The Risk for Schizophrenia–Bipolar Spectrum: Does the Apple Fall Close to the Tree? A Narrative Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
3. Neuropsychological Findings in SCZ-RELs
3.1. Intelligence
3.2. Memory, Attention, and Executive Functions
3.3. Social Cognition
4. Neuropsychological Findings in BD-RELs
4.1. Intelligence
4.2. Memory, Attention, and Executive Functions
4.3. Social Cognition
5. Neuropsychological Findings in PSY-RELs
5.1. Intelligence
5.2. Memory, Attention, and Executive Functions
5.3. Social Cognition
6. Neuroimaging Findings in SCZ-RELs
6.1. Structural Sudies
6.2. Functional Studies
6.2.1. Cognitive Tasks
6.2.2. Emotive Tasks
6.2.3. Reward Tasks
6.2.4. Functional Connectivity Studies
7. Neuroimaging Findings in BD-RELs
7.1. Structural Studies
7.2. Functional Studies
7.2.1. Cognitive Tasks
7.2.2. Emotive Tasks
7.2.3. Reward Tasks
7.2.4. Functional Connectivity Studies
8. Neuroimaging Findings in PSY-RELs
8.1. Structural Studies
8.2. Functional Studies
9. Limitations
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraepelin, E. The Memoirs; Hippius, H.P.G.P.D., Ed.; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Kraepelin, E. Einführung in Die Psychiatrische Klinik; Barth Verlag: Leipzig, Germany, 1921. [Google Scholar]
- Kasanin, J. The Acute Schizoaffective Psychoses. Am. J. Psychiatry 1933, 90, 97–126. [Google Scholar] [CrossRef]
- Crow, T.J. The Continuum of Psychosis and its Implication for the Structure of the Gene. Br. J. Psychiatry 1986, 149, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Prata, D.P.; Costa-Neves, B.; Cosme, G.; Vassos, E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J. Psychiatr. Res. 2019, 114, 178–207. [Google Scholar] [CrossRef] [PubMed]
- Rasetti, R.; Weinberger, D.R. Intermediate phenotypes in psychiatric disorders. Curr. Opin. Genet. Dev. 2011, 21, 340–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrichs, R.W.; Zakzanis, K.K. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology 1998, 12, 426–445. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, M.; Bianchi, V.; Cinti, M.E. Cognitive deficits in schizophrenia: An updated metanalysis of the scientific evidence. BMC Psychiatry 2012, 12, 64. [Google Scholar] [CrossRef] [Green Version]
- Keramatian, K.; Torres, I.J.; Yatham, L.N. Neurocognitive functioning in bipolar disorder: What we know and what we don’t. Dialog- Clin. Neurosci. 2021, 23, 29–38. [Google Scholar] [CrossRef]
- Zhu, Y.; Womer, F.Y.; Leng, H.; Chang, M.; Yin, Z.; Wei, Y.; Zhou, Q.; Fu, S.; Deng, X.; Lv, J.; et al. The Relationship Between Cognitive Dysfunction and Symptom Dimensions Across Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Front. Psychiatry 2019, 10, 253. [Google Scholar] [CrossRef]
- Soler, J.; Lera-Miguel, S.; Lázaro, L.; Calvo, R.; Ferentinos, P.; Fañanás, L.; Fatjó-Vilas, M. Familial aggregation analysis of cognitive performance in early-onset bipolar disorder. Eur. Child Adolesc. Psychiatry 2020, 29, 1705–1716. [Google Scholar] [CrossRef]
- Li, W.; Zhou, F.-C.; Zhang, L.; Ng, C.H.; Ungvari, G.S.; Li, J.; Xiang, Y.-T. Comparison of cognitive dysfunction between schizophrenia and bipolar disorder patients: A meta-analysis of comparative studies. J. Affect. Disord. 2020, 274, 652–661. [Google Scholar] [CrossRef]
- Bora, E.; Pantelis, C. Meta-analysis of Cognitive Impairment in First-Episode Bipolar Disorder: Comparison with First-Episode Schizophrenia and Healthy Controls. Schizophr. Bull. 2015, 41, 1095–1104. [Google Scholar] [CrossRef]
- van Erp, T.G.M.; Walton, E.; Hibar, D.P.; Schmaal, L.; Jiang, W.; Glahn, D.C.; Pearlson, G.D.; Yao, N.; Fukunaga, M.; Hashimoto, R.; et al. Cortical Brain Abnormalities in 4474 Individuals with Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol. Psychiatry 2018, 84, 644–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrzykowski, M.O.; Daigle, K.M.; Waters, A.B.; Swenson, L.P.; Gansler, D.A. The central executive network and executive function in healthy and persons with schizophrenia groups: A meta-analysis of structural and functional MRI. Brain Imaging Behav. 2022, 16, 1451–1464. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Hollander, P.; Raucher-Chéné, D.; Lepage, M.; Lavigne, K.M. Structural brain correlates of cognitive function in schizophrenia: A meta-analysis. Neurosci. Biobehav. Rev. 2021, 132, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Arnone, D.; Job, D.; Stanfield, A.; Farrow, T.F.; Nugent, A.C.; Scherk, H.; Gruber, O.; Chen, X.; Sachdev, P.S.; et al. Grey matter differences in bipolar disorder: A meta-analysis of voxel-based morphometry studies. Bipolar Disord. 2012, 14, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Suckling, J.; Lennox, B.R.; Ooi, C.; Bullmore, E.T. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011, 13, 1–15. [Google Scholar] [CrossRef]
- O’Neill, A.; Mechelli, A.; Bhattacharyya, S. Dysconnectivity of Large-Scale Functional Networks in Early Psychosis: A Meta-analysis. Schizophr. Bull. 2019, 45, 579–590. [Google Scholar] [CrossRef]
