The Effects of Interior Materials on the Restorativeness of Home Environments
Abstract
:1. Introduction
- To find the potential interior materials, which can show a positive effect on restorativeness, except wood material.
- To learn the restorative potential of other natural interior materials by comparing wood and other natural interior materials.
- To systematically compare commonly used interior materials for restorative home environments.
2. Methods
2.1. Study Design
2.2. Measures and Participants
2.3. Statistical Analysis
- Preference: calculated by the total value of fascination and compatibility.
- Relaxation: calculated by the total value of being away and compatibility.
- Restorative potential: calculated by the total value of being away, extent, fascination, and compatibility.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koolhaas, J.; Bartolomucci, A.; Buwalda, B.; de Boer, S.; Flügge, G.; Korte, S.; Meerlo, P.; Murison, R.; Olivier, B.; Palanza, P.; et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 2011, 35, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Smith, K. Mental health: A world of depression. Nature 2014, 515, 180–181. [Google Scholar] [CrossRef] [Green Version]
- Marks, I.; Lader, M. Anxiety states (Anxiety neurosis): A review. J. Nerv. Ment. Dis. 1973, 156, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Burtscher, M.; Millet, G.P. (Indoor) isolation, stress, and physical inactivity: Vicious circles accelerated by COVID-19? Scand. J. Med. Sci. Sports 2020, 30, 1544–1545. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Qin, Q.; Basta, M.; Chen, B.; Li, Y. Psychological reactions and insomnia in adults with mental health disorders during the COVID-19 outbreak. BMC Psychiatry 2021, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Bornioli, A.; Subiza-Pérez, M. Restorative urban environments for healthy cities: A theoretical model for the study of restorative experiences in urban built settings. Landsc. Res. 2023, 48, 152–163. [Google Scholar] [CrossRef]
- Kaplan, S. The Restorative Environment: Nature and Human Experience. In The Role of Horticulture in Human Well Being and Social Development; Relf, D., Ed.; Timber Press: Portland OR, USA, 1992; pp. 134–142. [Google Scholar]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Herzog, T.R.; Black, A.M.; Fountaine, K.A.; Knotts, D.J. Reflection and attentional recovery as distinctive benefits of restorative environments. J. Environ. Psychol. 1997, 17, 165–170. [Google Scholar] [CrossRef]
- Collado, S.; Staats, H.; Corraliza, J.A.; Hartig, T. Restorative Environments and Health. In Handbook of Environmental Psychology and Quality of Life Research; Fleury-Bahi, G., Pol, E., Navarro, O., Eds.; Springer: Cham, Switzerland, 2016; pp. 127–148. [Google Scholar]
- Kaplan, S.; Bardwell, L.V.; Slakter, D.B. The museum as a restorative environment. Environ. Behav. 1993, 25, 725–742. [Google Scholar] [CrossRef]
- Hartig, T.; Mang, M.; Evans, G.W. Restorative effects of natural environment experiences. Environ. Behav. 1991, 23, 3–26. [Google Scholar] [CrossRef]
- Cho, K.S.; Um, S.H.; Lee, T.J. Perceived Restorativeness of Visits to Cultural Heritage Sites. Asia Pac. J. Tour. Res. 2015, 21, 1046–1069. [Google Scholar] [CrossRef]
- Shibata, S.; Suzuki, N. Effects of Indoor Foliage Plants on Subjects’ Recovery from Mental Fatigue. N. Am. J. Psychol. 2001, 3, 385–396. [Google Scholar]
- Kaplan, R. The nature of the view from home psychological benefits. Environ. Behav. 2001, 33, 507–542. [Google Scholar] [CrossRef]
- Dazkir, S.S.; Read, M.A. Furniture Forms and Their Influence on Our Emotional Responses Toward Interior Environments. Environ. Behav. 2012, 44, 722–732. [Google Scholar] [CrossRef]
- Fell, D.R. Wood in the Human Environment: Restorative Properties of Wood in the Built Indoor Environment. Doctoral Dissertation; University of British Columbia: Vancouver, BC, Canada, 2010. [Google Scholar]
- Bamai, Y.A.; Araki, A.; Kawai, T.; Tsuboi, T.; Saito, I.; Yoshioka, E.; Kanazawa, A.; Tajima, S.; Shi, C.; Tamakoshi, A.; et al. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings. Sci. Total Environ. 2014, 468, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, J.J.; Oie, L.; Nafstad, P.; Botten, G.; Samuelsen, S.O.; Magnus, P. Interior surface materials in the home and the development of bronchial obstruction in young children in Oslo, Norway. Am. J. Public. Health 1999, 89, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Watchman, M.; Potvin, A.; Demers, C.M.H. A post-occupancy evaluation of the influence of wood on environmental comfort. BioResources 2017, 12, 8704–8724. [Google Scholar] [CrossRef]
