Direct Air Capture of CO2 through Carbonate Alkalinity Generated by Phytoplankton Nitrate Assimilation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Culture Experiments
2.2. Simples Analysis
2.3. Working Principle
3. Results and Discussions
3.1. Carbonate Alkalinity
3.2. Carbonate Mineralization
3.3. CO2 Trapping Methodology
3.4. Cost Analysis
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B.; et al. Global Carbon Budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef] [Green Version]
- Peters, G.P.; Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Friedlingstein, P.; Ilyina, T.; Jackson, R.B.; Joos, F.; Korsbakken, J.I.; McKinley, G.A. Towards real-time verification of CO2 emissions. Nat. Clim. Chang. 2017, 7, 848–850. [Google Scholar] [CrossRef] [Green Version]
- Figueres, C.; Le Quéré, C.; Mahindra, A.; Bäte, O.; Whiteman, G.; Peters, G.; Guan, D. Emissions are still rising: Ramp up the cuts. Nature 2018, 564, 27–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Global Warming of 1.5 °C An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea., J., Shukla, P.R., Pirani, A., Moufouma-Okia, S., Péan, C., Pidcock, R., Eds.; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; Le Quéré, C.; et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef] [Green Version]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef] [Green Version]
- Keith, D.W. Why capture CO2 from the atmosphere? Science 2009, 325, 1654–1655. [Google Scholar] [CrossRef]
- House, K.Z.; Baclig, A.C.; Ranjan, M.; van Nierop, E.A.; Wilcox, J.; Herzog, H.J. Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl. Acad. Sci. USA 2011, 108, 20428. [Google Scholar] [CrossRef] [Green Version]
- Renforth, P.; Henderson, G. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 2017, 55, 636–674. [Google Scholar] [CrossRef]
- Mai, B.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Dowell, N.M. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar]
- Council, N.R. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration; The National Academies Press: Washington, DC, USA, 2015; p. 154. [Google Scholar] [CrossRef]
- Berges, J.A.; Franklin, D.J.; Harrison, P.J. Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 2001, 37, 1138–1145. [Google Scholar] [CrossRef]
- Peter, G.; Brewer, J.C.G. Alkalinity changes generated by phytoplankton growth. Limnol. Ocean. 1976, 21, 108–117. [Google Scholar]
- Tsai, D.D.-W.; Chen, P.H.; Ramaraj, R. The potential of carbon dioxide capture and sequestration with algae. Ecol. Eng. 2017, 98, 17–23. [Google Scholar] [CrossRef]
- Wolf-Gladrow, D.A.; Zeebe, R.E.; Klaas, C.; Körtzinger, A.; Dickson, A.G. Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Mar. Chem. 2007, 106, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Raven, J.A.; Wollenweber, B.; Handley, L.L. A comparison of ammonium and nitrate as nitrogen sources for photolithotrophs. New Phytol. 1992, 121, 19–32. [Google Scholar] [CrossRef]
- Møhlenberg, F. Regulating mechanisms of phytoplankton growth and biomass in a shallow estuary. Ophelia 1995, 42, 239–256. [Google Scholar] [CrossRef]
- Ge, S.; Smith, R.G.; Jacovides, C.P.; Kramer, M.G.; Carruthers, R.I. Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California. Theor. Appl. Climatol. 2011, 105, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, R.J. Modelling photosynthetic photon flux density and maximum potential gross photosynthesis. Photosynthetica 2010, 48, 596–609. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations: U.S. Geological Survey Techniques and Methods; USGS: Cheboygan, MI, USA, 2013. [Google Scholar]
- Jansson, C.; Wullschleger, S.D.; Kalluri, U.C.; Tuskan, G.A. Phytosequestration: Carbon Biosequestration by Plants and the Prospects of Genetic Engineering. BioScience 2010, 60, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef] [Green Version]
- Hoang, V.; Delatolla, R.; Abujamel, T.; Mottawea, W.; Gadbois, A.; Laflamme, E.; Stintzi, A. Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1 °C. Water Res. 2013, 49, 215–224. [Google Scholar] [CrossRef]
- Torkaman, M.; Borghei, S.M.; Tahmasebian, S.; Andalibi, M.R. Nitrogen removal from high organic loading wastewater in modified Ludzack–Ettinger configuration MBBR system. Water Sci. Technol. 2015, 72, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Lebedeva, E.V.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Jehmlich, N.; Palatinszky, M.; Vierheilig, J.; Bulaev, A.; et al. Complete nitrification by Nitrospira bacteria. Nature 2015, 528, 504–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Noorden, R. Carbon sequestration- Buried trouble. Nature 2010, 463, 871–873. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Jiang, Y.; Song, X.; Hallerman, E.; Peng, L.; Dong, D.; Ma, T.; Zhai, J.; Li, W. Ammonia-oxidizing bacteria and archaea within biofilters of a commercial recirculating marine aquaculture system. AMB Express 2018, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Sabine, C.L.; Tanhua, T. Estimation of Anthropogenic CO2 Inventories in the Ocean. Annu. Rev. Mar. Sci. 2010, 2, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatiwala, S.; Primeau, F.; Hall, T. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 2009, 462, 346–349. [Google Scholar] [CrossRef] [Green Version]