- Alonso-Solís, A.; Corripio, I.; de Castro-Manglano, P.; Duran-Sindreu, S.; Garcia-Garcia, M.; Proal, E.; Nuñez-Marín, F.; Soutullo, C.; Alvarez, E.; Gómez-Ansón, B.; et al. Altered default network resting state functional connectivity in patients with a first episode of psychosis. Schizophr. Res. 2012, 139, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, Q.; Shah, C.; Li, Q.; Sweeney, J.A.; Li, F.; Gong, Q. Cortical Thickness Abnormalities at Different Stages of the Illness Course in Schizophrenia: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2022, 79, 560–570. [Google Scholar] [CrossRef]
- Cattarinussi, G.; Delvecchio, G.; Prunas, C.; Brambilla, P. Effects of pharmacological treatments on neuroimaging findings in first episode affective psychosis: A review of longitudinal studies. J. Affect. Disord. 2020, 276, 1046–1051. [Google Scholar] [CrossRef]
- Vita, A.; de Peri, L.; Deste, G.; Barlati, S.; Sacchetti, E. The Effect of Antipsychotic Treatment on Cortical Gray Matter Changes in Schizophrenia: Does the Class Matter? A Meta-analysis and Meta-regression of Longitudinal Magnetic Resonance Imaging Studies. Biol. Psychiatry 2015, 78, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiang, Q.; Huang, C.-C.; Zhao, J.; Liu, Y.; Lin, C.-P.; Liu, D.; Lo, C.-Y.Z. Short-term Medication Effects on Brain Functional Activity and Network Architecture in First-Episode psychosis: A longitudinal fMRI study. Brain Imaging Behav. 2023, 17, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Ferensztajn-Rochowiak, E.; Rybakowski, J.K. Long-Term Lithium Therapy: Side Effects and Interactions. Pharmaceuticals 2023, 16, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Allott, K.; Yuen, H.P.; Baldwin, L.; O’donoghue, B.; Fornito, A.; Chopra, S.; Nelson, B.; Graham, J.; Kerr, M.J.; Proffitt, T.-M.; et al. Effects of risperidone/paliperidone versus placebo on cognitive functioning over the first 6 months of treatment for psychotic disorder: Secondary analysis of a triple-blind randomised clinical trial. Transl. Psychiatry 2023, 13, 199. [Google Scholar] [CrossRef]
- Marquez-Arrico, J.E.; Gonzalez-Sanchez, A.; Navarro, J.F.; Penadés, R.; Adan, A. Patients with Schizophrenia Showed Worse Cognitive Performance than Bipolar and Major Depressive Disorder in a Sample with Comorbid Substance Use Disorders. J. Clin. Med. 2022, 11, 6648. [Google Scholar] [CrossRef] [PubMed]
- Coustals, N.; Martelli, C.; Brunet-Lecomte, M.; Petillion, A.; Romeo, B.; Benyamina, A. Chronic smoking and cognition in patients with schizophrenia: A meta-analysis. Schizophr. Res. 2020, 222, 113–121. [Google Scholar] [CrossRef]
- Abdul Rashid, N.A.; Nurjono, M.; Lee, J. Clinical determinants of physical activity and sedentary behaviour in individuals with schizophrenia. Asian J. Psychiatry 2019, 46, 62–67. [Google Scholar] [CrossRef]
- Stoychev, K.R. Neuroimaging Studies in Patients with Mental Disorder and Co-occurring Substance Use Disorder: Summary of Findings. Front. Psychiatry 2019, 10, 702–715. [Google Scholar] [CrossRef] [Green Version]
- Leyba, L.; Mayer, A.R.; Gollub, R.L.; Andreasen, N.C.; Clark, V.P. Smoking status as a potential confound in the BOLD response of patients with schizophrenia. Schizophr. Res. 2008, 104, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.; Kumari, V.; Das, M.; Zachariah, E.; Ettinger, U.; Sumich, A.; Sharma, T. Cognitive functioning in siblings discordant for schizophrenia. Acta Psychiatr. Scand. 2004, 111, 185–192. [Google Scholar] [CrossRef]
- Groom, M.J.; Jackson, G.M.; Calton, T.G.; Andrews, H.K.; Bates, A.T.; Liddle, P.F.; Hollis, C. Cognitive deficits in early-onset schizophrenia spectrum patients and their non-psychotic siblings: A comparison with ADHD. Schizophr. Res. 2008, 99, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Ohi, K.; Shimada, T.; Kataoka, Y.; Koide, Y.; Yasuyama, T.; Uehara, T.; Okubo, H.; Kawasaki, Y. Intelligence decline between present and premorbid IQ in schizophrenia: Schizophrenia Non-Affected Relative Project (SNARP). Eur. Neuropsychopharmacol. 2019, 29, 653–661. [Google Scholar] [CrossRef]
- Byrne, M.; Hodges, A.; Grant, E.; Owens, D.C.; Johnstone, E.C. Neuropsychological assessment of young people at high genetic risk for developing schizophrenia compared with controls: Preliminary findings of the Edinburgh High Risk Study (EHRS). Psychol. Med. 1999, 29, 1161–1173. [Google Scholar] [CrossRef]
- Kravariti, E.; Toulopoulou, T.; Mapua-Filbey, F.; Schulze, K.; Walshe, M.; Sham, P.; Murray, R.M.; McDonald, C. Intellectual asymmetry and genetic liability in first-degree relatives of probands with schizophrenia. Br. J. Psychiatry 2006, 188, 186–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnew-Blais, J.; Seidman, L.J. Neurocognition in Youth Adults under Age 30 at Familial Risk for Schizophrenia: A Quantitative and Quali-tative Review. Cogn. Neuropsychiatry 2013, 18, 44–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickson, H.; Cullen, A.E.; Reichenberg, A.; Hodgins, S.; Campbell, D.D.; Morris, R.G.; Laurens, K.R. Cognitive impairment among children at-risk for schizophrenia. J. Psychiatr. Res. 2014, 50, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Verweij, K.H.W.; Derks, E.M. The Association between Intelligence Scores and Family History of Psychiatric Disorder in Schizophrenia Patients, Their Siblings and Healthy Controls. PLoS ONE 2013, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Schilling, C.; Schlipf, M.; Spietzack, S.; Rausch, F.; Eisenacher, S.; Englisch, S.; Reinhard, I.; Haller, L.; Grimm, O.; Deuschle, M.; et al. Fast sleep spindle reduction in schizophrenia and healthy first-degree relatives: Association with impaired cognitive function and potential intermediate phenotype. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 213–224. [Google Scholar] [CrossRef]
