Identifying Sources of Lead Exposure for Children in the Republic of Georgia, with Lead Isotope Ratios
Abstract
:1. Introduction
2. Methodology
2.1. Selection of Children
2.1.1. Regions’ and Districts’ Inclusion Criteria
2.1.2. Regions’ and Districts’ Exclusion Criteria
2.1.3. Considerations for Child Selections within the Selected Districts
2.1.4. Sample Size and Selection of Children
2.2. Fieldwork
2.3. Environmental Samples Collection Approach
2.4. Sample Transportation
2.5. Total Pb and Pb Isotope Ratio Analysis
2.6. Statistical Analyses
2.6.1. Discriminating Factors
2.6.2. Associations between Blood and Environmental Pb in Individual Children
2.6.3. Associations between Blood and Environmental Pb in the Group of All Children
3. Results
3.1. General Description of the Children Sample
3.2. Blood and Environmental Samples
3.3. Descriptive Analysis of the Environmental Samples
3.4. Lead Isotope Ratio Analysis of Individual Cases
3.5. Lead Isotope Ratio Analysis of the Group of Children
4. Discussion
4.1. Next Steps
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lanphear, B.P.; Rauch, S.; Auinger, P.; Allen, R.W.; Hornung, R.W. Low-level lead exposure and mortality in US adults: A population-based cohort study. Lancet Public. Health 2018, 3, e177–e184. [Google Scholar] [CrossRef]
- Obeng-Gyasi, E.; Ferguson, A.C.; Stamatakis, K.A.; Province, M.A. Combined Effect of Lead Exposure and Allostatic Load on Cardiovascular Disease Mortality-A Preliminary Study. Int. J. Environ. Res. Public Health 2021, 18, 6879. [Google Scholar] [CrossRef]
- Harari, F.; Sallsten, G.; Christensson, A.; Petkovic, M.; Hedblad, B.; Forsgard, N.; Melander, O.; Nilsson, P.M.; Borne, Y.; Engstrom, G.; et al. Blood Lead Levels and Decreased Kidney Function in a Population-Based Cohort. Am. J. Kidney Dis. 2018, 72, 381–389. [Google Scholar] [CrossRef]
- Lin, J.L.; Lin-Tan, D.T.; Hsu, K.H.; Yu, C.C. Environmental lead exposure and progression of chronic renal diseases in patients without diabetes. N. Engl. J. Med. 2003, 348, 277–286. [Google Scholar] [CrossRef]
- Can, S.; Bagci, C.; Ozaslan, M.; Bozkurt, A.; Cengiz, B.; Cakmak, E.A.; Kocabas, R.; Karadag, E.; Tarakcioglu, M. Occupational lead exposure effect on liver functions and biochemical parameters. Acta Physiol. Hung. 2008, 95, 395–403. [Google Scholar] [CrossRef]
- Canfield, R.L.; Henderson, C.R., Jr.; Cory-Slechta, D.A.; Cox, C.; Jusko, T.A.; Lanphear, B.P. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N. Engl. J. Med. 2003, 348, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Tellez-Rojo, M.M.; Bellinger, D.C.; Arroyo-Quiroz, C.; Lamadrid-Figueroa, H.; Mercado-Garcia, A.; Schnaas-Arrieta, L.; Wright, R.O.; Hernandez-Avila, M.; Hu, H. Longitudinal associations between blood lead concentrations lower than 10 microg/dL and neurobehavioral development in environmentally exposed children in Mexico City. Pediatrics 2006, 118, e323–e330. [Google Scholar] [CrossRef]
