Heart Rate Recovery (HRR) Is Not a Singular Predictor for Physical Fitness
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- HRR after 1 min to n = 1005 (620 male, 385 female)
- HRR after 3 min to n = 1009 (625 male, 384 female)
- HRR after 5 min to n = 1010 (626 male, 384 female)
4. Discussion
4.1. Heart Rate Recovery (HRR) Is Not a Singular Predictor for Physical Fitness
4.2. Heart Rate Recovery in Preventative Medicine
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lollgen, H.; Papadopoulou, T. Updated meta-analysis of prevention of cardiovascular mortality by regular physical activity. Eur. J. Prev. Cardiol. 2018, 25, 1861–1863. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Blume, S.W.; Huang, J.C.; Hammer, M.; Graf, T.R. The Economic Burden of Obesity by Glycemic Stage in the United States. Pharmacoeconomics 2015, 33, 735–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, N.; Teuner, C.M.; Hunger, M.; Holle, R.; Stark, R.; Laxy, M.; Hauner, H.; Peters, A.; Wolfenstetter, S.B. The Economic Burden of Obesity in Germany: Results from the Population-Based KORA Studies. Obes. Facts. 2016, 9, 397–409. [Google Scholar] [CrossRef]
- Lollgen, H.; Leyk, D. Prevention by physical activity. The relevance of physical fitness. Internist 2012, 53, 663–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koolhaas, C.M.; Dhana, K.; Schoufour, J.D.; Lahousse, L.; van Rooij, F.J.A.; Ikram, M.A.; Brusselle, G.; Tiemeier, H.; Franco, O.H. Physical activity and cause-specific mortality: The Rotterdam Study. Int. J. Epidemiol. 2018, 47, 1705–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyu, H.H.; Bachman, V.F.; Alexander, L.T.; Mumford, J.E.; Afshin, A.; Estep, K.; Veerman, J.L.; Delwiche, K.; Iannarone, M.L.; Moyer, M.L.; et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016, 354, i3857. [Google Scholar] [CrossRef] [Green Version]
- Franklin, B.A.; Cushman, M. Recent advances in preventive cardiology and lifestyle medicine: A themed series. Circulation 2011, 123, 2274–2283. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.M.; Thompson, A.M.; Blair, S.N.; Sallis, J.F.; Powell, K.E.; Bull, F.C.; Bauman, A.E. Sport and exercise as contributors to the health of nations. Lancet 2012, 380, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, E.F.; Hubert, H.B.; Lingala, V.B.; Fries, J.F. Reduced disability and mortality among aging runners: A 21-year longitudinal study. Arch. Intern. Med. 2008, 168, 1638–1646. [Google Scholar] [CrossRef]
- Bell, D.G.; Jacobs, I.; Lee, S.W. Blood lactate response to the Canadian Aerobic Fitness Test (CAFT). Can. J. Sport. Sci. 1992, 17, 14–18. [Google Scholar]
- Tomasits, J.H.P. Leistungsphysiologie; Springer: Berlin/Heidelberg, Germany, 2016; Volume 5. [Google Scholar]
- Darr, K.C.; Bassett, D.R.; Morgan, B.J.; Thomas, D.P. Effects of age and training status on heart rate recovery after peak exercise. Am. J. Physiol. 1988, 254, H340–H343. [Google Scholar] [CrossRef] [PubMed]
- Dixon, E.M.; Kamath, M.V.; McCartney, N.; Fallen, E.L. Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovasc. Res. 1992, 26, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Du, N.; Bai, S.; Oguri, K.; Kato, Y.; Matsumoto, I.; Kawase, H.; Matsuoka, T. Heart rate recovery after exercise and neural regulation of heart rate variability in 30-40 year old female marathon runners. J. Sports. Sci. Med. 2005, 4, 9–17. [Google Scholar] [PubMed]
- Daanen, H.A.; Lamberts, R.P.; Kallen, V.L.; Jin, A.; Van Meeteren, N.L. A systematic review on heart-rate recovery to monitor changes in training status in athletes. Int. J. Sports. Physiol. Perform. 2012, 7, 251–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheit, M.; Mendez-Villanueva, A.; Quod, M.J.; Poulos, N.; Bourdon, P. Determinants of the variability of heart rate measures during a competitive period in young soccer players. Eur. J. Appl. Physiol. 2010, 109, 869–878. [Google Scholar] [CrossRef]