- Manoach, D.S.; Demanuele, C.; Wamsley, E.J.; Vangel, M.; Montrose, D.M.; Miewald, J.; Kupfer, D.; Buysse, D.; Stickgold, R.; Keshavan, M.S. Sleep spindle deficits in antipsychotic-naïve early course schizophrenia and in non-psychotic first-degree relatives. Front. Hum. Neurosci. 2014, 8, 762. [Google Scholar] [CrossRef] [Green Version]
- Besteher, B.; Brambilla, P.; Nenadić, I. Twin studies of brain structure and cognition in schizophrenia. Neurosci. Biobehav. Rev. 2020, 109, 103–113. [Google Scholar] [CrossRef]
- Toulopoulou, T.; Picchioni, M.; Rijsdijk, F.; Hua-Hall, M.; Ettinger, U.; Sham, P.; Murray, R. Substantial Genetic Overlap Between Neurocognition and Schizophrenia: Genetic Modeling in Twin Samples. Arch. Gen. Psychiatry 2007, 64, 1348–1355. [Google Scholar] [CrossRef] [Green Version]
- Hedman, A.M.; van Haren, N.E.M.; van Baal, G.C.M.; Brans, R.G.H.; Hijman, R.; Kahn, R.S.; Pol, H.E.H. Is there change in intelligence quotient in chronically ill schizophrenia patients? A longitudinal study in twins discordant for schizophrenia. Psychol. Med. 2012, 42, 2535–2541. [Google Scholar] [CrossRef] [PubMed]
- van Oel, C.J.; Sitskoorn, M.M.; Cremer, M.P.M.; Kahn, R.S. School performance as a premorbid marker for schizophrenia: A twin study. Schizophr. Bull. 2002, 28, 401–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Zwarte, S.M.C.; Brouwer, R.M.; Tsouli, A.; Cahn, W.; Hillegers, M.H.J.; Hulshoff Pol, H.E.; Kahn, R.S.; van Haren, N.E.M. Running in the Family? Structural Brain Abnormalities and IQ in Offspring, Siblings, Parents, and Co-twins of Patients with Schizophrenia. Schizophr. Bull. 2019, 45, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Toulopoulou, T.; Grech, A.; Morris, R.G.; Schulze, K.; McDonald, C.; Chapple, B.; Rabe-Hesketh, S.; Murray, R.M. The relationship between volumetric brain changes and cognitive function: A family study on schizophrenia. Biol. Psychiatry 2004, 56, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Snitz, B.E.; MacDonald, A.W.; Carter, C.S. Cognitive Deficits in Unaffected First-Degree Relatives of Schizophrenia Patients: A Meta-Analytic Review of Putative Endophenotypes. Schizophr Bull 2006, 32, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Szöke, A.; Schürhoff, F.; Mathieu, F.; Meary, A.; Ionescu, S.; Leboyer, M. Tests of executive functions in first-degree relatives of schizophrenic patients: A meta-analysis. Psychol. Med. 2005, 35, 771–782. [Google Scholar] [CrossRef]
- Trandafir, A.; Méary, A.; Schürhoff, F.; Leboyer, M.; Szöke, A. Memory tests in first-degree adult relatives of schizophrenic patients: A meta-analysis. Schizophr. Res. 2006, 81, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Thygesen, J.H.; Presman, A.; Harju-Seppänen, J.; Irizar, H.; Jones, R.; Kuchenbaecker, K.; Lin, K.; Alizadeh, B.Z.; Austin-Zimmerman, I.; Bartels-Velthuis, A.; et al. Genetic copy number variants, cognition and psychosis: A meta-analysis and a family study. Mol. Psychiatry 2021, 26, 5307–5319. [Google Scholar] [CrossRef]
- Legge, S.E.; Cardno, A.G.; Allardyce, J.; Dennison, C.; Hubbard, L.; Pardiñas, A.F.; Richards, A.; Rees, E.; Di Florio, A.; Escott-Price, V.; et al. Associations Between Schizophrenia Polygenic Liability, Symptom Dimensions, and Cognitive Ability in Schizophrenia. JAMA Psychiatry 2021, 78, 1143–1151. [Google Scholar] [CrossRef]
- Owens, S.F.; Rijsdijk, F.; Picchioni, M.M.; Stahl, D.; Nenadic, I.; Murray, R.M.; Toulopoulou, T. Genetic overlap between schizophrenia and selective components of executive function. Schizophr. Res. 2011, 127, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Blokland, G.A.M.; Mesholam-Gately, R.I.; Toulopoulou, T.; del Re, E.C.; Lam, M.; DeLisi, L.E.; Donohoe, G.; Walters, J.T.R.; Seidman, L.J.; Petryshen, T.L. Heritability of Neuropsychological Measures in Schizophrenia and Nonpsychiatric Populations: A Systematic Review and Meta-analysis. Schizophr. Bull. 2017, 43, 788–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toulopoulou, T.; Goldberg, T.E.; Rebollo Mesa, I.; Picchioni, M.; Rijsdijk, F.; Stahl, D.; Cherny, S.S.; Sham, P.; Faraone, S.V.; Tsuang, M.; et al. Impaired Intellect and Memory: A Missing Link Between Genetic Risk and Schizophrenia? Arch. Gen. Psychiatry 2010, 67, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Toulopoulou, T.; van Haren, N.; Zhang, X.; Sham, P.C.; Cherny, S.S.; Campbell, D.D.; Picchioni, M.; Murray, R.; Boomsma, D.I.; Pol, H.H.; et al. Reciprocal causation models of cognitive vs. volumetric cerebral intermediate phenotypes for schizophrenia in a pan-European twin cohort. Mol. Psychiatry 2014, 20, 1386–1396. [Google Scholar] [CrossRef] [Green Version]