- International Programme on Chemical Safety. Environmental Health Criteria 165, Inorganic Lead; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Ruadze, E.; Leonardi, G.S.; Saei, A.; Khonelidze, I.; Sturua, L.; Getia, V.; Crabbe, H.; Marczylo, T.; Lauriola, P.; Gamkrelidze, A. Reduction in Blood Lead Concentration in Children across the Republic of Georgia following Interventions to Address Widespread Exceedance of Reference Value in 2019. Int J Environ Res Public Health 2021, 18, 11903. [Google Scholar] [CrossRef]
- Angle, C.R.; Manton, W.I.; Stanek, K.L. Stable isotope identification of lead sources in preschool children—The Omaha Study. J. Toxicol. Clin. Toxicol. 1995, 33, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Kamenov, G.D.; Gulson, B.L. The Pb isotopic record of historical to modern human lead exposure. Sci. Total Environ. 2014, 490, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Gwiazda, R.H.; Smith, D.R. Lead isotopes as a supplementary tool in the routine evaluation of household lead hazards. Environ. Health Perspect. 2000, 108, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Gulson, B. Stable lead isotopes in environmental health with emphasis on human investigations. Sci. Total Environ. 2008, 400, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Gulson, B.; Korsch, M.; Winchester, W.; Devenish, M.; Hobbs, T.; Main, C.; Smith, G.; Rosman, K.; Howearth, L.; Burn-Nunes, L.; et al. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring. Environ. Res. 2012, 112, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Swaringen, B.F.; Gawlik, E.; Kamenov, G.D.; McTigue, N.E.; Cornwell, D.A.; Bonzongo, J.J. Children’s exposure to environmental lead: A review of potential sources, blood levels, and methods used to reduce exposure. Environ. Res. 2022, 204, 112025. [Google Scholar] [CrossRef]
- National Statistics Office of Georgia. 2018 Georgia Multiple Indicator Cluster Survey, Survey Report; National Statistics Office of Georgia: Tbilisi, Georgia, 2019. [Google Scholar]
- UKHSA. Lead Exposure in Children Surveillance System (LEICSS) Annual Report 2022. Summary of 2021 Data; UK Health Security Agency: London, UK, 2023. [Google Scholar]
- Oulhote, Y.; Le Bot, B.; Poupon, J.; Lucas, J.P.; Mandin, C.; Etchevers, A.; Zmirou-Navier, D.; Glorennec, P. Identification of sources of lead exposure in French children by lead isotope analysis: A cross-sectional study. Environ. Health 2011, 10, 75. [Google Scholar] [CrossRef]
- Hivert, G.; Coquet, S.; Glorennec, P.; Bard, D. Is compliance to current lead regulations safe enough for infants and toddlers? Rev. Epidemiol. Sante Publique 2002, 50, 297–305. [Google Scholar]
- Glorennec, P.; Ledrans, M.; Fabres, B. Decision tools for selecting industrial sites where a systematic blood lead screening should be implemented. Rev. Epidemiol. Sante Publique 2006, 54, 117–125. [Google Scholar] [CrossRef]