- Burnard, M.D.; Kutnar, A. Wood and human stress in the built indoor environment: A review. Wood Sci. Technol. 2015, 49, 969–986. [Google Scholar] [CrossRef]
- Sakuragawa, S.; Miyazaki, Y.; Kaneko, T.; Makita, T. Influence of wood wall panels on physiological and psychological responses. J. Wood Sci. 2005, 51, 136–140. [Google Scholar] [CrossRef]
- Tsunetsugu, Y.; Miyazaki, Y.; Sato, H. Physiological effects in humans induced by the visual stimulation of room interiors with different wood quantities. J. Wood Sci. 2007, 53, 11–16. [Google Scholar] [CrossRef]
- Sun, M.; Nakashima, T.; Yoshimura, Y.; Honden, A.; Nakagawa, T.; Saijo, H.; Watanabe, Y.; Ajimi, T.; Yasunari, S.; Yamada, Y.; et al. Effects and interaction of different interior material treatment and personal preference on psychological and physiological responses in living environment. J. Wood Sci. 2020, 66, 1–14. [Google Scholar] [CrossRef]
- Zanon, S.; Callegaro, N.; Albatici, R. A novel approach for the definition of an integrated visual quality index for residential buildings. Appl. Sci. 2019, 9, 1579. [Google Scholar] [CrossRef] [Green Version]
- Pisello, A.L.; Castaldo, V.L.; Rosso, F.; Piselli, C.; Ferrero, M.; Cotana, F. Traditional and Innovative Materials for Energy Efficiency in Buildings. KEM 2016, 678, 14–34. [Google Scholar] [CrossRef]
- Yu, C.J.; Kang, J. Environmental impact of acoustic materials in residential buildings. Build. Environ. 2009, 44, 2166–2175. [Google Scholar] [CrossRef]
- Mohanty, A.R. Improvement of interior acoustics and speech quality in small office room using natural material. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: Hamburg, Germany, 2016; Volume 253, pp. 1422–1428. [Google Scholar]
- Chung, T. Building interior noise and vibration isolation measurement. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Institute of Noise Control Engineering, Chicago, IL, USA, 26–29 August 2018; Volume 258, pp. 1096–1109. [Google Scholar]
- Bjerke, T.; Kaltenborn, B.P.; Vittersø, J. Cabin life: Restorative and affective aspects. In Multiple Dwelling and Tourism: Negotiating Place, Home and Identity; McIntyre, N., Williams, D.R., McHugh, K.E., Eds.; CAB International: Wallingford, CT, USA, 2006; pp. 87–102. [Google Scholar]
- Pitkänen, K.; Lehtimäki, J.; Puhakka, R. How do rural second homes affect human health and well-being? Review of potential impacts. Int. J. Environ. Res. Public Health 2020, 17, 6748. [Google Scholar] [CrossRef] [PubMed]
- Meagher, B.R.; Cheadle, A.D. Distant from others, but close to home: The relationship between home attachment and mental health during COVID-19. J. Environ. Psychol. 2020, 72, 101516. [Google Scholar] [CrossRef] [PubMed]
- Mody, M.; Suess, C.; Dogru, T. Restorative Servicescapes in Health Care: Examining the Influence of Hotel-Like Attributes on Patient Well-Being. Cornell Hosp. Q. 2020, 61, 19–39. [Google Scholar] [CrossRef]
- Brasche, S.; Bischof, W. Daily time spent indoors in German homes—Baseline data for the assessment of indoor exposure of German occupants. Int. J. Hyg. Environ. Health 2005, 208, 247–253. [Google Scholar] [CrossRef]
- Craig, C.M.; Neilson, B.N.; Altman, G.C.; Travis, A.T.; Vance, J.A. Applying restorative environments in the home office while sheltering-in-place. Hum. Factors 2022, 64, 1351–1362. [Google Scholar] [CrossRef]
- Nousiainen, M.; Lindroos, H.; Heino, P. Restorative Environment Design; Series A. Nr 76; Kymenlaakso University of Applied Sciences Publications: Kuvola, Finland, 2016. [Google Scholar]
- Godsey, L. Interior Design Materials and Specifications; A&C Black: London, UK, 2012. [Google Scholar]
- Wang, M.; Zhang, Q. Characterization decorative veneer patterns style by semantic differential method. Wood Res. 2015, 60, 219–226. [Google Scholar]
- Zade, N.H.; Yazdanfar, S.-A.; Norouzian-Maleki, S. Implicit Semantic Role of Material on the Quality of Living Space Using Semantic Differential Technique. Sage Open 2022, 12, 21582440221142730. [Google Scholar]
- Ridoutt, B.G.; Ball, R.D.; Killerby, S.K. Wood in the interior office environment: Effects on interpersonal perception. For. Prod. J. 2002, 52, 23. [Google Scholar]
- Bhise, V.D.; Hammoudeh, R.; Nagarajan, R.; Dowd, J.D.; Hayes, M. Towards Development of a Methodology to Measure Perception of Quality of Interior Materials. In SAE Transactions; JSTOR: New York, NY, USA, 2005; Volume 114, pp. 503–509. Available online: http://www.jstor.org/stable/44718928 (accessed on 9 July 2023).