- Lemvigh, C.K.; Brouwer, R.M.; Pantelis, C.; Jensen, M.H.; Hilker, R.W.; Legind, C.S.; Anhøj, S.J.; Robbins, T.W.; Sahakian, B.J.; Glenthøj, B.Y.; et al. Heritability of specific cognitive functions and associations with schizophrenia spectrum disorders using CANTAB: A nation-wide twin study. Psychol. Med. 2022, 52, 1101–1114. [Google Scholar] [CrossRef]
- Torniainen, M.; Suvisaari, J.; Partonen, T.; Castaneda, A.E.; Kuha, A.; Perälä, J.; Saarni, S.; Lönnqvist, J.; Tuulio-Henriksson, A. Sex differences in cognition among persons with schizophrenia and healthy first-degree relatives. Psychiatry Res. 2011, 188, 7–12. [Google Scholar] [CrossRef]
- Mondragón-Maya, A.; Ramos-Mastache, D.; Román, P.D.; Yáñez-Téllez, G. Social Cognition in Schizophrenia, Unaffected Relatives and Ultra-High Risk for Psychosis: What Do We Currently Know? Actas Esp. Psiquiatr. 2017, 45, 218–226. [Google Scholar]
- Bora, E.; Pantelis, C. Theory of mind impairments in first-episode psychosis, individuals at ultra-high risk for psychosis and in first-degree relatives of schizophrenia: Systematic review and meta-analysis. Schizophr. Res. 2013, 144, 31–36. [Google Scholar] [CrossRef]
- Montag, C.; Neuhaus, K.; Lehmann, A.; Krüger, K.; Dziobek, I.; Heekeren, H.R.; Heinz, A.; Gallinat, J. Subtle deficits of cognitive theory of mind in unaffected first-degree relatives of schizophrenia patients. Eur. Arch. Psychiatry Clin. Neurosci. 2012, 262, 217–226. [Google Scholar] [CrossRef]
- Lavoie, M.-A.; Plana, I.; Bédard Lacroix, J.; Godmaire-Duhaime, F.; Jackson, P.L.; Achim, A.M. Social cognition in first-degree relatives of people with schizophrenia: A meta-analysis. Psychiatry Res. 2013, 209, 129–135. [Google Scholar] [CrossRef]
- Albacete, A.; Bosque, C.; Custal, N.; Crespo, J.M.; Gilabert, E.; Albiach, A.; Menchón, J.M.; Contreras, F. Emotional intelligence in non-psychotic first-degree relatives of people with schizophrenia. Schizophr. Res. 2016, 175, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Lemvigh, C.K.; Glenthøj, B.Y.; Fagerlund, B. A nation-wide twin study of social cognition in schizophrenia spectrum disorders. Schizophrenia 2022, 8, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Klimes-Dougan, B.; Jeong, J.; Kennedy, K.P.; Allen, T.A. Intellectual Functioning in Offspring of Parents with Bipolar Disorder: A Review of the Literature. Brain Sci. 2017, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Vreeker, A.; Boks, M.P.M.; Abramovic, L.; Verkooijen, S.; van Bergen, A.H.; Hillegers, M.H.J.; Spijker, A.T.; Hoencamp, E.; Regeer, E.J.; Riemersma-Van Der Lek, R.F.; et al. High educational performance is a distinctive feature of bipolar disorder: A study on cognition in bipolar disorder, schizophrenia patients, relatives and controls. Psychol. Med. 2016, 46, 807–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillissie, E.S.; Krupski, J.R.; Jawad, M.Y.; Lui, L.M.W.; di Vencenzo, J.D.; Teopiz, K.M.; Cao, B.; Phan, L.; Mansur, R.B.; Kwan, A.T.H.; et al. Evaluating cognitive function in unaffected relatives of individuals with bipolar disorders: A meta-analysis. J. Psychiatr. Res. 2022, 152, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Miskowiak, K.W.; Mariegaard, J.; Jahn, F.S.; Kjærstad, H.L. Associations between cognition and subsequent mood episodes in patients with bipolar disorder and their unaffected relatives: A systematic review. J. Affect. Disord. 2022, 297, 176–188. [Google Scholar] [CrossRef]
- Arts, B.; Jabben, N.; Krabbendam, L.; van Os, J. Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol. Med. 2008, 38, 771–785. [Google Scholar] [CrossRef]
- Frías, Á.; Palma, C.; Farriols, N.; Salvador, A. Characterizing Offspring of Bipolar Parents: A Review of the Literature. Actas Esp. Psiquiatr 2015, 44, 221–234. [Google Scholar]
- Bora, E.; Vahip, S.; Akdeniz, F.; İlerisoy, H.; Aldemir, E.; Alkan, M. Executive and verbal working memory dysfunction in first-degree relatives of patients with bipolar disorder. Psychiatry Res. 2008, 161, 318–324. [Google Scholar] [CrossRef]
- Bora, E.; Yucel, M.; Pantelis, C. Cognitive endophenotypes of bipolar disorder: A meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. J. Affect. Disord. 2009, 113, 1–20. [Google Scholar] [CrossRef]
- Bora, E.; Özerdem, A. Social cognition in first-degree relatives of patients with bipolar disorder: A meta-analysis. Eur. Neuropsychopharmacol. 2017, 27, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.; Lin, A.; Wood, S.J.; Yung, A.R.; McGorry, P.D.; Pantelis, C. Cognitive deficits in youth with familial and clinical high risk to psychosis: A systematic review and meta-analysis. Acta Psychiatr. Scand. 2014, 130, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zwarte, S.M.C.; Brouwer, R.M.; Agartz, I.; Alda, M.; Alonso-Lana, S.; Bearden, C.E.; Bertolino, A.; Bonvino, A.; Bramon, E.; Buimer, E.E.L.; et al. Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder. Hum. Brain Mapp. 2020, 43, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Gilvarry, C.; Takei, N.; Russell, A.; Rushe, T.; Hemsley, D.; Murray, R.M. Premorbid IQ in patients with functional psychosis and their first-degree relatives. Schizophr. Res. 2000, 41, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Myles-Worsley, M.; Ord, L.M.; Ngiralmau, H.; Weaver, S.; Blailes, F.; Faraone, S.V. The Palau Early Psychosis Study: Neurocognitive functioning in high-risk adolescents. Schizophr. Res. 2007, 89, 299–307. [Google Scholar] [CrossRef]