- Glorennec, P.; Bemrah, N.; Tard, A.; Robin, A.; Le Bot, B.; Bard, D. Probabilistic modeling of young children’s overall lead exposure in France: Integrated approach for various exposure media. Environ. Int. 2007, 33, 937–945. [Google Scholar] [CrossRef]
- Glorennec, P.; Declercq, C. Performance of several decision support tools for determining the need for systematic screening of childhood lead poisoning around industrial sites. Eur. J. Public. Health 2007, 17, 47–52. [Google Scholar] [CrossRef]
- Kirchner, S.O.; Le Bot, B.; Glorennec, P.; Lucas, J.-P.; Chaventré, F.; Mandin, C.; Bretin, P.; Etchevers, A.; Le Tertre, A.; Le Strat, Y.; et al. Volet Analyses Isotopiques du Projet «Plomb Habitat»—Déterminants Des Plombémies Liés à L’habitat. Rapport Final; AFSSET: Paris, France, 2009. [Google Scholar]
- Glorennec, P.; Peyr, C.; Poupon, J.; Oulhote, Y.; Le Bot, B. Identifying sources of lead exposure for children, with lead concentrations and isotope ratios. J. Occup. Environ. Hyg. 2010, 7, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Le Bot, B.; Arcelin, C.; Briand, E.; Glorennec, P. Sequential digestion for measuring leachable and total lead in the same sample of dust or paint chips by ICP-MS. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2011, 46, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Oulhote, Y.L.B.B.; Deguen, S.; Glorennec, P. Using and interpreting isotope data for source identification. Trends Anal. Chem. 2011, 30, 302–312. [Google Scholar] [CrossRef]
- Pichery, C.; Bellanger, M.; Zmirou-Navier, D.; Glorennec, P.; Hartemann, P.; Grandjean, P. Childhood lead exposure in France: Benefit estimation and partial cost-benefit analysis of lead hazard control. Environ. Health 2011, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Glorennec, P.; Lucas, J.P.; Mandin, C.; Le Bot, B. French children’s exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: Contamination data. Environ. Int. 2012, 45, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.P.; Le Bot, B.; Glorennec, P.; Etchevers, A.; Bretin, P.; Douay, F.; Sebille, V.; Bellanger, L.; Mandin, C. Lead contamination in French children’s homes and environment. Environ. Res. 2012, 116, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Oulhote, Y.; LeTertre, A.; Etchevers, A.; Le Bot, B.; Lucas, J.P.; Mandin, C.; Le Strat, Y.; Lanphear, B.; Glorennec, P. Implications of different residential lead standards on children’s blood lead levels in France: Predictions based on a national cross-sectional survey. Int. J. Hyg. Environ. Health 2013, 216, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Etchevers, A.; Bretin, P.; Lecoffre, C.; Bidondo, M.L.; Le Strat, Y.; Glorennec, P.; Le Tertre, A. Blood lead levels and risk factors in young children in France, 2008–2009. Int. J. Hyg. Environ. Health 2014, 217, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.P.; Bellanger, L.; Le Strat, Y.; Le Tertre, A.; Glorennec, P.; Le Bot, B.; Etchevers, A.; Mandin, C.; Sebille, V. Source contributions of lead in residential floor dust and within-home variability of dust lead loading. Sci. Total Environ. 2014, 470–471, 768–779. [Google Scholar] [CrossRef]
