Osso, L.; Giannaccini, G.; Carmassi, C. Metabolic and Inflammatory Response in Post-Traumatic Stress Disorder (PTSD): A Systematic Review on Peripheral Neuroimmune Biomarkers. Int. J. Environ. Res. Public Health 2023, 20, 2937. https://doi.org/10.3390/ijerph20042937
Dell’Oste V, Fantasia S, Gravina D, Palego L, Betti L, Dell’Osso L, Giannaccini G, Carmassi C. Metabolic and Inflammatory Response in Post-Traumatic Stress Disorder (PTSD): A Systematic Review on Peripheral Neuroimmune Biomarkers. International Journal of Environmental Research and Public Health. 2023; 20(4):2937. https://doi.org/10.3390/ijerph20042937
Chicago/Turabian StyleDell’Oste, Valerio, Sara Fantasia, Davide Gravina, Lionella Palego, Laura Betti, Liliana Dell’Osso, Gino Giannaccini, and Claudia Carmassi. 2023. "Metabolic and Inflammatory Response in Post-Traumatic Stress Disorder (PTSD): A Systematic Review on Peripheral Neuroimmune Biomarkers" International Journal of Environmental Research and Public Health 20, no. 4: 2937. https://doi.org/10.3390/ijerph20042937
APA StyleDell’Oste, V., Fantasia, S., Gravina, D., Palego, L., Betti, L., Dell’Osso, L., Giannaccini, G., & Carmassi, C. (2023). Metabolic and Inflammatory Response in Post-Traumatic Stress Disorder (PTSD): A Systematic Review on Peripheral Neuroimmune Biomarkers. International Journal of Environmental Research and Public Health, 20(4), 2937. https://doi.org/10.3390/ijerph20042937