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, MA, USA; New York, NY, USA, 1989. [Google Scholar]
- Hartig, T.; Korpela, K.; Evans, G.W.; Gärling, T. A measure of restorative quality in environments. Scand. Hous. Plan. Res. 1997, 14, 175–194. [Google Scholar] [CrossRef]
- Laumann, K.; Gärling, T.; Stormark, K.M. Rating scale measures of restorative components of environments. J. Environ. Psychol. 2001, 21, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Herzog, T.R.; Maguire, C.P.; Nebel, M.B. Assessing the restorative components of environments. J. Environ. Psychol. 2003, 23, 159–170. [Google Scholar] [CrossRef]
- Woolson, R.F. Wilcoxon signed-rank test. In Wiley Encyclopedia of Clinical Trials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 1–3. [Google Scholar]
- Rajaramakrishna, R.; Kaewkhao, J. Glass material and their advanced applications. KnE Social. Sci. 2019, 3, 796–807. [Google Scholar] [CrossRef]
- Masoudinejad, S.; Hartig, T. Window View to the Sky as a Restorative Resource for Residents in Densely Populated Cities. Environ. Behav. 2020, 52, 401–436. [Google Scholar] [CrossRef]
- Mahmoud, N.S.A.; el Samanoudy, G.; Jung, C. Simulating the natural lighting for a physical and mental Well-being in residential building in Dubai, UAE. Ain Shams Eng. J. 2023, 14, 101810. [Google Scholar] [CrossRef]
- Hefnawy, H.S. The aesthetic values of glass sculpture and its impact on contemporary artistic glass design “A comparative analytical study “. J. Archit. Arts Humanist. Sci. 2022, 7, 847–859. [Google Scholar] [CrossRef]
- Gulnick, J. The Psychology of Perception, Threshold, and Emotion in Interior Glass Design. Glass on Web. 2 December 2019. Available online: https://www.glassonweb.com/article/psychology-perception-threshold-and-emotion-interior-glass-design (accessed on 9 July 2023).