- Etchevers, A.; Glorennec, P.; Le Strat, Y.; Lecoffre, C.; Bretin, P.; Le Tertre, A. Screening for Elevated Blood Lead Levels in Children: Assessment of Criteria and a Proposal for New Ones in France. Int. J. Environ. Res. Public. Health 2015, 12, 15366–15378. [Google Scholar] [CrossRef]
- Etchevers, A.; Le Tertre, A.; Lucas, J.P.; Bretin, P.; Oulhote, Y.; Le Bot, B.; Glorennec, P. Environmental determinants of different blood lead levels in children: A quantile analysis from a nationwide survey. Environ. Int. 2015, 74, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Glorennec, P.; Lucas, J.P.; Etchevers, A.; Oulhote, Y.; Mandin, C.; Poupon, J.; Le Strat, Y.; Bretin, P.; Douay, F.; Le Bot, B.; et al. Children’s lead exposure at home. The Plomb-Habitat Project (2008–2014): Principal results, impact, and perspectives. Environ. Risques St. 2015, 14, 28–37. [Google Scholar]
- Middleton, D.R.S.; Watts, M.J.; Beriro, D.J.; Hamilton, E.M.; Leonardi, G.S.; Fletcher, T.; Close, R.M.; Polya, D.A. Arsenic in residential soil and household dust in Cornwall, south west England: Potential human exposure and the influence of historical mining. Environ. Sci. Process Impacts 2017, 19, 517–527. [Google Scholar] [CrossRef]
- Laycock, A.; Chenery, S.; Marchant, E.; Crabbe, H.; Saei, A.; Ruadze, E.; Watts, M.; Leonardi, G.S.; Marczylo, T. Pb isotope ratios to link environmental sources with high blood Pb concentrations in children: A feasibility study in Georgia. Int. J. Environ. Res. Public Health 2022, 19, 15007. [Google Scholar] [CrossRef]
- Ericson, B.; Gabelaia, L.; Keith, J.; Kashibadze, T.; Beraia, N.; Sturua, L.; Kazzi, Z. Elevated Levels of Lead (Pb) Identified in Georgian Spices. Ann. Glob. Health 2020, 86, 124. [Google Scholar] [CrossRef]
- WHO. Brief Guide to Analytical Methods for Measuring Lead in Blood, 2nd ed.; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Forsyth, J.E.; Weaver, K.L.; Maher, K.; Islam, M.S.; Raqib, R.; Rahman, M.; Fendorf, S.; Luby, S.P. Sources of blood lead exposure in rural Bangladesh. Environ. Sci. Technol. 2019, 53, 11429–11436. [Google Scholar] [CrossRef] [PubMed]
- Takagi, M.; Tanaka, A.; Seyama, H.; Uematsu, A.; Kaji, M.; Yoshinaga, J. Source identification analysis of lead in the blood of Japanese children by stable isotope analysis. Int. J. Environ. Res. Public Health 2020, 17, 7784. [Google Scholar] [CrossRef] [PubMed]
- Becker, F.; Marcantonio, F.; Datta, S.; Wichterich, C.; Cizmas, L.; Surber, J.; Kennedy, K.; Bowles, E.J. Tracking the source of contaminant lead in children’s blood. Environ. Res. 2022, 212, 113307. [Google Scholar] [CrossRef]
Region | District | Mid-Year Population 2021 1 | BLC Arithmetic Mean (µg/dL) | BLC Geometric Mean (µg/dL) |