- Baciocchi, R.; Storti, G.; Mazzotti, M. Process design and energy requirements for the capture of carbon dioxide from air. Chem. Eng. Process. Process. Intensif. 2006, 45, 1047–1058. [Google Scholar] [CrossRef]
- Takahashi, T.; Wallace, S.; Bainbridge, E. The alkalinity and total carbon dioxide concentration in the world oceans. Carbon Cycle Model. 1981, 16, 271–286. [Google Scholar]
- Albright, R.; Caldeira, L.; Hosfelt, J.; Kwiatkowski, L.; Maclaren, J.K.; Mason, B.M.; Nebuchina, Y.; Ninokawa, A.; Pongratz, J.; Ricke, K.L.; et al. Reversal of ocean acidification enhances net coral reef calcification. Nature 2016, 531, 362–365. [Google Scholar] [CrossRef]
- Zakem, E.J.; Al-Haj, A.; Church, M.J.; van Dijken, G.L.; Dutkiewicz, S.; Foster, S.Q.; Fulweiler, R.W.; Mills, M.M.; Follows, M.J. Ecological control of nitrite in the upper ocean. Nat. Commun. 2018, 9, 1206. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.Y.; Akimoto, H.; Ohara, T. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Glob. Chang. Biol. 2003, 9, 1080–1096. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, M.; Herzog, H.J. Feasibility of air capture. Energy Procedia 2011, 4, 2869–2876. [Google Scholar] [CrossRef] [Green Version]
- Zeman, F. Reducing the Cost of Ca-Based Direct Air Capture of CO2. Environ. Sci. Technol. 2014, 48, 11730–11735. [Google Scholar] [CrossRef]
- Keith, D.W.; Holmes, G.; St. Angelo, D.; Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule 2018, 2, 1573–1594. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Special Report on Carbon Dioxide Capture and Storage; IPCC: Geneva, Switzerland, 2005; p. 431. [Google Scholar]
- Li, C.; Shi, H.; Cao, Y.; Kuang, Y.; Zhang, Y.; Gao, D.; Sun, L. Modeling and optimal operation of carbon capture from the air driven by intermittent and volatile wind power. Energy 2015, 87, 201–211. [Google Scholar] [CrossRef]
- Sinha, A.; Darunte, L.A.; Jones, C.W.; Realff, M.J.; Kawajiri, Y. Systems Design and Economic Analysis of Direct Air Capture of CO2 through Temperature Vacuum Swing Adsorption Using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF Adsorbents. Ind. Eng. Chem. Res. 2016, 56, 750–764. [Google Scholar] [CrossRef]
- Fasihi, M.; Efimova, O.; Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 2019, 224, 957–980. [Google Scholar] [CrossRef]
- Hernandez-Sancho, F.; Molinos-Senante, M.; Sala-Garrido, R. Cost modelling for wastewater treatment processes. Desalination 2011, 268, 1–5. [Google Scholar] [CrossRef]
- Nhut, H.T.; Hung, N.T.Q.; Sac, T.C.; Bang, N.H.K.; Quang Tri, T.; Trung Hiep, N.; Minh Ky, N. Removal of nutrients and organic pollutants from domestic wastewater treatment by sponge-based moving bed biofilm reactor. Environ. Eng. Res. 2020, 25, 652–658. [Google Scholar] [CrossRef]
- Sahariah, B.P.; Anandkumar, J.; Chakraborty, S. Treatment of coke oven wastewater in an anaerobic–anoxic–aerobic moving bed bioreactor system. Desalin. Water Treat. 2016, 57, 14396–14402. [Google Scholar] [CrossRef]
- Pires, J.C.M. Negative emissions technologies: A complementary solution for climate change mitigation. Sci. Total Environ. 2019, 672, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Limoli, A.; Langone, M.; Andreottola, G. Ammonia removal from raw manure digestate by means of a turbulent mixing stripping process. J. Environ. Manag. 2016, 176, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Keith, D.W.; Ha-Duong, M.; Stolaroff, J.K. Climate Strategy with CO2 Capture from the Air. Clim. Chang. 2006, 74, 17–45. [Google Scholar] [CrossRef]
- Socolow, R.; Desmond, M.; Aines, R.; Blackstock, J.; Bolland, O.; Kaarsberg, T.; Lewis, N.; Mazzotti, M.; Pfeffer, A.; Sawyer, K. Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS PANEL on Public Affairs; American Physical Society: College Park, MD, USA, 2011. [Google Scholar]
- Mazzotti, M.; Baciocchi, R.; Desmond, M.J.; Socolow, R.H. Direct air capture of CO2 with chemicals: Optimization of a two-loop hydroxide carbonate system using a countercurrent air-liquid contactor. Clim. Chang. 2013, 118, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Antecy. About Us. Hoevelaken, Netherlands. 2018. Available online: http://www.antecy.com/about-us/ (accessed on 5 February 2018).
