Association of Sleep Patterns with Type 2 Diabetes Mellitus: A Cross-Sectional Study Based on Latent Class Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessment of Sleep
2.3. Assessment of T2DM
2.4. Possible Covariates
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Latent Classes of Sleep Patterns
3.3. Differences of Participant Characteristics in 3 Classes of Sleep Patterns
3.4. Association between Latent Classes of Sleep Patterns and T2DM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; Suvi, K., Joao da Rocha Fernandes, B.M., Eds.; International Diabetes Fedration: Brussels, Belgium, 2021; ISBN 978-2-930229-87-4. Available online: http://www.diabetesatlas.org/ (accessed on 5 October 2022).
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayani, M.A.; Shakiba, N.; Bijani, A.; Moudi, S. Depression and quality of life in patients with type 2 diabetes mellitus. Casp. J. Intern. Med. 2022, 13, 335–342. [Google Scholar] [CrossRef]
- Tabesh, M.; Shaw, J.E.; Zimmet, P.Z.; Söderberg, S.; Koye, D.N.; Kowlessur, S.; Timol, M.; Joonas, N.; Sorefan, A.; Gayan, P.; et al. Association between type 2 diabetes mellitus and disability: What is the contribution of diabetes risk factors and diabetes complications? J. Diabetes 2018, 10, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.; Barnes, A.C. Can type 2 diabetes be reversed and how can this best be achieved? James Lind Alliance research priority number one. Diabet. Med. 2018, 36, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Hall, K.A.; Reynolds, A.; Palmer, L.J.; Mukherjee, S. The Relationship of Sleep Duration with Ethnicity and Chronic Disease in a Canadian General Population Cohort. Nat. Sci. Sleep 2020, 12, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Yerramalla, M.S.; Fayosse, A.; Dugravot, A.; Tabak, A.G.; Kivimäki, M.; Singh-Manoux, A.; Sabia, S. Association of moderate and vigorous physical activity with incidence of type 2 diabetes and subsequent mortality: 27 year follow-up of the Whitehall II study. Diabetologia 2020, 63, 537–548. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Cao, Z.; Yang, H.; Hou, Y.; Wang, X.; Wang, Y. Association Between the EAT-Lancet Diet Pattern and Risk of Type 2 Diabetes: A Prospective Cohort Study. Front. Nutr. 2022, 8, 784018. [Google Scholar] [CrossRef]
- Chevinsky, J.D.; Wadden, T.A.; Chao, A.M. Binge Eating Disorder in Patients with Type 2 Diabetes: Diagnostic and Management Challenges. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 1117–1131. [Google Scholar] [CrossRef] [Green Version]
- Viner, R.; White, B.; Christie, D. Type 2 diabetes in adolescents: A severe phenotype posing major clinical challenges and public health burden. Lancet 2017, 389, 2252–2260. [Google Scholar] [CrossRef]
- Uusitupa, M.; Khan, T.A.; Viguiliouk, E.; Kahleova, H.; Rivellese, A.A.; Hermansen, K.; Pfeiffer, A.; Thanopoulou, A.; Salas-Salvadó, J.; Schwab, U.; et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2611. [Google Scholar] [CrossRef]
- Akerstedt, T.; Nilsson, P.M. Sleep as restitution: An introduction. J. Intern. Med. 2003, 254, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Jike, M.; Itani, O.; Watanabe, N.; Buysse, D.J.; Kaneita, Y. Long sleep duration and health outcomes: A systematic review, meta-analysis and meta-regression. Sleep Med. Rev. 2018, 39, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sotres-Alvarez, D.; Gallo, L.C.; Ramos, A.R.; Aviles-Santa, L.; Perreira, K.M.; Isasi, C.R.; Zee, P.C.; Savin, K.L.; Schneiderman, N.; et al. Associations of Sleep-disordered Breathing and Insomnia with Incident Hypertension and Diabetes. The Hispanic Community Health Study/Study of Latinos. Am. J. Respir. Crit. Care Med. 2021, 203, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.A.; Lee, D.Y.; Yu, J.H.; Cho, H.; Lee, S.K.; Suh, S.; Kim, S.G.; Choi, K.M.; Baik, S.H.; Shin, C.; et al. Habitual late sleep initiation is associated with increased incidence of type 2 diabetes mellitus in Korean adults: The Korean Genome and Epidemiology Study. Sleep 2019, 42, zsz090. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J. Sleep Health: Can We Define It? Does It Matter? Sleep 2014, 37, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Z.; Liu, X.; Zhang, H.; Dong, X.; He, Y.; Niu, M.; Pan, M.; Wang, C.; Wang, X.; Li, Y. Associations of midpoint of sleep and night sleep duration with type 2 diabetes mellitus in Chinese rural population: The Henan rural cohort study. BMC Public Health 2021, 21, 879. [Google Scholar] [CrossRef]