---|---|---|---|---|
Adjara | Khulo | 26,700 | 17.5 | 15.4 |
Adjara | Khelvachauri | 52,700 | 13.6 | 11.9 |
Adjara | Kobuleti | 71,300 | 12.2 | 12.1 |
Adjara | Shuakhevi | 14,900 | 17.3 | 15.0 |
Guria | Chokhatauri | 17,700 | 12.3 | 9.6 |
Guria | Lanchkhuti | 29,700 | 11.2 | 9.4 |
Imereti | Zestaponi | 54,700 | 10.7 | 9.1 |
Imereti | Chiatura | 37,900 | 14.5 | 10.8 |
Imereti | Tkibuli | 17,500 | 11.5 | 7.7 |
Samegrelo | Abasha | 19,300 | 15.1 | 12.1 |
Samegrelo | Chkhorotsku | 21,200 | 10.3 | 9.4 |
Samtskhe | Adigeni | 16,000 | 5.7 | 5.0 |
Samtskhe | Akhaltsikhe | 39,300 | 5.2 | 4.2 |
Samtskhe | Aspindza | 10,600 | 8.0 | 5.7 |
Kvemo Kartli | Tsalka | 19,700 | 16.8 | 16.8 |
Mtskheta-Mtianeti | Kazbegi | 3800 | 5.8 | 5.5 |
Mtskheta-Mtianeti | Tianeti | 10,200 | 9.3 | 6.3 |
Regions with high soil concentrations | ||||
Kvemo Kartli | Gardabani | 79,800 | ||
Kvemo Kartli | Marneuli | 107,700 | ||
Kvemo Kartli | Bolnisi | 56,000 | No child > 10 µg/dL | |
Kvemo Kartli | Dmanisi | 20,900 | No child > 10 µg/dL | |
Kakheti | Dedoplistskaro | 20,500 | No child > 10 µg/dL | |
Imereti | Sachkhere | 34,500 |
Discriminating Factor (Related to Pb Isotope Ratio) | Obs. | Mean | SD | Min | Max |
---|---|---|---|---|---|
DF1 (208Pb/207Pb) | 36 | 3.5 | 1.8 | 1.3 | 10.7 |
DF2 (208Pb/206Pb) | 36 | 2.7 | 1.0 | 1.2 | 5.8 |
DF3 (208Pb/204Pb) | 36 | 2.8 | 1.6 | 1.0 | 6.9 |
DF4 (207Pb/206Pb) | 36 | 6.1 | 2.2 | 2.9 | 12.4 |
DF5 (207Pb/204Pb) | 36 | 2.0 | 1.9 | 0.5 | 10.2 |
DF6 (206Pb/204Pb) | 36 | 4.4 | 2.1 | 2.2 | 13.2 |
Sample Type | Detailed List | No of Samples | |
---|---|---|---|
1 | Blood | 36 | |
2 | Wheat or corn flour | 62 | |
Wheat flour | 36 | ||
Corn flour and corn | 26 | ||
3 | Kinetic sand | 1 | |
4 | Milk | Milk, home | 15 |
5 | PLAY-DOH | 1 | |
6 | Paint | 22 | |
Paint, indoor | 19 | ||
Paint, outdoor | 3 | ||
7 | Pen | Plastic pen | 6 |
8 | Sand | 2 | |
Sand from playground | 1 | ||
Sand from yard | 1 | ||
9 | Soil | 60 | |
Soil from vegetable garden | 31 | ||
Soil from the yard | 26 | ||
Soil from school | 1 | ||
Soil from other homes | 1 | ||
10 | Spice | 136 | |
Red pepper (dried) | 13 | ||
Coriander (seeds) | 16 | ||
Blue fenugreek | 14 | ||
Saffron/yellow flower | 13 | ||
Black pepper (packed) | 13 | ||
Seasoned salt (svanuiri salt) | 11 | ||
Rosemary | 10 | ||
Cumin | 6 | ||
Adjika/homemade | 8 | ||
Other individuals | 6 | ||
Mixes | 20 | ||
Red pepper (whole vegetable) | 6 | ||
11 | Tea | 31 | |
12 | Toy | 16 | |
Not-paint covered toy | 12 | ||
Paint covered toy | 4 | ||
13 | Water | 48 | |
Water mains (residential) | 17 | ||
Water private (well, spring) (residential) | 23 | ||
Water, school | 7 | ||
Water, other | 1 | ||
14 | Dust | 92 | |
Total | 528 |
Sample Type | Unit of Measurement | Reference Value | # of Samples | No of Samples Exceeded Reference Value (n (%)) | Range (min–max) | Median [25–75% IQR] of Pb | |
---|---|---|---|---|---|---|---|
