The Association of IL-17 and PlGF/sENG Ratio in Pre-Eclampsia and Adverse Pregnancy Outcomes
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Favel, J.P. Hypertension during pregnancy. Epidemiology, definition. Presse Med. 2016, 4982, 30134–30138. [Google Scholar]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. 2019, 145 (Suppl. S1), 1–33. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 2018, 218, S745–S761. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.; Rossi, C.; Lees, M.; Peebles, D.; Brocklehurst, P.; Martin, J.; Hansson, S.R.; Hecher, K.; Marsal, K.; Figueras, F.; et al. Achieving orphan designation for placental insufficiency: Annual incidence estimations in Europe. EVERREST Consortium. BJOG 2019, 126, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.G.; Grobe, J.L.; McIntosh, J.J. Vascular Dysfunction in Preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Fantone, S.; Mazzucchelli, R.; Giannubilo, S.R.; Ciavattini, A.; Marzioni, D.; Tossetta, G. AT-rich interactive domain 1A protein expression in normal and pathological pregnancies complicated by preeclampsia. Histochem. Cell. Biol. 2020, 154, 339–346. [Google Scholar] [CrossRef]
- Tenório, M.B.; Ferreira, R.C.; Moura, F.A.; Bueno, N.B.; De Oliveira, A.C.M.; Goulart, M.O.F. Cross-Talk between Oxidative Stress and Inflammation in Preeclampsia. Oxid. Med. Cell. Longev. 2019, 2019, 823–827. [Google Scholar] [CrossRef]
- Amaral, L.M.; Wallace, K.; Owens, M.; LaMarca, B. Pathophysiology and Current Clinical Management of Preeclampsia. Curr. Hypertens. Rep. 2017, 19, 61. [Google Scholar] [CrossRef]
- Saito, S.; Nakashima, A.; Shima, T.; Ito, M. Th1/Th2/Th17 and Regulatory T-Cell Paradigm in Pregnancy. Am. J. Reprod. Immunol. 2010, 63, 601–610. [Google Scholar] [CrossRef]
- Santner-Nanan, B.; Peek, M.J.; Khanam, R.; Richarts, L.; Zhu, E.; Groth, B.F.D.S.; Nanan, R. Systemic increase in the ratio between Foxp3+ and IL-17- producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J. Immunol. 2009, 183, 7023–7030. [Google Scholar] [CrossRef]
- Darmochwal-Kolarz, D.; Kludka-Sternik, M.; Tabarkiewicz, J.; Kolarz, B.; Rolinski, J.; Leszczynska-Gorzelak, B.; Oleszczuk, J. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J. Reprod. Immunol. 2012, 93, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Nakashima, A.; Hidaka, T.; Okabe, M.; Bac, N.D.; Ina, S.; Yoneda, S.; Shiozaki, A.; Sumi, S.; Tsuneyama, K.; et al. A role for IL-17 in induction of an inflammation at the fetomaternal interface in preterm labour. J. Reprod. Immunol. 2010, 84, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, A.; Ito, M.; Shima, T.; Bac, N.D.; Hidaka, T.; Saito, S. Accumulation of IL-17-positive cells in decidua of inevitable abortion cases. Am. J. Reprod. Immunol. 2010, 64, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Gaffen, S.L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 2009, 9, 556–567. [Google Scholar] [CrossRef]
- Nagai, A.; Sado, T.; Naruse, K. Antiangiogenic-Induced Hypertension: The Molecular Basis of Signaling Network. Gynecol. Obstet. Investig. 2012, 73, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Powe, C.E.; Levine, R.J.; Karumanchi, S.A. Preeclampsia, a disease of the maternal endothelium: The role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 2011, 123, 2856–2869. [Google Scholar] [CrossRef] [PubMed]