- Hou, C.-L.; Xiang, Y.-T.; Wang, Z.-L.; Everall, I.; Tang, Y.; Yang, C.; Xu, M.-Z.; Correll, C.U.; Jia, F.-J. Cognitive functioning in individuals at ultra-high risk for psychosis, first-degree relatives of patients with psychosis and patients with first-episode schizophrenia. Schizophr. Res. 2016, 174, 71–76. [Google Scholar] [CrossRef]
- Murillo-García, N.; Díaz-Pons, A.; Fernández-Cacho, L.M.; Miguel-Corredera, M.; Martínez-Barrio, S.; Ortiz-García de la Foz, V.; Neergaard, K.; Ayesa-Arriola, R. A family study on first episode of psychosis patients: Exploring neuropsychological performance as an endophenotype. Acta Psychiatr. Scand. 2022, 145, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Seidman, L.J.; Giuliano, A.J.; Smith, C.W.; Stone, W.S.; Glatt, S.J.; Meyer, E.; Faraone, S.V.; Tsuang, M.T.; Cornblatt, B. Neuropsychological Functioning in Adolescents and Young Adults at Genetic Risk for Schizophrenia and Affective Psychoses: Results from the Harvard and Hillside Adolescent High Risk Studies. Schizophr. Bull. 2005, 32, 507–524. [Google Scholar] [CrossRef] [Green Version]
- Schubert, E.W.; McNeil, T.F. Neuropsychological Impairment and Its Neurological Correlates in Adult Offspring with Heightened Risk for Schizophrenia and Affective Psychosis. Am. J. Psychiatry 2005, 162, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Whyte, M.-C.; Brett, C.; Harrison, L.K.; Byrne, M.; Miller, P.; Lawrie, S.M.; Johnstone, E.C. Neuropsychological Performance Over Time in People at High Risk of Developing Schizophrenia and Controls. Biol. Psychiatry 2006, 59, 730–739. [Google Scholar] [CrossRef]
- van Gool, K.C.A.; Collin, G.; Bauer, C.C.C.; Molokotos, E.; Mesholam-Gately, R.I.; Thermenos, H.W.; Seidman, L.J.; Gabrieli, J.D.E.; Whitfield-Gabrieli, S.; Keshavan, M.S. Altered working memory-related brain activity in children at familial high risk for psychosis: A preliminary study. Schizophr. Res. 2022, 240, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.K.; Buchholz, A.; Amsbaugh, H.; Reilly, J.L.; Rubin, L.H.; Gold, J.M.; Keefe, R.S.; Pearlson, G.D.; Keshavan, M.S.; Tamminga, C.A.; et al. Working memory impairment in probands with schizoaffective disorder and first degree relatives of schizophrenia probands extend beyond deficits predicted by generalized neuropsychological impairment. Schizophr. Res. 2015, 166, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidman, L.J.; Pousada-Casal, A.; Scala, S.; Meyer, E.C.; Stone, W.S.; Thermenos, H.W.; Molokotos, E.; Agnew-Blais, J.; Tsuang, M.T.; Faraone, S.V. Auditory Vigilance and Working Memory in Youth at Familial Risk for Schizophrenia or Affective Psychosis in the Harvard Adolescent Family High Risk Study. J. Int. Neuropsychol. Soc. 2016, 22, 1026–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, B.K.; Vangkilde, S.; Petersen, A.; Skovgaard, L.T.; Jepsen, J.R.; Hemager, N.; Christiani, C.J.; Spang, K.S.; Ellersgaard, D.; Greve, A.; et al. Sustained Attention and Interference Control Among 7-Year-Old Children with a Familial High Risk of Schizophrenia or Bipolar Disorder—A Nationwide Observational Cohort Study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 704–712. [Google Scholar] [CrossRef]
- Higier, R.G.; Jimenez, A.M.; Hultman, C.M.; Borg, J.; Roman, C.; Kizling, I.; Larsson, H.; Cannon, T.D. Enhanced Neurocognitive Functioning and Positive Temperament in Twins Discordant for Bipolar Disorder. Am. J. Psychiatry 2014, 171, 1191–1198. [Google Scholar] [CrossRef]
- Bora, E. A comparative meta-analysis of neurocognition in first-degree relatives of patients with schizophrenia and bipolar disorder. Eur. Psychiatry 2017, 45, 121–128. [Google Scholar] [CrossRef]
- Meijer, J.; Simons, C.J.P.; Quee, P.J.; Verweij, K.; Kahn, R.S.; Cahn, W.; Linszen, D.H.; de Haan, L.; van Os, J.; Krabbendam, L.; et al. Cognitive alterations in patients with non-affective psychotic disorder and their unaffected siblings and parents. Acta Psychiatr. Scand. 2011, 125, 66–76. [Google Scholar] [CrossRef]
- Cattarinussi, G.; Kubera, K.M.; Hirjak, D.; Wolf, R.C.; Sambataro, F. Neural Correlates of the Risk for Schizophrenia and Bipolar Disorder: A Meta-analysis of Structural and Functional Neuroimaging Studies. Biol. Psychiatry 2022, 92, 375–384. [Google Scholar] [CrossRef]
- Boos, H.B.M.; Aleman, A.; Cahn, W.; Hulshoff Pol, H.; Kahn, R.S. Brain Volumes in Relatives of Patients with Schizophrenia: A Meta-Analysis. Arch. Gen. Psychiatry 2007, 64, 297–304. [Google Scholar] [CrossRef] [Green Version]