1 | Blood | µg/dL | 5 | 36 | 34 (94.4) | 2.6–39.9 | 12.5 (8.3–18.9) |
2 | Spices | mg/kg | 5 | 136 | 59 (43.4) | 0.01–6165 | 2.88 (0.28–22.6) |
3 | Wheat and corn | mg/kg | 0.5 | 62 | 1 (1.6) | 0.003–1.49 | 0.008 (0.006–0.015) |
4 | Kinetic sand | µg/kg | 2000 | 1 | 0 (0.0) | 28 | N/A |
5 | Milk | µg/L | 20 | 15 | 1 (6.7) | 7.1 | N/A 1 |
6 | PLAY-DOH | µg/kg | 2000 | 1 | 0 (0.0) | 21.7 | N/A |
7 | Indoor paint | mg/kg | 90 | 19 | 11 (57.9) | 0.8–4801 | 32.9 [(3.1–367.6) |
8 | Outdoor paint | mg/kg | 90 | 3 | 1 (33.3) | 2.9–161.2 | 4.9 [2.9–161.2] |
9 | Pen | µg/kg | 23,000 | 6 | 0 (0.0) | 8.4–652 | 344.2 [178.3–632.2] |
10 | Sand | mg/kg | 32 | 2 | 0 (0.0) | 10.9–12.8 | N/A |
11 | Soil | mg/kg | 32 | 60 | 15 (25.0) | 9.2–158.8 | 23.7 (17.9 36.6) |
12 | Tea | mg/kg | 10 | 31 | 0 (0.0) | 0.07–2.1 | 0.4 (0.29–0.59) |
13 | Toy | µg/kg | 23,000 | 16 | 0 (0.0) | 1.8–91.6 | 33.1 (13.3–80.1) |
14 | Water | µg/L | 10 | 48 2 | 0 (0.0) | 0.02–0.29 | 0.06 (0.03–0.13) |
15 | Dust | µg/ft2 | 40 | 92 | 9 (9.8) | 0.4–201 | 8.2 (3.2–15.7) |
Number of Samples | ||||||||
---|---|---|---|---|---|---|---|---|
Child ID | Region | BLC/µg/dL | Dust (D) and/or Paint (P) | Soil and/or Sand | Spices | Other Foods | Other | Closest Association in Terms of LIR |
1 | Mtskheta-Mtinaneti | 8.7 | 3 (D) | 2 | 7 | 6 | 0 | Dust |
2 | Mtskheta-Mtinaneti | 14.0 | 4 (D/P) | 3 (SS) | 7 | 6 | 0 | Spices |
3 | Kvemo Kartli | 14.5 | 1 (P) | 2 | 7 | 4 | 0 | Spices |
4 | Kvemo Kartli | 14.8 | 4 (D) | 1 | 0 | 3 | 0 | Dust |
5 | Kvemo Kartli | 2.6 | 3 (D) | 1 | 4 | 4 | 0 | Dust and spices |
6 | Kvemo Kartli | 4.2 | 3 (D) | 1 | 0 | 4 | 0 | Dust |
7 | Kvemo Kartli | 6.6 | 5(D/P) | 1 | 7 | 4 | 0 | Dust |
8 | Samtskhe-Javakheti | 8.0 | 4 (D/P) | 1 | 5 | 5 | 0 | Tea and dust |
9 | Samtskhe-Javakheti | 9.8 | 5(D/P) | 1 | 5 | 5 | 0 | Spices and dust |
10 | Samtskhe-Javakheti | 6.5 | 4 (D/P) | 2 | 8 | 6 | 0 | Spices and paint; |
11 | Samtskhe-Javakheti | 5.0 | 5(D/P) | 2 | 6 | 7 | 0 | Spices |
12 | Adjara | 6.2 | 3 (D) | 2(SS) | 2 | 3 | 0 | Spices |
13 | Adjara | 39.9 | 4 (D/P) | 1 | 4 | 3 | 0 | Not found |
14 | Adjara | 18.1 | 3 (D) | 2 | 5 | 2 | 0 | Dust |
15 | Adjara | 18.6 | 3 (D) | 2 | 6 | 6 | 0 | Dust and spices |
16 | Adjara | 10.9 | 3 (D) | 2 | 2 | 6 | 0 | Dust |
17 | Adjara | 12.7 | 0 | 1 | 6 | 2 | 0 | Spices |
18 | Adjara | 12.6 | 0 | 2 | 1 | 4 | 0 | Not found |
19 | Adjara | 10.8 | 2 (P) | 2 | 13 | 4 | 0 | Spices |
20 | Adjara | 8.7 | 4 (D/P) | 2 | 5 | 5 | 1 | Dust and spices |
21 | Adjara | 12.5 | 3 (D) | 2 | 0 | 4 | 2 | Dust |
22 | Adjara | 8.8 | 3 (D) | 0 | 3 | 5 | 2 | Not found |
23 | Guria | 26.3 | 3 (D) | 3 | 0 | 3 | 5 | Soil samples and Toys |
24 | Guria | 11.3 | 5(D/P) | 1 | 5 | 3 | 1 | Spices, dust samples, and toys |
25 | Guria | 9.4 | 4 (D/P) | 2 | 4 | 4 | 0 | Paint |
26 | Guria | 27.4 | 4 (D/P) | 2 | 4 | 4 | 2 | Dust samples and toys |
27 | Guria | 25.0 | 4 (D/P) | 2 | 3 | 4 | 2 | Spices |