- Rizov, M.; Andreeva, P.; Dimova, I. Molecular regulation and role of angiogenesis in preeclampsia. Taiwan J. Obstet. Gynecol. 2017, 56, 127–132. [Google Scholar] [CrossRef]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Lehnen, H.; Mosblech, N.; Reineke, T.; Puchooa, A.; Menke-Möllers, I.; Zechner, U.; Gembruch, U. Prenatal Clinical Assessment of sFlt-1 (Soluble fms-like Tyrosine Kinase-1)/PlGF (Placental Growth Factor) Ratio as a Diagnostic Tool for Preeclampsia, Pregnancy-induced Hypertension, and Proteinuria. Geburtshilfe Frauenheilkd. 2013, 73, 440–445. [Google Scholar] [CrossRef]
- Autiero, M.; Luttun, A.; Tjwa, M.; Carmeliet, P. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: Novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J. Thromb. Haemost. 2003, 1, 1356–1370. [Google Scholar] [CrossRef]
- Luttun, A.; Tjwa, M.; Moons, L.; Wu, Y.; Angelillo-Scherrer, A.; Liao, F.; Nagy, J.; Hooper, A.; Priller, J.; De Klerck, B.; et al. Revascularization of ischemic tissues by PIGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 2002, 8, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.R.; Borges-Canha, M.; Cardoso, R.; Neves, J.S.; Castro-Ferreira, R.; Leite-Moreira, A. Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology 2020, 71, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Schoonderwoerd, M.J.A.; Goumans, M.T.H.; Hawinkels, L.J.A.C. Endoglin: Beyond the Endothelium. Biomolecules 2020, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Pericacho, M.; Bachelot-Loza, C.; Pidard, D.; Gaussem, P.; Poirault-Chassac, S.; Blanco, F.J.; Langa, C.; González-Manchón, C.; Novoa, J.M.L.; et al. Humane endoglin as a potential new partner involved in platelet-endothelium interactions. Cell. Mol. Life Sci. 2018, 75, 1269–1284. [Google Scholar] [CrossRef]
- Gallardo-Vara, E.; Blanco, F.J.; Roqué, M.; Friedman, S.L.; Suzuki, T.; Botella, L.M.; Bernabeu, C. Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury. Angiogenesis 2016, 19, 155–171. [Google Scholar] [CrossRef]
- Aristorena, M.; Gallardo-Vara, E.; Vicen, M.; Casas-Engel, M.D.L.; Ojeda-Fernandez, L.; Nieto, C.; Blanco, F.J.; Valbuena-Diez, A.C.; Botella, L.M.; Nachtigal, P.; et al. MMP-12, secreted by pro-inflammatory macrophages, targets endoglin in human macrophages and endothelial cells. Int. J. Mol. Sci. 2019, 20, 3107. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, e237–e260. [Google Scholar] [CrossRef]
- Steinborn, A.; Haensch, G.M.; Mahnke, K.; Schmitt, E.; Toermer, A.; Meuer, S.; Sohn, C. Distinct subsets of regulatory T cells during pregnancy: Is the imbalance of these subsets involved in the pathogenesis of preeclampsia? Clin. Immunol. 2008, 129, 401–412. [Google Scholar] [CrossRef]
- Sasaki, Y.; Darmochwal-Kolarz, D.; Suzuki, D.; Sakai, M.; Ito, M.; Shima, T.; Shiozaki, A.; Rolinski, J.; Saito, S. Proportion of peripheral blood and decidual CD4(+) CD25(bright) regulatory T cells in pre-eclampsia. Clin. Exp. Immunol. 2007, 149, 139–145. [Google Scholar] [CrossRef]