- Deriu, D. Skywalking in the city: Glass platforms and the architecture of vertigo. Emot. Space Soc. 2018, 28, 94–103. [Google Scholar] [CrossRef]
- Bedon, C.; Mattei, S. Facial expression-based experimental analysis of human reactions and psychological comfort on glass structures in buildings. Buildings 2021, 11, 204. [Google Scholar] [CrossRef]
- Butt, A. Vicarious vertigo: The emotional experience of height in the science fiction city. Emot. Space Soc. 2018, 28, 114–121. [Google Scholar] [CrossRef]
- Bedon, C. Pilot experiments for multi-criteria human comfort-driven structural glass design assessment. Proc. Challenging Glass Conf. 2022, 8. [Google Scholar] [CrossRef]
- Alapieti, T.; Mikkola, R.; Pasanen, P.; Salonen, H. The influence of wooden interior materials on indoor environment: A review. Eur. J. Wood Wood Prod. 2020, 78, 617–634. [Google Scholar] [CrossRef]
- Feist, W.C. Weathering and Protection of Wood; American Wood-Preservers Association: Kansas City, MO, USA, 1983; Volume 79, pp. 195–205. [Google Scholar]
- Brischke, C.; Alfredsen, G. Wood-water relationships and their role for wood susceptibility to fungal decay. Appl. Microbiol. Biotechnol. 2020, 104, 3781–3795. [Google Scholar] [CrossRef]
- Strobel, K.; Nyrud, A.Q.; Bysheim, K. Interior wood use: Linking user perceptions to physical properties. Scand. J. For. Res. 2017, 32, 798–806. [Google Scholar] [CrossRef]
- Song, S.S.; Wan, Q.; Wang, G.G. Eye movement evaluation of different wood interior decoration space. Wood Res. 2016, 61, 831–843. [Google Scholar]
- Koga, K.; Iwasaki, Y. Psychological and physiological effect in humans of touching plant foliage—Using the semantic differential method and cerebral activity as indicators. J. Physiol. Anthropol. 2013, 32, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Maleki, S.; Aghdaie, S.F.A.; Shahin, A.; Ansari, A. Investigating the relationship among the Kansei-based design of chocolate packaging, consumer perception, and willingness to buy. J. Mark. Commun. 2019, 26, 836–855. [Google Scholar] [CrossRef]
- Wastiels, L.; Schifferstein, H.N.J.; Wouters, I.; Heylighen, A. Touching materials visually: About the dominance of vision in building material assessment. Int. J. Des. 2013, 7, 31–41. [Google Scholar]
- Kim, H.-S.; Na, M.-H. The Evaluation of Texture Image and Preference according to the Structural Characteristics of Silk Fabric. Korean J. Hum. Ecol. 2009, 18, 137–143. [Google Scholar] [CrossRef]
Being away | Extent | Fascination | Compatibility |
---|---|---|---|
Ordinary–Special | Textured–Untextured | Luxury–Cheap | Durable–Nondurable |
Harmony–Clash | Colorful–Dull | Pleasing–Repelling | Solid–Flimsy |
Finished–Unfinished | Attractive–Unattractive | Changeable–Unchangeable | |
Patterned–Random |
Interior Wall Paint | Textile | Wood | Plastic | Glass | |
---|---|---|---|---|---|
M(Median) | M(Median) | M(Median) | M(Median) | M(Median) | |
Being away | 3.25(3.50) | 3.48(3.50) | 2.95(3.00) | 3.51(4.00) | 3.07(3.50) |
Extent | 3.83(4.00) | 3.45(3.75) | 3.66(3.75) | 3.92(4.00) | 3.84(4.00) |
Fascination | 3.35(3.67) | 3.29(3.33) | 3.10(3.33) | 4.24(4.33) | 3.47(3.67) |
Compatibility | 3.05(3.00) | 3.70(4.00) | 2.94(3.00) | 3.75(4.00) | 3.90(3.67) |
Metal | Tile | Brick | Stone | Concrete | |
Being away | 3.64(3.50) | 3.39(3.50) | 3.58(3.50) | 3.53(3.50) | 3.42(3.50) |
Extent | 4.18(4.00) | 3.54(3.75) | 3.92(4.00) | 4.04(4.00) | 4.48(4.25) |
Fascination | 3.79(4.00) | 3.65(4.00) | 4.20(4.33) | 3.73(4.00) | 4.18(4.33) |
Compatibility | 3.03(3.00) | 3.39(3.67) | 3.39(3.33) | 3.18(3.33) | 3.27(3.33) |
Textiles | Wood | Plastic | Glass | Metal | Tile | Brick | Stone | Concrete | ||