28 | Guria | 23.0 | 4 (D/P) | 2 | 2 | 4 | 4 | Spices, dust, and paint and toy samples |
29 | Guria | 13.1 | 3 (D) | 2 | 3 | 6 | 1 | Dust and spices |
30 | Samegrelo | 19.2 | 1 (P) | 2 | 3 | 4 | 0 | Paint |
31 | Samegrelo | 7.6 | 1 (P) | 1 | 1 | 5 | 3 | Spices |
32 | Imereti | 6.7 | 3 (D) | 2 | 0 | 4 | 0 | Not found |
33 | Imereti | 30.1 | 3 (D) | 2 | 2 | 5 | 1 | Not found |
34 | Imereti | 14.6 | 2 (D) | 2 | 1 | 3 | 0 | Spices and dust |
35 | Imereti | 25.2 | 4 (D/P) | 2 | 2 | 4 | 0 | Dust |
36 | Imereti | 28.8 | 4 (D) | 2 | 3 | 5 | 0 | Spices |
Model 5 | Model 6 | |||||||
---|---|---|---|---|---|---|---|---|
Parameter | Est | P-V | LC | UC | Est | P-V | LC | UC |
Intercept 1 | 1.60 | 0.00 | 0.77 | 2.44 | 0.56 | 0.00 | 0.42 | 0.69 |
Intercept 4 | 0.75 | 0.00 | 0.51 | 0.98 | 0.69 | 0.00 | 0.48 | 0.90 |
Dust/paint 1 | 0.24 | 0.06 | 0.00 | 0.49 | 0.24 | 0.00 | 0.16 | 0.31 |
Dust/paint 4 | −0.03 | 0.73 | −0.22 | 0.15 | 0.05 | 0.52 | −0.10 | 0.20 |
Soil/Sand 1 | −0.14 | 0.12 | −0.31 | 0.03 | −0.15 | 0.00 | −0.22 | −0.07 |
Soil/Sand 4 | 0.05 | 0.41 | −0.06 | 0.16 | 0.04 | 0.28 | −0.03 | 0.11 |
Spices 1 | 0.17 | 0.16 | −0.06 | 0.41 | 0.50 | 0 | 0.45 | 0.56 |
Spices 4 | 0.05 | 0.54 | −0.10 | 0.19 | 0.04 | 0.65 | −0.15 | 0.24 |
Food/toys/pen/other 1 | 0.06 | 0.56 | −0.15 | 0.27 | 0.18 | 0.00 | 0.14 | 0.21 |
Food/toys/pen/other 4 | 0.08 | 0.39 | −0.10 | 0.26 | 0.07 | 0.39 | −0.09 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonardi, G.S.; Ruadze, E.; Saei, A.; Laycock, A.; Chenery, S.; Crabbe, H.; Marchant, E.; Khonelidze, I.; Sturua, L.; Imnadze, P.; et al. Identifying Sources of Lead Exposure for Children in the Republic of Georgia, with Lead Isotope Ratios. Int. J. Environ. Res. Public Health 2023, 20, 6912. https://doi.org/10.3390/ijerph20206912
Leonardi GS, Ruadze E, Saei A, Laycock A, Chenery S, Crabbe H, Marchant E, Khonelidze I, Sturua L, Imnadze P, et al. Identifying Sources of Lead Exposure for Children in the Republic of Georgia, with Lead Isotope Ratios. International Journal of Environmental Research and Public Health. 2023; 20(20):6912. https://doi.org/10.3390/ijerph20206912
Chicago/Turabian StyleLeonardi, Giovanni S., Ekaterine Ruadze, Ayoub Saei, Adam Laycock, Simon Chenery, Helen Crabbe, Elizabeth Marchant, Irma Khonelidze, Lela Sturua, Paata Imnadze, and et al. 2023. "Identifying Sources of Lead Exposure for Children in the Republic of Georgia, with Lead Isotope Ratios" International Journal of Environmental Research and Public Health 20, no. 20: 6912. https://doi.org/10.3390/ijerph20206912
APA StyleLeonardi, G. S., Ruadze, E., Saei, A., Laycock, A., Chenery, S., Crabbe, H., Marchant, E., Khonelidze, I., Sturua, L., Imnadze, P., Gamkrelidze, A., Watts, M. J., & Marczylo, T. (2023). Identifying Sources of Lead Exposure for Children in the Republic of Georgia, with Lead Isotope Ratios. International Journal of Environmental Research and Public Health, 20(20), 6912. https://doi.org/10.3390/ijerph20206912