The Factors Associated with the Development of COVID-19 Symptoms among Employees in a U.S. Healthcare Institution
Abstract
:1. Introduction
2. Methods
2.1. Dataset Description
- Employee demographics: age, biological sex, race, ethnicity, height, weight, and BMI;
- Employee COVID-19 testing: the date of the COVID-19 test, the location of the testing lab, the date of the results, the date when the employee was notified about the test result, and the date when the manager was notified about the result;
- Employee exposure to the COVID-19 virus: whether the employee identified an exposure situation to the COVID-19 virus and the source of exposure;
- Onset date of COVID-19 symptoms, if any;
- Date of last day worked or being unable to work either at home or onsite;
- Whether the employee worked from home while on restrictions due to COVID-19 or COVID-19-like symptoms;
- Vaccination status, the number of vaccine doses received, and vaccine manufacturer (Moderna, Pifizer, Astra-Zeneca-Oxford, Janssen);
- Whether the employee needed oxygen at home;
- Whether the employee has any co-morbid conditions (e.g., high blood pressure, diabetes, stroke, immunological disorders).
2.2. Analysis
2.3. Strategies to Protect the Data
3. Results
3.1. Descriptive Statistics
3.2. Inferential Statistics
3.3. Regression Model Testing
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Center for Disease Control and Prevention COVID-19 Response Team. Characteristics of Health Care Personnel with COVID-19—United States, February 12–April 9, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 477–481. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Noreen, S.; Farooq, I.; Bugshan, A.; Vohra, F. Risk assessment of healthcare workers at the frontline against COVID-19. Pak. J. Med. Sci. 2020, 36, S99. [Google Scholar] [CrossRef]
- Cohen, J.; van der Meulen Rodgers, Y. Contributing factors to personal protective equipment shortages during the COVID-19 pandemic. Prev. Med. 2020, 141, 106263. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, M.; Liu, F. Reasons for healthcare workers becoming infected with novel coronavirus disease 2019 (COVID-19) in China. J. Hosp. Infect. 2020, 105, 100–101. [Google Scholar] [CrossRef] [Green Version]
- Center for Disease Control and Prevention. COVID Data Tracker: Cases & Deaths among Healthcare Personnel. 2023. Available online: https://covid.cdc.gov/covid-data-tracker/#health-care-personnel (accessed on 28 May 2023).
- Smallwood, N.; Harrex, W.; Rees, M.; Willis, K.; Bennett, C.M. COVID-19 infection and the broader impacts of the pandemic on healthcare workers. Respirology 2022, 2022, 411–426. [Google Scholar] [CrossRef]
- Havervall, S.; Rosell, A.; Phillipson, M.; Mangsbo, S.M.; Nilsson, P.; Hober, S.; Thålin, C. Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers. JAMA 2021, 325, 2015–2016. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention. Interim Clinical Considerations for Use of COVID-19 Vaccines Currently Approved or Authorized in the United States. 2022. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html (accessed on 28 May 2023).