- de Zwarte, S.M.C.; Brouwer, R.M.; Agartz, I.; Alda, M.; Aleman, A.; Alpert, K.I.; Bearden, C.E.; Bertolino, A.; Bois, C.; Bonvino, A.; et al. The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder. Biol. Psychiatry 2019, 86, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.C.K.; Di, X.; McAlonan, G.M.; Gong, Q.-Y. Brain Anatomical Abnormalities in High-Risk Individuals, First-Episode, and Chronic Schizophrenia: An Activation Likelihood Estimation Meta-analysis of Illness Progression. Schizophr. Bull. 2011, 37, 177–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Sweeney, J.A.; Yao, L.; Li, S.; Zeng, J.; Xu, M.; Tallman, M.J.; Gong, Q.; DelBello, M.P.; Lui, S.; et al. Brain structural correlates of familial risk for mental illness: A meta-analysis of voxel-based morphometry studies in relatives of patients with psychotic or mood disorders. Neuropsychopharmacology 2020, 45, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.; Barker, V.; Radua, J.; Fusar-Poli, P.; Lawrie, S.M. Multimodal voxel-based meta-analysis of structural and functional magnetic resonance imaging studies in those at elevated genetic risk of developing schizophrenia. Psychiatry Res. 2014, 221, 69–77. [Google Scholar] [CrossRef]
- Saarinen, A.I.; Huhtaniska, S.; Pudas, J.; Björnholm, L.; Jukuri, T.; Tohka, J.; Granö, N.; Barnett, J.H.; Kiviniemi, V.; Veijola, J.; et al. Structural and functional alterations in the brain gray matter among first-degree relatives of schizophrenia patients: A multimodal meta-analysis of fMRI and VBM studies. Schizophr. Res. 2020, 216, 14–23. [Google Scholar] [CrossRef]
- Kuo, S.S.; Roalf, D.R.; Prasad, K.M.; Musket, C.W.; Rupert, P.E.; Wood, J.; Gur, R.C.; Almasy, L.; Gur, R.E.; Nimgaonkar, V.L.; et al. Age-dependent effects of schizophrenia genetic risk on cortical thickness and cortical surface area: Evaluating evidence for neurodevelopmental and neurodegenerative models of schizophrenia. J. Psychopathol. Clin. Sci. 2022, 131, 674–688. [Google Scholar] [CrossRef]
- Oertel-Knöchel, V.; Knöchel, C.; Rotarska-Jagiela, A.; Reinke, B.; Prvulovic, D.; Haenschel, C.; Hampel, H.; Linden, D.E. Association between Psychotic Symptoms and Cortical Thickness Reduction across the Schizophrenia Spectrum. Cereb. Cortex 2012, 23, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Hulshoff Pol, H.E.; Van Baal, C.M.; Schnack, H.G.; Brans, R.G.H.; Van Der Schot, A.C.; Brouwer, R.M.; Van Haren, N.E.M.; Lepage, C.; Collins, D.L.; Evans, A.C.; et al. Overlapping and Segregating Structural Brain Abnormalities in Twins with Schizophrenia or Bipolar Disorder. Arch. Gen. Psychiatry 2012, 69, 349–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brans, R.G.H.; van Haren, N.E.M.; van Baal, G.C.M.; Schnack, H.G.; Kahn, R.S.; Hulshoff Pol, H.E. Heritability of Changes in Brain Volume Over Time in Twin Pairs Discordant for Schizophrenia. Arch. Gen. Psychiatry 2008, 65, 1259–1268. [Google Scholar] [CrossRef] [Green Version]
- Ettinger, U.; Schmechtig, A.; Toulopoulou, T.; Borg, C.; Orrells, C.; Owens, S.; Matsumoto, K.; van Haren, N.E.; Hall, M.-H.; Kumari, V.; et al. Prefrontal and Striatal Volumes in Monozygotic Twins Concordant and Discordant for Schizophrenia. Schizophr. Bull. 2010, 38, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, L.K.; Ver Loren van Themaat, A.H.; Larsen, K.M.; Burton, B.K.; Baaré, W.F.C.; Madsen, K.S.; Nordentoft, M.; Siebner, H.R.; Plessen, K.J. Alterations in Task-Related Brain Activation in Children, Adolescents and Young Adults at Familial High-Risk for Schizophrenia or Bipolar Disorder—A Systematic Review. Front. Psychiatry 2020, 11, 632. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Perez, J.; Broome, M.; Borgwardt, S.; Placentino, A.; Caverzasi, E.; Cortesi, M.; Veggiotti, P.; Politi, P.; Barale, F.; et al. Neurofunctional correlates of vulnerability to psychosis: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2007, 31, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Arsalidou, M.; Yaple, Z.; Jurcik, T.; Ushakov, V. Cognitive Brain Signatures of Youth with Early Onset and Relatives With Schizophrenia: Evidence From fMRI Meta-analyses. Schizophr. Bull. 2020, 46, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Scognamiglio, C.; Houenou, J. A meta-analysis of fMRI studies in healthy relatives of patients with schizophrenia. Aust. New Zealand J. Psychiatry 2014, 48, 907–916. [Google Scholar] [CrossRef]