- Johnson, K.A.; Gordon, C.J.; Chapman, J.L.; Hoyos, C.M.; Marshall, N.S.; Miller, C.B.; Grunstein, R.R. The association of insomnia disorder characterised by objective short sleep duration with hypertension, diabetes and body mass index: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 59, 101456. [Google Scholar] [CrossRef]
- Mori, M.; Krumholz, H.M.; Allore, H.G. Using Latent Class Analysis to Identify Hidden Clinical Phenotypes. JAMA 2020, 324, 700–701. [Google Scholar] [CrossRef]
- Zhang, G.R.; Lin, A.H.; Fu, L.; He, W.T.; Xian, Y.F.; Yang, Y. Analysis of sleep patterns and their relationship with diabetes among adults under health examination in Guangzhou. Chin. J. Dis. Control. Prev. 2019, 23, 283–288. [Google Scholar] [CrossRef]
- Liu, X.C.; Tang, M.Q.; Hu, L.; Wang, A.Z.; Wu, H.X.; Zhao, G.F.; Gao, C.N.; Li, W.S. Reliability and validity of the Pittsburgh sleep quality index. Chin. J Psychiatry 1996, 2, 103–107. [Google Scholar]
- Chen, Y.; Zhang, B. Latent classes of sleep quality and related predictors in older adults: A person-centered approach. Arch. Gerontol. Geriatr. 2022, 102, 104736. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.-L.; Li, J.-R.; Sun, J.-J.; Li, W.-Y.; Sun, Y.-M.; Zhang, R.; Yu, L.-L. Reliability and validity of the simplified Chinese version of Epworth sleepiness scale. Chin. J. Otorhinolaryngol. Head Neck Surg. 2011, 46, 44–49. [Google Scholar]
- Carvalho, D.Z.; Louis, E.K.S.; Knopman, D.S.; Boeve, B.F.; Lowe, V.J.; Roberts, R.O.; Mielke, M.M.; Przybelski, S.A.; Machulda, M.M.; Petersen, R.C.; et al. Association of Excessive Daytime Sleepiness with Longitudinal β-Amyloid Accumulation in Elderly Persons Without Dementia. JAMA Neurol. 2018, 75, 672–680. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.H.; Zhu, L.W.; Guo, J.; Zhao, Y.; Fu, Y.M.; Mu, L. Reliability and validity of the Bedtime Procrastination Scale in Chinese college students. Chin. J. Clin. Psychol. 2021, 29, 717–720. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, D.; Ma, X.; Guo, J.; Mu, L. Sleep timing and hygiene practices of high bedtime procrastinators: A direct observational study. Fam. Pract. 2020, 37, 779–784. [Google Scholar] [CrossRef]
- Cheung, F.T.W.; Ho, A.W.Y.; Chan, J.W.Y.; Li, X.; Chan, N.Y.; Zhang, J.; Ho, C.S.; Wing, Y.K.; Li, S.X. Validation of the Chinese version of the Munich Chronotype Questionnaire (MCTQHK) in Hong Kong Chinese youths. Chronobiol. Int. 2022, 39, 678–689. [Google Scholar] [CrossRef]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between Clocks: Daily Temporal Patterns of Human Chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, M.; Dinich, J.; Merrow, M.; Roenneberg, T. Social Jetlag: Misalignment of Biological and Social Time. Chronobiol. Int. 2006, 23, 497–509. [Google Scholar] [CrossRef]
- Gupta, K.; Baylin, A.B.; Jansen, E. Abstract 226: Association Between Sleep Duration and Mediterranean Diet Score in Costa Rica. Circ. Cardiovasc. Qual. Outcomes 2020, 13 (Suppl. S1), A226. [Google Scholar] [CrossRef]
- Kiyotoki, S.; Nishikawa, J.; Nagata, N.; Niikura, R.; Doyama, H.; Imagawa, A.; Hasatani, K.; Hatta, W.; Sumiyoshi, T.; Nebiki, H.; et al. Exploration of the characteristics of chronotypes in upper gastrointestinal tract diseases: A multicenter study in Japan. Chronobiol. Int. 2020, 38, 534–542. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2010, 33, S62–S69. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.B.; Macfarlane, D.J.; Thomas, G.N.; Lao, X.Q.; Jiang, C.Q.; Cheng, K.; Lam, T.H. Reliability and Validity of the IPAQ-Chinese: The Guangzhou Biobank Cohort stud. Med. Sci. Sports Exerc. 2008, 40, 303–307. [Google Scholar] [CrossRef] [PubMed]
- IPAQ Research Committee Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. Available online: https://sites.google.com/site/theipaq/ (accessed on 5 October 2022).