- Dooling, K.; Marin, M.; Wallace, M.; McClung, N.; Chamberland, M.; Lee, G.M.; Talbot, H.K.; Romero, J.R.; Bell, B.P.; Oliver, S.E. The Advisory Committee on Immunization Practices’ Updated Interim Recommendation for Allocation of COVID-19 Vaccine—United States, December 2020. Morb. Mortal. Wkly. Rep. 2021, 69, 1657–1660. [Google Scholar] [CrossRef]
- Hagan, K.; Forman, R.; Mossialos, E.; Ndebele, P.; Hyder, A.A.; Nasir, K. COVID-19 vaccine mandate for healthcare workers in the United States: A social justice policy. Expert Rev. Vaccines 2022, 21, 37–45. [Google Scholar] [CrossRef]
- Razzaghi, H.; Srivastav, A.; de Perio, M.A.; Laney, A.S.; Black, C.L. Influenza and COVID-19 Vaccination Coverage Among Health Care Personnel — United States, 2021–22. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Sung, H.; Kim, S.H. COVID-19 breakthrough infections in vaccinated health care workers. N. Engl. J. Med. 2021, 385, 1629–1630. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention COVID-19 Vaccine Breakthrough Case Investigations Team. COVID-19 Vaccine Breakthrough Infections Reported to CDC—United States, January 1–April 30, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 792–793. Available online: https://www.cdc.gov/mmwr/volumes/70/wr/mm7021e3.htm?s_cid=mm7021e3_w (accessed on 28 May 2023). [CrossRef]
- Lin, S.; Deng, X.; Ryan, I.; Zhang, K.; Zhang, W.; Oghaghare, E.; Gayle, D.B.; Shaw, B. COVID-19 Symptoms and Deaths among Healthcare Workers, United States. Emerg. Infect. Dis. 2022, 28, 1624–1632. [Google Scholar] [CrossRef]
- Ejaz, H.; Alsrhani, A.; Zafar, A.; Javed, H.; Junaid, K.; Abdalla, A.E.; Abosalif, K.O.A.; Ahmed, Z.; Younas, S. COVID-19 and comorbidities: Deleterious impact on infected patients. J. Infect. Public Health 2020, 13, 1833–1839. [Google Scholar] [CrossRef]
- Pilishvili, T.; Gierke, R.; Fleming-Dutra, K.E.; Farrar, J.L.; Mohr, N.M.; Talan, D.A.; Krishnadasan, A.; Harland, K.K.; Smithline, H.A.; Hou, P.C.; et al. Effectiveness of mRNA COVID-19 vaccine among US health care personnel. N. Engl. J. Med. 2021, 385, e90. [Google Scholar] [CrossRef]
- Gao, Z.; Xu, Y.; Sun, C.; Wang, X.; Guo, Y.; Qiu, S.; Ma, K. A systematic review of asymptomatic infections with COVID-19. J. Microbiol. Immunol. Infect. 2021, 54, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- IBM Corporation. IBM SPSS Statistics for Windows; Version 29; IBM Corp.: Armonk, NY, USA, 2022. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; SAGE Publication Inc.: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- National Heart, Lung, and Blood Institute. What Is High Blood Pressure. Available online: https://www.nhlbi.nih.gov/health/high-blood-pressure (accessed on 24 March 2022).
- Center for Disease Control and Prevention. Assessing Your Weight. 2022. Available online: https://www.cdc.gov/healthyweight/assessing/index.html (accessed on 1 April 2023).
- Alimohamadi, Y.; Sepandi, M.; Taghdir, M.; Hosamirudsari, H. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. J. Prev. Med. Hyg. 2020, 61, E304–E312. [Google Scholar] [CrossRef] [PubMed]