- Lackner, K.S. Capture of carbon dioxide from ambient air. Eur. Phys. J. Spec. Top. 2009, 176, 93–106. [Google Scholar] [CrossRef]
- Lu, J.-Y.; Wang, X.-M.; Liu, H.-Q.; Yu, H.-Q.; Li, W.-W. Optimizing operation of municipal wastewater treatment plants in China: The remaining barriers and future implications. Environ. Int. 2019, 129, 273–278. [Google Scholar] [CrossRef]
MC | EC | LC | DEC | Explanation and Justification | |
---|---|---|---|---|---|
infrastructure construction | 27.10 | 0.87 | 3.42 | 31.39 | Including site preparation, pipeline layout, building and other infrastructure construction. |
pump station | 1.69 | 2.40 | 0.72 | 4.81 | 32 elevator pumps (8 stand-by pumps, 125 kW/unit) to satisfy 1M ton water/day processing capacity. |
pretreat pool | 1.10 | 1.84 | 0.65 | 3.59 | Pretreatment unit is used to remove debris and sediments. |
distribution well system | 0.87 | 0.13 | 0.17 | 1.17 | Pump system controlling and distributing input water flow based upon the monitored water pH. |
biofilm reaction tank | 35.26 | 25.51 | 5.10 | 65.87 | Plastic substrates are used for biofilm attachment and lamps are provided for photoautotrophic microbes. |
pharmacy input control | 0.73 | 1.87 | 0.48 | 3.08 | Nutrient supply unit with feedback system to maintain optimal biofilm growth. |
clean poll | 10.39 | 16.63 | 7.36 | 34.38 | Quality control (e.g., chemical oxygen demand (CODp) and N) of the treated water before recycled back to the ocean. |
fan room | 1.37 | 7.02 | 1.76 | 10.15 | Aeration is provided to avoid anerobic microbe formation at the bottom of the reaction tank. |
electrical controller | 0 | 4.53 | 1.94 | 6.47 | Estimation is based on a current WWTP with a capacity of 0.1 M ton water/day, assuming the cost is scalable by multiplying a factor of 10. |
other costs | 0 | 6.76 | 2.40 | 9.16 | Miscellaneous costs (~11% of total DEC) and expenses covering site maintenance, furniture, operation training, and corresponding labor costs. |
total direct engineering costs | 170.07 | ||||
indirect engineering costs | 29.81 | Including plant design, consultant, field construction supervision, insurance, and office furnishing. | |||
total engineering costs | 199.88 | ||||
project reserve funds | 20.15 | 10% of total engineering costs. | |||
total project costs | 220.03 |
Operation & Maintenance Costs | Average CAS | Total | ||||||
---|---|---|---|---|---|---|---|---|
Energy | Agent | Strain | Equipment Maintenance | Sludge Disposal | Water Monitoring | Labor | ||
4.54 | 7.56 | 2.85 | 3.40 | 1.87 | 0.14 | 2.85 | 7.33 | 30.54 |
Technology | Capacity (tCO2/a) | Cost Reported ($/tCO2) | References |
---|---|---|---|
Heat temperature aqueous solution | 280,000 | 339 | Keith et al. (2006) [48] |
1,000,000 | 278 | Socolow et al. (2011) [49] | |
1,000,000 | 356 | ||
1,000,000 | 255–270 | Mazzotti et al. (2013) [50] | |
1,000,000 | 188 | Keith et al. (2018) [38] | |
Low temperature aqueous solution | 360,000 | 139 | Fasihi et al. (2020) [42] |
3600 | 219 | Roestenberg (2015) [51] | |
Moisture swing solid | 365 | 130 | Lackner (2009) [52] |
MI-DAC | 1,000,000 | 30.54 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Teng, H.; Wan, X.; Zhang, J.; Liu, C.-Q. Direct Air Capture of CO2 through Carbonate Alkalinity Generated by Phytoplankton Nitrate Assimilation. Int. J. Environ. Res. Public Health 2023, 20, 550. https://doi.org/10.3390/ijerph20010550
Su J, Teng H, Wan X, Zhang J, Liu C-Q. Direct Air Capture of CO2 through Carbonate Alkalinity Generated by Phytoplankton Nitrate Assimilation. International Journal of Environmental Research and Public Health. 2023; 20(1):550. https://doi.org/10.3390/ijerph20010550
Chicago/Turabian StyleSu, Jing, Hui (Henry) Teng, Xiang Wan, Jianchao Zhang, and Cong-Qiang Liu. 2023. "Direct Air Capture of CO2 through Carbonate Alkalinity Generated by Phytoplankton Nitrate Assimilation" International Journal of Environmental Research and Public Health 20, no. 1: 550. https://doi.org/10.3390/ijerph20010550
APA StyleSu, J., Teng, H., Wan, X., Zhang, J., & Liu, C.-Q. (2023). Direct Air Capture of CO2 through Carbonate Alkalinity Generated by Phytoplankton Nitrate Assimilation. International Journal of Environmental Research and Public Health, 20(1), 550. https://doi.org/10.3390/ijerph20010550