- Zhang, R.; Picchioni, M.; Allen, P.; Toulopoulou, T. Working Memory in Unaffected Relatives of Patients with Schizophrenia: A Meta-Analysis of Functional Magnetic Resonance Imaging Studies. Schizophr. Bull. 2016, 42, 1068–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorito, A.M.; Aleman, A.; Blasi, G.; Bourque, J.; Cao, H.; Chan, R.C.; Chowdury, A.; Conrod, P.; Diwadkar, V.A.; Goghari, V.M.; et al. Are Brain Responses to Emotion a Reliable Endophenotype of Schizophrenia? An Image-Based Functional Magnetic Resonance Imaging Meta-analysis. Biol. Psychiatry 2022, 93, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Vink, M.; de Leeuw, M.; Pouwels, R.; Van Den Munkhof, H.E.; Kahn, R.S.; Hillegers, M. Diminishing striatal activation across adolescent development during reward anticipation in offspring of schizophrenia patients. Schizophr. Res. 2016, 170, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Rostrup, E.; Hilker, R.; Legind, C.; Anhøj, S.; Robbins, T.W.; Sahakian, B.J.; Fagerlund, B.; Glenthøj, B. Reward Processing as an Indicator of Vulnerability or Compensatory Resilience in Psychoses? Results From a Twin Study. Biol. Psychiatry Glob. Open Sci. 2023, 3, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Meda, S.A.; Gill, A.; Stevens, M.C.; Lorenzoni, R.P.; Glahn, D.C.; Calhoun, V.D.; Sweeney, J.A.; Tamminga, C.A.; Keshavan, M.S.; Thaker, G.; et al. Differences in Resting-State Functional Magnetic Resonance Imaging Functional Network Connectivity Between Schizophrenia and Psychotic Bipolar Probands and Their Unaffected First-Degree Relatives. Biol. Psychiatry 2012, 71, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Antonucci, L.A.; Taurisano, P.; Fazio, L.; Gelao, B.; Romano, R.; Quarto, T.; Porcelli, A.; Mancini, M.; Di Giorgio, A.; Caforio, G.; et al. Association of familial risk for schizophrenia with thalamic and medial prefrontal functional connectivity during attentional control. Schizophr. Res. 2016, 173, 23–29. [Google Scholar] [CrossRef]
- Kim, M.; Kim, T.; Ha, M.; Oh, H.; Moon, S.-Y.; Kwon, J.S. Large-Scale Thalamocortical Triple Network Dysconnectivities in Patients with First-Episode Psychosis and Individuals at Risk for Psychosis. Schizophr. Bull. 2023, 49, 375–384. [Google Scholar] [CrossRef]
- Li, P.; Jing, R.-X.; Zhao, R.-J.; Shi, L.; Sun, H.-Q.; Ding, Z.; Lin, X.; Lu, L.; Fan, Y. Association between functional and structural connectivity of the corticostriatal network in people with schizophrenia and unaffected first-degree relatives. J. Psychiatry Neurosci. 2020, 45, 395–405. [Google Scholar] [CrossRef]
- Anteraper, S.A.; Collin, G.; Guell, X.; Scheinert, T.; Molokotos, E.; Henriksen, M.T.; Mesholam-Gately, R.; Thermenos, H.W.; Seidman, L.J.; Keshavan, M.S.; et al. Altered resting-state functional connectivity in young children at familial high risk for psychotic illness: A preliminary study. Schizophr. Res. 2020, 216, 496–503. [Google Scholar] [CrossRef]
- Cattarinussi, G.; Di Giorgio, A.; Wolf, R.C.; Balestrieri, M.; Sambataro, F. Neural signatures of the risk for bipolar disorder: A meta-analysis of structural and functional neuroimaging studies. Bipolar Disord. 2019, 21, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Cui, L.; Deng, W.; Ma, X.; Huang, C.; Jiang, L.; Wang, Y.; Collier, D.A.; Gong, Q.; Li, T. Voxel-based morphometric analysis on the volume of gray matter in bipolar I disorder. Psychiatry Res. 2011, 191, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Yalin, N.; Saricicek, A.; Hidiroglu, C.; Zugman, A.; Direk, N.; Ada, E.; Cavusoglu, B.; Er, A.; Isik, G.; Ceylan, D.; et al. Cortical thickness and surface area as an endophenotype in bipolar disorder type I patients and their first-degree relatives. NeuroImage Clin. 2019, 22, 101695. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.; Lenroot, R.; Overs, B.; Fullerton, J.; Leung, V.; Ridgway, K.; Stuart, A.; Frankland, A.; Levy, F.; Hadzi-Pavlovic, D.; et al. Accelerated cortical thinning and volume reduction over time in young people at high genetic risk for bipolar disorder. Psychol. Med. 2022, 52, 1344–1355. [Google Scholar] [CrossRef] [PubMed]
- Miola, A.; Cattarinussi, G.; Loré, M.L.; Ghiotto, N.; Collantoni, E.; Sambataro, F. Brain gyrification in bipolar disorder: A systematic review of neuroimaging studies. Brain Imaging Behav. 2022, 16, 2768–2784. [Google Scholar] [CrossRef]
- Sugihara, G.; Kane, F.; Picchioni, M.M.; Chaddock, C.A.; Kravariti, E.; Kalidindi, S.; Rijsdijk, F.; Toulopoulou, T.; Curtis, V.A.; McDonald, C.; et al. Effects of risk for bipolar disorder on brain function: A twin and family study. Eur. Neuropsychopharmacol. 2017, 27, 494–503. [Google Scholar] [CrossRef] [Green Version]
- Meluken, I.; Ottesen, N.M.; Phan, K.L.; Goldin, P.R.; Di Simplicio, M.; Macoveanu, J.; Siebner, H.R.; Kessing, L.V.; Vinberg, M.; Miskowiak, K.W. Neural response during emotion regulation in monozygotic twins at high familial risk of affective disorders. NeuroImage Clin. 2019, 21, 101598. [Google Scholar] [CrossRef]
- Ahmed, Y.B.; Al-Bzour, A.N.; Alzghoul, S.M.; Ibrahim, R.B.; Al-Khalili, A.A.; Al-Majali, G.N.; Hamza, A.I.; Al-Zamer, Y.S.; Alhayek, K.; Kofahi, R.; et al. Limbic and cortical regions as functional biomarkers associated with emotion regulation in bipolar disorder: A meta-analysis of neuroimaging studies. J. Affect. Disord. 2023, 323, 506–513. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Howes, O.; Bechdolf, A.; Borgwardt, S. Mapping vulnerability to bipolar disorder: A systematic review and meta-analysis of neuroimaging studies. J. Psychiatry Neurosci. 2012, 37, 170–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidari-Foroozan, M.; Cattariussi, G.; Sambataro, F.; Brambilla, P.; Delvecchio, G. Alterations in Resting-State Functional Connectivity in First-Degree Relatives of Patients with Bipolar Disorder. (unpublished).