- Dergaa, I.; Abubakera, M.; Souissi, A.; Mohammed, A.R.; Varmaa, A.; Musa, S.; Al Naama, A.; Mkaouer, B.; Saad, H.B. Age and clinical signs as predictors of COVID-19 symptoms and cycle threshold value. Libyan J. Med. 2022, 17, 2010337. [Google Scholar] [CrossRef]
- Nanda, A.; Vura, N.V.R.K.; Gravenstein, S. COVID-19 in older adults. Aging Clin. Exp. Res. 2020, 32, 1199–1202. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Carfì, A.; Martis, I.; Pais, C.; Ciciarello, F.; Rota, E.; Tritto, M.; Salerno, A.; Zazzara, M.B.; Martone, A.M.; et al. Prevalence and predictors of persistence of COVID-19 symptoms in older adults: A single-center study. J. Am. Med. Dir. Assoc. 2021, 22, 1840–1844. [Google Scholar] [CrossRef] [PubMed]
- Poletti, P.; Tirani, M.; Cereda, D.; Trentini, F.; Guzzetta, G.; Sabatino, G.; Marziano, V.; Castrofino, A.; Grosso, F.; Castillo, G.D.; et al. Association of age with likelihood of developing symptoms and critical disease among close contacts exposed to patients with confirmed SARS-CoV-2 infection in Italy. JAMA Netw. Open 2021, 4, e211085. [Google Scholar] [CrossRef] [PubMed]
- Canning, D.; Karra, M.; Dayalu, R.; Guo, M.; Bloom, D.E. The association between age, COVID-19 symptoms, and social distancing behavior in the United States. medRxiv 2020. preprint, submitted in 23 April 2020. [Google Scholar] [CrossRef]
- Masters, N.B.; Shih, S.F.; Bukoff, A.; Akel, K.B.; Kobayashi, L.C.; Miller, A.L.; Harapan, H.; Lu, Y.; Wagner, A.L. Social distancing in response to the novel coronavirus (COVID-19) in the United States. PLoS ONE 2020, 15, e0239025. [Google Scholar] [CrossRef]
- Kirby, T. Evidence mounts on the disproportionate effect of COVID-19 on ethnic minorities. Lancet Respir. Med. 2020, 8, 547–548. [Google Scholar] [CrossRef]
- Artiga, S.; Rae, M.; Pham, O.; Hamel, L.; Muñana, C. COVID-19 Risks and Impacts among Health Care Workers by Race/Ethnicity. 2020. Available online: https://www.kff.org/racial-equity-and-health-policy/issue-brief/covid-19-risks-impacts-health-care-workers-race-ethnicity/ (accessed on 1 April 2023).
- Park, J.; Johantgen, M.E. A cross-cultural comparison of symptom reporting and symptom clusters in heart failure. J. Transcult. Nurs. 2017, 28, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Abate, B.B.; Kassie, A.M.; Kassaw, M.W.; Aragie, T.G.; Masresha, S.A. Sex difference in coronavirus disease (COVID-19): A systematic review and meta-analysis. BMJ Open 2020, 10, e040129. [Google Scholar] [CrossRef]
- Bardel, A.; Wallander, M.A.; Wallman, T.; Rosengren, A.; Johansson, S.; Eriksson, H.; Svärdsudd, K. Age and sex related self-reported symptoms in a general population across 30 years: Patterns of reporting and secular trend. PLoS ONE 2019, 14, e0211532. [Google Scholar] [CrossRef] [Green Version]
- Al-Ani, A.H.; Prentice, R.E.; Rentsch, C.A.; Johnson, D.; Ardalan, Z.; Heerasing, N.; Garg, M.; Campbell, S.; Sasadeusz, J.; Macrae, F.A.; et al. Prevention, diagnosis and management of COVID-19 in the IBD patient. Aliment. Pharmacol. Ther. 2020, 52, 54–72. [Google Scholar] [CrossRef]