---|---|---|---|---|---|---|---|---|---|---|
Interior wall paint | Being away | −1.32 | −2.29 * | −1.60 | −1.35 | −2.55 * | −1.18 | −2.23 * | −1.69 | −1.10 |
Extent | −2.75 * | −1.48 | −0.61 | −0.04 | −2.78 * | −2.74 * | −0.61 | −0.88 | −4.69 * | |
Fascination | −0.40 | −1.72 | −5.83 * | −1.40 | −3.30 * | −3.08 * | −5.78 * | −2.97 * | −5.14 * | |
Compatibility | −4.32 * | −0.77 | −4.36 * | −5.03 * | −0.09 | −2.48 * | −2.27 * | −1.14 | −1.44 | |
Textiles | Being away | −3.59 * | −0.25 | −2.40 * | −0.96 | −0.59 | −0.78 | −0.23 | −0.40 | |
Extent | −1.48 | −3.11 * | −2.95 * | −4.35 * | −0.96 | −3.57 * | −3.87 * | −5.41 * | ||
Fascination | −2.02 * | −6.19 * | −1.73 | −3.65 * | −3.28 * | −5.72 * | −3.53 * | −5.50 * | ||
Compatibility | −5.64 * | −0.38 | −1.32 | −4.34 * | −2.66 * | −2.92 * | −3.46 * | −2.74 * | ||
Wood | Being away | −4.38 * | −1.21 | −4.77 * | −4.16 * | −4.80 * | −3.83 * | −3.22 * | ||
Extent | −2.29 * | −1.78 | −3.76 * | −1.21 | −2.72 * | −3.03 * | −5.64 * | |||
Fascination | −6.88 * | −3.81 * | −5.23 * | −4.70 * | −6.55 * | −5.40 * | −6.25 * | |||
Compatibility | −5.49 * | −6.18 * | −0.81 | −3.72 * | −3.38 * | −2.29 * | −2.18 * | |||
Plastic | Being away | −2.75 * | −0.83 | −1.26 | −0.69 | 0.00 | −0.86 | |||
Extent | −0.81 | −2.32 * | −3.42 * | −0.03 | −1.09 | −4.42 * | ||||
Fascination | −5.36 * | −4.02 * | −4.62 * | −0.45 | −3.97 * | −1.03 | ||||
Compatibility | −0.78 | −4.68 * | −2.66 * | −2.63 * | −4.08 * | −3.16 * | ||||
Glass | Being away | −4.13 * | −2.59 * | −3.83 * | −2.47 * | −2.42 * | ||||
Extent | −2.81 * | −3.06 * | −0.82 | −1.99 * | −5.33 * | |||||
Fascination | −2.54 * | −1.63 | −5.31 * | −2.55 * | −5.81 * | |||||
Compatibility | −5.48 * | −4.47 * | −3.54 * | −5.04 * | −4.11 * | |||||
Metal | Being away | −2.14 * | −0.36 | −1.01 | −2.10 * | |||||
Extent | −4.46 * | −1.77 | −0.95 | −2.45 * | ||||||
Fascination | −1.23 | −3.63 * | −0.24 | −3.95 * | ||||||
Compatibility | −3.28 * | −3.37 * | −1.58 | −2.36 * | ||||||
Tile | Being away | −2.18 * | −0.86 | −0.01 | ||||||
Extent | −3.02 * | −3.81 * | −5.98 * | |||||||
Fascination | −4.45 * | −0.55 | −4.11 * | |||||||
Compatibility | −0.23 | −2.05 * | −1.27 | |||||||
Brick | Being away | −0.67 | −1.84 | |||||||
Extent | −0.95 | −4.11 * | ||||||||
Fascination | −3.85 * | −0.56 | ||||||||
Compatibility | −2.03 * | −0.89 | ||||||||
Stone | Being away | −0.54 | ||||||||
Extent | −3.76 * | |||||||||
Fascination | −4.02 * | |||||||||
Compatibility | −0.85 |
Relaxation (being away, compatibility) | Glass ˃ Tile ˃ Metal Glass ˃ Brick Glass ˃ Stone Glass ˃ Concrete | |
Preference (fascination, compatibility) | Plastic ˃ Metal Plastic ˃ Tile ˃ Interior wall paint Plastic ˃ Stone ˃ Wood | Glass ˃ Wood Tile ˃ Wood Brick ˃ Wood Concrete ˃ Wood Textile ˃ Wood |
Brick ˃ Interior wall paint Brick ˃ Metal Brick ˃ Stone | ||
Restorative potential | Concrete ˃ Metal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Nagai, Y.; Gao, W.; Shen, T.; Fan, Y. The Effects of Interior Materials on the Restorativeness of Home Environments. Int. J. Environ. Res. Public Health 2023, 20, 6364. https://doi.org/10.3390/ijerph20146364
Zhao J, Nagai Y, Gao W, Shen T, Fan Y. The Effects of Interior Materials on the Restorativeness of Home Environments. International Journal of Environmental Research and Public Health. 2023; 20(14):6364. https://doi.org/10.3390/ijerph20146364
Chicago/Turabian StyleZhao, Jing, Yukari Nagai, Wei Gao, Tao Shen, and Youming Fan. 2023. "The Effects of Interior Materials on the Restorativeness of Home Environments" International Journal of Environmental Research and Public Health 20, no. 14: 6364. https://doi.org/10.3390/ijerph20146364