- Martínez-García, E.A.; Chávez-Robles, B.; Sánchez-Hernández, P.E.; Atahualpa, L.N.; Martín-Máquez, B.T.; Muñoz-Gómez, A.; González-López, L.; Gámez-Nava, J.I.; Salazar-Páramo, M.; Dávalos-Rodríguez, I.; et al. IL-17 increased in the third trimester in healthy women with term labor. Am. J. Reprod. Immunol. 2011, 65, 99–103. [Google Scholar] [CrossRef]
- Dhillion, P.; Wallace, K.; Herse, F.; Scott, J.; Wallukat, G.; Heath, J.; Mosely, J.; Martin, J.N.; Dechend, R.; Lamarca, B. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R353–R358. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.J.; Lam, C.; Qian, C.; Yu, K.F.; Maynard, S.E. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med. 2006, 355, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Lisonkova, S.; Joseph, K.S. Incidence of preeclampsia: Risk factors and outcomes associated with early-versus late-onset disease. Am. J. Obstet. Gynecol. 2013, 209, 544.e1–544.e12. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.J.; Johnson, D.D. Soluble endoglin as a second-trimester marker for preeclampsia. Am. J. Obstet. Gynecol. 2007, 197, 174.e1–174.e5. [Google Scholar] [CrossRef] [PubMed]
- Panusunan Lubis, M.; Hariman, H.; Lumbanraja, S.N.; Bachtiar, A. The Role of Placental Growth Factor, Soluble Endoglin, and Uterine Artery Diastolic Notch to Predict the Early Onset of Preeclampsia. Open Access Maced. J. Med. Sci. 2019, 7, 1153–1159. [Google Scholar] [CrossRef]
- Chaiworapongsa, T.; Romero, R.; Whitten, A.E.; Korzeniewski, S.J.; Chaemsaithong, P.; Hernandez-Andrade, E.; Yeo, L.; Hassan, S.S. The Use of Angiogenic Biomarkers in Maternal Blood to Identify Which SGA Fetuses Will Require a Preterm Delivery and Mothers Who Will Develop Pre-Eclampsia. J. Matern. Fetal Neonatal Med. 2016, 29, 1214–1228. [Google Scholar] [CrossRef]
- Rana, S.; Powe, C.E.; Salahuddin, S.; Verlohren, S.; Perschel, F.H.; Levine, R.J.; Lim, K.H.; Wenger, J.B.; Thadhani, R.; Karumanchi, S.A. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation 2012, 125, 911–919. [Google Scholar] [CrossRef]
- Venkatesha, S.; Toporsian, M.; Lam, C.; Hanai, J.; Mammoto, T. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 2006, 12, 642–649. [Google Scholar] [CrossRef]
- Leaños-Miranda, A.; Navarro-Romero, C.S.; Sillas-Pardo, L.J.; Ramírez-Valenzuela, K.L.; Isordia-Salas, I.; Jiménez-Trejo, L.M. Soluble Endoglin As a Marker for Preeclampsia, Its Severity, and the Occurrence of Adverse Outcomes. Hypertension 2019, 74, 991–997. [Google Scholar] [CrossRef]
- Van Walraven, C.; Mamdani, M.; Katib, Y. Risk of subsequent thromboembolism for patients with pre-eclampsia. BMJ 2003, 326, 791. [Google Scholar] [CrossRef]
- Oladosu-Olayiwola, O.; Olawumi, H.; Babatunde, A.; Ijaiya, M.; Durotoye, I.; Biliaminu, S.; Ibraheem, R. Fibrinolytic Proteins of Normal Pregnancy and Pre-Eclamptic Patients in North West Nigeria. Afr. Health Sci. 2018, 18, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Hammerova, L.; Chabada, J.; Drobny, J.; Batorova, A. Longitudinal Evaluation of Markers of Hemostasis in Pregnancy. Bratisl. Lek. Listy 2014, 115, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Hunt, B.J.; Missfelder-Lobos, H.; Parra-Cordero, M.; Fletcher, O.; Parmar, K.; Lefkou, E.; Lees, C.C. Pregnancy Outcome and Fibrinolytic, Endothelial and Coagulation Markers in Women Undergoing Uterine Artery Doppler Screening at 23 Weeks. J. Thromb. Haemost. 2009, 7, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Helmo, F.R.; Lopes, A.M.M.; Carneiro, A.C.D.M.; Campos, C.G.; Silva, P.B.; Monteiro, M.L.G.D.R.; Rocha, L.P.; dos Reis, M.A.; Etchebehere, R.M.; Machado, J.R.; et al. Angiogenic and Antiangiogenic Factors in Preeclampsia. Pathol. Res. Pract. 2018, 214, 7–14. [Google Scholar] [CrossRef] [PubMed]