Variables | n (%) | Variables | n (%) |
---|---|---|---|
Age (years) | Exposure identified | ||
10–20 | 118 (0.6) | No | 6688 (33.2) |
20–30 | 5276 (26.4) | Yes | 8426 (41.8) |
30–40 | 6422 (32.1) | Total | 15,114 (75) |
40–50 | 3940 (19.7) | Missing | 5051 (25) |
50–60 | 2870 (14.3) | Exposure type | |
60–70 | 1313 (6.6) | Person with COVID-19 | 9617 (49.5) |
70–80 | 76 (0.4) | Not reporting exposure | 2577 (13.3) |
Total | 20,015 (100) | No known exposure | 5935 (30.5) |
Missing | 150 (0.7) | Under Investigation | 1303 (6.7) |
Race | Total | 19,432 (100) | |
African American | 3234 (16.0) | Missing | 733 (3.6) |
White | 14,935 (74.1) | Contact | |
Asian | 855 (4.2) | Community contact | 1462 (7.3) |
Native American or Alaska Native | 75 (0.4) | Patient Contact | 1726 (8.6) |
Native Hawaiian or Pacific | 29 (0.1) | Household Contact | 5379 (26.7) |
Mixed Race | 481 (2.4) | Coworker Contact | 2645 (13.1) |
Other | 175 (0.9) | No known Exposure/contact | 124 (0.6) |
Prefer not to answer | 622 (3.1) | Missing | 9233 (45.8) |
Missing | 49 (0.2) | Symptoms reported | |
Sex | No | 4574 (30.3) | |
Born Female | 15,910 (78.9) | Yes | 10,539 (69.7) |
Born Male | 4158 (20.6) | Total | 15,113 (100) |
Prefer not to Answer | 87 (0.4) | Missing | 5052 (25.1) |
Total | 20,155 (100) | Oxygen | |
Missing | 10 (0) | Not on oxygen | 13,773 (100) |
Co-morbid conditions | Yes, on oxygen | 9 (0.0) | |
High blood pressure ** | 2441 (12.1) | Total | 13,782 (100) |
Diabetes | 863 (4.3) | Missing | 6383 (31.7) |
Chronic Obstructive Pulmonary Disease (COPD) | 1256 (6.2) | Vaccinated | |
Immunosuppressive diseases | 282 (1.4) | No | 1981 (13.9) |
No high-risk diseases | 9620 (47.7) | Yes | 12,283 (86.1) |
Heart Failure | 178 (0.9) | Total | 14,270 (100) |
Immunosuppressive Medications | 295 (1.5) | Missing | 5895 (29.2) |
Chronic Kidney diseases | 96 (0.5) | Number of vaccine doses | |
Heart attack | 178 (0.9) | 0 | 24 (1.8) |
Abnormal Kidney lab results | 96 (0.5) | 1 | 55 (4) |
Peripheral Artery Diseases | 23 (0.1) | 2 | 524 (38.2) |
Aneurysms | 10 (0.0) | 3 | 558 (40.7) |
Angina | 178 (0.9) | 4 | 185 (13.5) |
Dialysis | 96 (0.5) | 5 | 23 (1.7) |
Stroke or Transient Ischemic Attack | 77 (0.4) | 6 | 1 (0.1) |
Heart block or heart diseases | 178 (0.9) | Total | 1370 (100) |
Missing | 6388 (31.7) | Missing | 18,795 (93.2) |
Employee Variables | Symptoms Reported | Chi-Square | p-Value | OR * | 95% CI (OR) ** | ||
---|---|---|---|---|---|---|---|
Yes | No | LL | UL | ||||
Age 20–30 | |||||||
20–30 years old | 2821 | 1098 | 12.45 | <0.001 | 1.16 | 1.07 | 1.25 |
Other age | 7635 | 3435 | 1.00 | ||||
Age 40–50 | |||||||
40–50 years old | 2064 | 983 | 7.39 | 0.007 | 0.89 | 0.82 | 0.97 |
Other age | 8392 | 3550 | 1.00 | ||||
African American race | |||||||
African American race | 1695 | 632 | 12.57 | <0.001 | 1.20 | 1.08 | 1.32 |
Other race | 8844 | 3942 | 1.00 | ||||
White race | |||||||
White race | 7760 | 3482 | 10.42 | 0.001 | 0.88 | 0.81 | 0.95 |