- Schneider, C.; Hanakam, F.; Wiewelhove, T.; Doweling, A.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Heart Rate Monitoring in Team Sports-A Conceptual Framework for Contextualizing Heart Rate Measures for Training and Recovery Prescription. Front. Physiol. 2018, 9, 639. [Google Scholar] [CrossRef] [Green Version]
- Haraldsdottir, K.; Brickson, S.; Sanfilippo, J.; Dunn, W.; Watson, A. In-season changes in heart rate recovery are inversely related to time to exhaustion but not aerobic capacity in rowers. Scand. J. Med. Sci. Sports. 2018, 28, 418–424. [Google Scholar] [CrossRef]
- Mongin, D.; Chabert, C.; Courvoisier, D.S.; Garcia-Romero, J.; Alvero-Cruz, J.R. Heart rate recovery to assess fitness: Comparison of different calculation methods in a large cross-sectional study. Res. Sports. Med. 2021, 29, 1–14. [Google Scholar] [CrossRef]
- Bosquet, L.; Gamelin, F.X.; Berthoin, S. Reliability of postexercise heart rate recovery. Int. J. Sports. Med. 2008, 29, 238–243. [Google Scholar] [CrossRef]
- Hautala, A.J.; Rankinen, T.; Kiviniemi, A.M.; Makikallio, T.H.; Huikuri, H.V.; Bouchard, C.; Tulppo, M.P. Heart rate recovery after maximal exercise is associated with acetylcholine receptor M2 (CHRM2) gene polymorphism. Am. J. Physiol. Heart. Circ. Physiol. 2006, 291, H459–H466. [Google Scholar] [CrossRef]
- Lamberts, R.P.; Swart, J.; Noakes, T.D.; Lambert, M.I. A novel submaximal cycle test to monitor fatigue and predict cycling performance. Br. J. Sports. Med. 2011, 45, 797–804. [Google Scholar] [CrossRef]
- Nederend, I.; Schutte, N.M.; Bartels, M.; Ten Harkel, A.D.; de Geus, E.J. Heritability of heart rate recovery and vagal rebound after exercise. Eur. J. Appl. Physiol. 2016, 116, 2167–2176. [Google Scholar] [CrossRef] [Green Version]
- Cole, C.R.; Blackstone, E.H.; Pashkow, F.J.; Snader, C.E.; Lauer, M.S. Heart-rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med. 1999, 341, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Sato, H.; Hori, M.; Kusuoka, H.; Ozaki, H.; Yokoyama, H.; Takeda, H.; Inoue, M.; Kamada, T. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J. Am. Coll. Cardiol. 1994, 24, 1529–1535. [Google Scholar] [CrossRef] [Green Version]
- Dhoble, A.; Lahr, B.D.; Allison, T.G.; Kopecky, S.L. Cardiopulmonary fitness and heart rate recovery as predictors of mortality in a referral population. J. Am. Heart. Assoc. 2014, 3, e000559. [Google Scholar] [CrossRef] [Green Version]
- Aztatzi-Aguilar, O.G.; Vargas-Dominguez, C.; Debray-Garcia, Y.; Ortega-Romero, M.S.; Almeda-Valdes, P.; Aguilar-Salinas, C.A.; Naranjo-Meneses, M.A.; Mena-Orozco, D.A.; Lam-Chung, C.E.; Cruz-Bautista, I.; et al. Biochemical and Hematological Relationship with the Evaluation of Autonomic Dysfunction by Heart Rate Recovery in Patients with Asthma and Type 2 Diabetes. Diagnostics 2021, 11, 2187. [Google Scholar] [CrossRef]
- Andrade, G.N.; Rodrigues, T.; Takada, J.Y.; Braga, L.M.; Umeda, I.I.K.; Nascimento, J.A.; Pereira-Filho, H.G.; Grupi, C.J.; Salemi, V.M.C.; Jacob-Filho, W.; et al. Prolonged heart rate recovery time after 6-minute walk test is an independent risk factor for cardiac events in heart failure: A prospective cohort study. Physiotherapy 2022, 114, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Donnellan, E.; Wazni, O.M.; Chung, M.K.; Elshazly, M.B.; Chung, R.; Taigen, T.; Niebauer, M.; Kochar, A.; Hussain, M.; Patel, D.R.; et al. Attenuated heart rate recovery is associated with higher arrhythmia recurrence and mortality following atrial fibrillation ablation. Europace 2021, 23, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.Y.; Hong, W.J.; Jin, S.M.; Hur, K.Y.; Jee, J.H.; Bae, J.C.; Kim, J.H.; Lee, M.K. Delayed heart rate recovery after exercise predicts development of metabolic syndrome: A retrospective cohort study. J. Diabetes Investig. 2022, 13, 167–176. [Google Scholar] [CrossRef]