- Cuesta, M.J.; Lecumberri, P.; Cabada, T.; Moreno-Izco, L.; Ribeiro, M.; López-Ilundain, J.M.; Peralta, V.; Lorente-Omeñaca, R.; Sánchez-Torres, A.M.; Gómez, M. Basal ganglia and ventricle volume in first-episode psychosis. A family and clinical study. Psychiatry Res. Neuroimaging 2017, 269, 90–96. [Google Scholar] [CrossRef]
- Nanda, P.; Tandon, N.; Mathew, I.T.; Giakoumatos, C.I.; Abhishekh, H.A.; Clementz, B.A.; Pearlson, G.D.; Sweeney, J.; Tamminga, C.A.; Keshavan, M.S. Local Gyrification Index in Probands with Psychotic Disorders and Their First-Degree Relatives. Biol. Psychiatry 2013, 76, 447–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugranyes, G.; de la Serna, E.; Ilzarbe, D.; Pariente, J.C.; Borras, R.; Romero, S.; Rosa, M.; Baeza, I.; Moreno, M.D.; Bernardo, M.; et al. Brain structural trajectories in youth at familial risk for schizophrenia or bipolar disorder according to development of psychosis spectrum symptoms. J. Child Psychol. Psychiatry 2021, 62, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Gromann, P.M.; Shergill, S.S.; de Haan, L.; Meewis, D.G.J.; Fett, A.-K.J.; Korver-Nieberg, N.; Krabbendam, L. Reduced brain reward response during cooperation in first-degree relatives of patients with psychosis: An fMRI study. Psychol. Med. 2014, 44, 3445–3454. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, I.S.; Mueller, B.; Ma, Y.; Shen, C.; Sponheim, S.R. Thalamocortical connectivity and its relationship with symptoms and cognition across the psychosis continuum. Psychol. Med. 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Schwarz, K.; Moessnang, C.; Schweiger, J.I.; Harneit, A.; Schneider, M.; Chen, J.; Cao, H.; Schwarz, E.; Witt, S.H.; Rietschel, M.; et al. Ventral Striatal–Hippocampus Coupling During Reward Processing as a Stratification Biomarker for Psychotic Disorders. Biol. Psychiatry 2022, 91, 216–225. [Google Scholar] [CrossRef]
- Wang, Z.; Meda, S.A.; Keshavan, M.S.; Tamminga, C.A.; Sweeney, J.A.; Clementz, B.A.; Schretlen, D.J.; Calhoun, V.D.; Lui, S.; Pearlson, G.D. Large-Scale Fusion of Gray Matter and Resting-State Functional MRI Reveals Common and Distinct Biological Markers across the Psychosis Spectrum in the B-SNIP Cohort. Front. Psychiatry 2015, 6, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Lui, S.; Yao, L.; Xiao, Y.; Keedy, S.K.; Reilly, J.L.; Keefe, R.S.; Tamminga, C.A.; Keshavan, M.S.; Pearlson, G.D.; Gong, Q.; et al. Resting-state brain function in schizophrenia and psychotic bipolar probands and their first-degree relatives. Psychol. Med. 2015, 45, 97–108. [Google Scholar] [CrossRef] [Green Version]
SCZ-RELs | BD-RELs | |
---|---|---|
Neuropsychological findings | ||
Intelligence |
|
|
Memory, attention, and executive functions |
|
|
Social cognition |
|
|
Neuroimaging findings | ||
Structural studies |
|
|
Functional studies | Cognitive tasks
| Cognitive tasks
|
Emotive tasks
| Emotive tasks
| |
Reward tasks
| Reward tasks
| |
Functional connectivity
| Functional connectivity
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattarinussi, G.; Gugliotta, A.A.; Sambataro, F. The Risk for Schizophrenia–Bipolar Spectrum: Does the Apple Fall Close to the Tree? A Narrative Review. Int. J. Environ. Res. Public Health 2023, 20, 6540. https://doi.org/10.3390/ijerph20156540
Cattarinussi G, Gugliotta AA, Sambataro F. The Risk for Schizophrenia–Bipolar Spectrum: Does the Apple Fall Close to the Tree? A Narrative Review. International Journal of Environmental Research and Public Health. 2023; 20(15):6540. https://doi.org/10.3390/ijerph20156540
Chicago/Turabian StyleCattarinussi, Giulia, Alessio A. Gugliotta, and Fabio Sambataro. 2023. "The Risk for Schizophrenia–Bipolar Spectrum: Does the Apple Fall Close to the Tree? A Narrative Review" International Journal of Environmental Research and Public Health 20, no. 15: 6540. https://doi.org/10.3390/ijerph20156540
APA StyleCattarinussi, G., Gugliotta, A. A., & Sambataro, F. (2023). The Risk for Schizophrenia–Bipolar Spectrum: Does the Apple Fall Close to the Tree? A Narrative Review. International Journal of Environmental Research and Public Health, 20(15), 6540. https://doi.org/10.3390/ijerph20156540