Other race | 2779 | 1092 | 1.00 | ||||
Biological sex | |||||||
Female | 8389 | 3544 | 8.87 | 0.01 | 1.14 | 1.04 | 1.24 |
Male | 2104 | 1010 | 1.00 | ||||
Diabetes | |||||||
Yes | 635 | 228 | 6.41 | 0.01 | 1.22 | 1.05 | 1.43 |
No | 9904 | 4346 | 1.00 | ||||
COPD | |||||||
Yes | 945 | 310 | 20.08 | <0.001 | 1.36 | 1.19 | 1.55 |
No | 9594 | 4264 | 1.00 | ||||
Immunosuppressive medication | |||||||
Yes | 223 | 72 | 4.89 | 0.03 | 1.35 | 1.03 | 1.77 |
No | 10,316 | 4502 | 1.00 | ||||
COVID-19 vaccinated | |||||||
No | 1445 | 467 | 16.33 | <0.001 | 1.26 | 1.13 | 1.41 |
Yes | 7756 | 3158 | 1.00 |
Employee Variables | Vaccinated | Chi-Square | p-Value | OR | 95% CI (OR) | ||
---|---|---|---|---|---|---|---|
Yes | No | LL | UL | ||||
Age 20–30 | |||||||
20–30 years old | 3025 | 595 | 27.26 | <0.001 | 0.76 | 0.68 | 0.84 |
Other age | 9179 | 1367 | 1.00 | ||||
African American race | |||||||
African American race | 1766 | 478 | 122.37 | <0.001 | 0.53 | 0.47 | 0.59 |
Other race | 10,517 | 1503 | 1.00 | ||||
White race | |||||||
White race | 9218 | 1318 | 64.07 | <0.001 | 1.51 | 1.37 | 1.68 |
Other race | 3065 | 663 | 1.00 | ||||
Biological Sex | |||||||
Born Female | 9670 | 1692 | 47.04 | <0.001 | 0.63 | 0.55 | 0.72 |
Born Male | 2613 | 289 | 1.00 | ||||
COPD | |||||||
Yes | 920 | 204 | 18.53 | <0.001 | 0.71 | 0.60 | 0.83 |
No | 11,363 | 1777 | 1.00 |
Variables | B | S.E. | Sig. | Exp (B) |
---|---|---|---|---|
Age 20 to 30 | 0.18 | 0.05 | <0.001 | 1.20 |
Age 40 to 50 | −0.12 | 0.05 | 0.02 | 0.89 |
African American | 0.003 | 0.08 | 0.97 | 1.00 |
White | −0.08 | 0.07 | 0.22 | 0.92 |
Sex (Female) | −0.15 | 0.33 | 0.64 | 0.86 |
Sex (Male) | −0.20 | 0.33 | 0.55 | 0.82 |
Diabetes | 0.09 | 0.09 | 0.29 | 1.10 |
COPD | 0.20 | 0.07 | 0.01 | 1.22 |
Immunosuppressive medicines | 0.26 | 0.15 | 0.09 | 1.30 |
BMI | 0.02 | 0.003 | <0.001 | 1.02 |
COVID-19 Vaccinated | −0.18 | 0.06 | 0.002 | 0.84 |
Constant | 0.82 | 0.34 | 0.02 | 2.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Alhaija, D.M.; Matibiri, P.; Brittingham, K.; Wulsin, V.; Davis, K.G.; Huston, T.; Gillespie, G. The Factors Associated with the Development of COVID-19 Symptoms among Employees in a U.S. Healthcare Institution. Int. J. Environ. Res. Public Health 2023, 20, 6100. https://doi.org/10.3390/ijerph20126100
Abu-Alhaija DM, Matibiri P, Brittingham K, Wulsin V, Davis KG, Huston T, Gillespie G. The Factors Associated with the Development of COVID-19 Symptoms among Employees in a U.S. Healthcare Institution. International Journal of Environmental Research and Public Health. 2023; 20(12):6100. https://doi.org/10.3390/ijerph20126100
Chicago/Turabian StyleAbu-Alhaija, Dania M., Paidamoyo Matibiri, Kyle Brittingham, Victoria Wulsin, Kermit G. Davis, Thomas Huston, and Gordon Gillespie. 2023. "The Factors Associated with the Development of COVID-19 Symptoms among Employees in a U.S. Healthcare Institution" International Journal of Environmental Research and Public Health 20, no. 12: 6100. https://doi.org/10.3390/ijerph20126100