- Askin, L. Evaluation of heart rate recovery index in patients with coronary slow flow: Preliminary results. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7941–7946. [Google Scholar] [CrossRef]
- Roecker, K.; Striegel, H.; Dickhuth, H.H. Heart-rate recommendations: Transfer between running and cycling exercise? Int. J. Sports Med. 2003, 24, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Olsson, K.S.E.; Rosdahl, H.; Schantz, P. Interchangeability and optimization of heart rate methods for estimating oxygen uptake in ergometer cycling, level treadmill walking and running. BMC Med. Res. Methodol. 2022, 22, 55. [Google Scholar] [CrossRef] [PubMed]
- Larson, A.J. Variations in heart rate at blood lactate threshold due to exercise mode in elite cross-country skiers. J. Strength Cond. Res. 2006, 20, 855–860. [Google Scholar] [CrossRef] [PubMed]
Male (n = 765) | Female (n = 469) | ||||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
Age (years) | 46.61 | ±18.60 | 48.24 | ±19.36 | |
Height (cm) | 180.33 | ±7.93 | 166.25 | ±7.79 | |
Weight (kg) | 84.77 | ±13.53 | 67.12 | ±12.37 | |
Pmax/kg (W/kg) | 2.78 | ±1.02 | 2.16 | ±0.91 | |
Pmean (W) | Mean power | 141.19 | ±48.68 | 89.85 | ±35.44 |
HRmin | Minimum HR | 70.38 | ±12.41 | 73.30 | ±12.53 |
HRmean | Mean HR | 123.32 | ±15.94 | 124.00 | ±16.83 |
HRmax | Maximum HR | 170.13 | ±20.78 | 166.99 | ±20.93 |
HRpw1 | HR 1 min post workout | 144.85 | ±20.04 | 142.43 | ±22.63 |
HRpw3 | HR 3 min post workout | 119.26 | ±17.44 | 115.66 | ±20.04 |
HRpw5 | HR 5 min post workout | 108.59 | ±16.60 | 103.80 | ±18.57 |
HRR | HRmax − HR5min | 61.54 | ±15.02 | 63.19 | ±14.04 |
W/kg (IAT) (W/kg) | 1.98 | ±0.77 | 1.58 | ±0.64 | |
HR (IAT) | 141.12 | ±19.46 | 143.99 | ±18.66 |
coeff. | SE | p Value | coeff. | SE | p Value | coeff. | SE | p Value | |
---|---|---|---|---|---|---|---|---|---|
bias | 0.4755 | 0.1125 | <0.0001 | 0.4440 | 0.1111 | 0.0001 | 0.5221 | 0.1084 | <0.0001 |
gender | −0.3256 | 0.0357 | <0.0001 | −0.3231 | 0.0357 | <0.0001 | −0.3260 | 0.0359 | <0.0001 |
HRR1min | 0.0054 | 0.0032 | 0.0961 | ||||||
HRR3min | −0.0113 | 0.0033 | 0.0007 | −0.0088 | 0.0030 | 0.0030 | |||
HRR5min | −0.0159 | 0.0027 | <0.0001 | −0.0163 | 0.0026 | <0.0001 | −0.0223 | 0.0017 | <0.0001 |
R2 (adj.) | 0.219 | 0.217 | 0.210 | ||||||
SE (W/kg) | 0.519 | 0.512 | 0.522 |
coeff. | SE | p Value | |
---|---|---|---|
bias | 0.5154 | 0.1114 | <0.0001 |
gender | −0.3256 | 0.0357 | <0.0001 |
HRR1min | −0.0232 | 0.0028 | <0.0001 |
HRR3min − HRR1min | −0.0262 | 0.0023 | <0.0001 |
HRR5min − HRR3min | −0.0150 | 0.0026 | <0.0001 |
R2 (adj.) | 0.250 | ||
SE (W/kg) | 0.520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Römer, C.; Wolfarth, B. Heart Rate Recovery (HRR) Is Not a Singular Predictor for Physical Fitness. Int. J. Environ. Res. Public Health 2023, 20, 792. https://doi.org/10.3390/ijerph20010792
Römer C, Wolfarth B. Heart Rate Recovery (HRR) Is Not a Singular Predictor for Physical Fitness. International Journal of Environmental Research and Public Health. 2023; 20(1):792. https://doi.org/10.3390/ijerph20010792
Chicago/Turabian StyleRömer, Claudia, and Bernd Wolfarth. 2023. "Heart Rate Recovery (HRR) Is Not a Singular Predictor for Physical Fitness" International Journal of Environmental Research and Public Health 20, no. 1: 792. https://doi.org/10.3390/ijerph20010792