I Trimester | II Trimester | III Trimester | PE | Statistical Significance | |
---|---|---|---|---|---|
Age (years) | 30 ± 5 | 30 ± 5 | 30 ± 5 | 33 ± 4 | NS |
First pregnancy | 17 | 17 | 17 | 21 | NS |
Subsequent pregnancy | 27 | 27 | 27 | 12 | NS |
The duration of gestation (days) | - | - | 275 ± 18 | 245 ± 35 | <0.005 |
Time of blood collection (weeks of gestation) | 10 ± 2 | 20 ± 2 | 32 ± 2 | 32 ± 3 | NS |
Birth weight (g) | - | - | 3210 ± 375 | 2278 ± 976 | <0.0001 |
Systolic blood pressure (mmHg) | 120 ± 25 | 110 ± 15 | 112 ± 13 | 155 ± 14 | <0.001 |
Diastolic blood pressure (mmHg) | 85 ± 10 | 78 ± 15 | 73 ± 9 | 102 ± 10 | <0.001 |
Total protein (g/dL) | 7.6 ± 0.5 | 7.5 ± 0.4 | 6.4 ± 0.3 | 5.8 ± 0.65 | <0.01 |
Pulsatile index (PI) in umbilical artery (UA) | - | - | 0.85 ± 0.25 | 0.62 ± 0.20 | <0.05 |
Proteinuria (g/L) | - | - | - | 545 ± 130 | - |
ALAT (U/L) | 18 ± 6 | 21 ± 5 | 22 ± 8 | 44 ± 12 | <0.05 |
Platelets (103/μL) | 250 ± 65 | 240 ± 55 | 233 ± 60 | 205 ± 75 | <0.05 |
Prothrombin time (s) | 12.0 ± 0.4 | 11.0 ± 0.4 | 11.0 ± 0.4 | 10.2 ± 0.5 | <0.05 |
D-dimer (μg/L) | 457 ± 180 | 565 ± 210 | 957 ± 240 | 1567 ± 1100 | <0.05 |
Fibrinogen (g/L) | 3.8 ± 0.8 | 4.5 ± 0.7 | 4.9 ± 0.9 | 4.5 ± 1.1 | NS |
Kalium (mmol/L) | 3.8 ± 0.4 | 3.9 ± 0.3 | 4.0 ± 0.3 | 4.2 ± 0.4 | NS |
Natrium (mmol/L) | 137 ± 1.5 | 135 ± 1.4 | 135 ± 1.6 | 138 ± 3.4 | NS |
Glomerular filtration rate (mL/min/1.73 m2) | 101 ± 30.5 | 102 ± 28.5 | 104 ± 32.3 | 87.8 ± 37.8 | <0.05 |
Creatinine (mg/dL) | 0.5 ± 0.3 | 0.5 ± 0.4 | 0.6 ± 0.3 | 0.8 ± 0.3 | NS |
Uric acid (mg/dL) | 3.8 ± 0.5 | 3.9 ± 0.5 | 3.9 ± 0.8 | 5.9 ± 1.6 | <0.005 |
Urea (mg/dL) | 16.1 ± 4.8 | 17.8 ± 5.0 | 19.1 ± 5.2 | 22.45 ± 15 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darmochwal-Kolarz, D.; Chara, A. The Association of IL-17 and PlGF/sENG Ratio in Pre-Eclampsia and Adverse Pregnancy Outcomes. Int. J. Environ. Res. Public Health 2023, 20, 768. https://doi.org/10.3390/ijerph20010768
Darmochwal-Kolarz D, Chara A. The Association of IL-17 and PlGF/sENG Ratio in Pre-Eclampsia and Adverse Pregnancy Outcomes. International Journal of Environmental Research and Public Health. 2023; 20(1):768. https://doi.org/10.3390/ijerph20010768
Chicago/Turabian StyleDarmochwal-Kolarz, Dorota, and Anita Chara. 2023. "The Association of IL-17 and PlGF/sENG Ratio in Pre-Eclampsia and Adverse Pregnancy Outcomes" International Journal of Environmental Research and Public Health 20, no. 1: 768. https://doi.org/10.3390/ijerph20010768
APA StyleDarmochwal-Kolarz, D., & Chara, A. (2023). The Association of IL-17 and PlGF/sENG Ratio in Pre-Eclampsia and Adverse Pregnancy Outcomes. International Journal of Environmental Research and Public Health, 20(1), 768. https://doi.org/10.3390/ijerph20010768