- Wu, S.; Cai, T.; Luo, X. Validation of the Dutch Eating Behavior Questionnaire (DEBQ) in a sample of Chinese adolescents. Psychol. Health Med. 2016, 22, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Shi, H.-S.; Geng, F.-L.; Zou, L.-Q.; Tan, S.-P.; Wang, Y.; Neumann, D.L.; Shum, D.H.K.; Chan, R.C.K. Cross-cultural validation of the Depression Anxiety Stress Scale–21 in China. Psychol. Assess. 2016, 28, e88–e100. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Dai, X.Y.; Yao, S.Q. Development of the Chinese big five personality inventory (CBF-PI) III: Psychometric properties of CBF-PI brief version. Chin. J. Clin. Psychol. 2011, 19, 454–457. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus: Statistical Analysis with Latent Variables: User’s Guide (Version 8); Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Chen, H.-C.; Hsu, N.-W.; Chou, P. Subgrouping Poor Sleep Quality in Community-Dwelling Older Adults with Latent Class Analysis—The Yilan Study, Taiwan. Sci. Rep. 2020, 10, 5432. [Google Scholar] [CrossRef] [Green Version]
- Carpi, M.; Marques, D.R.; Milanese, A.; Vestri, A. Sleep Quality and Insomnia Severity among Italian University Students: A Latent Profile Analysis. J. Clin. Med. 2022, 11, 4069. [Google Scholar] [CrossRef]
- Foster, R.G. Sleep, circadian rhythms and health. Interface Focus 2020, 10, 20190098. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Jia, C.; Le, W. Hypocretin neuron hyperexcitability in the hypothalamus: A newly discovered culprit in aging-related sleep impairment. Signal Transduct. Target. Ther. 2022, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Caufriez, A.; Leproult, R.; L’Hermite-Baleriaux, M.; Kerkhofs, M.; Copinschi, G. Progesterone Prevents Sleep Disturbances and Modulates GH, TSH, and Melatonin Secretion in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2011, 96, E614–E623. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.C.; Bellalta, S.; Basoalto, R.; Gómez-Valenzuela, F.; Jalil, Y.; Lépez, M.; Matamoros, A.; Von Bernhardi, R. The Challenge by Multiple Environmental and Biological Factors Induce Inflammation in Aging: Their Role in the Promotion of Chronic Disease. Front. Immunol. 2020, 11, 570083. [Google Scholar] [CrossRef] [PubMed]
- Hernández, B.; Scarlett, S.; Moriarty, F.; Romero-Ortuno, R.; Kenny, R.A.; Reilly, R. Investigation of the role of sleep and physical activity for chronic disease prevalence and incidence in older Irish adults. BMC Public Health 2022, 22, 1711. [Google Scholar] [CrossRef]
- Stenholm, S.; Head, J.; Kivimaki, M.; Hanson, L.L.M.; Pentti, J.; Rod, N.H.; Clark, A.J.; Oksanen, T.; Westerlund, H.; Vahtera, J. Sleep Duration and Sleep Disturbances as Predictors of Healthy and Chronic Disease–Free Life Expectancy Between Ages 50 and 75: A Pooled Analysis of Three Cohorts. J. Gerontol. Ser. A 2018, 74, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Gupta, P.; Gupta, V.; Tiwari, S.; Banerjee, M. Association of sleep duration and sleep quality with body mass index among young adults. J. Fam. Med. Prim. Care 2022, 11, 3251. [Google Scholar] [CrossRef]
- Yao, F.; Ma, J.; Qin, P.; Tu, X.; Li, X.; Tang, X. Age and Sex Differences in the Association of Sleep Duration and Overweight/Obesity among Chinese Participants Age above 45 Years: A Cohort Study. J. Nutr. Health Aging 2022, 26, 714–722. [Google Scholar] [CrossRef]
- Gonnissen, H.K.J.; Hursel, R.; Rutters, F.; Martens, E.A.P.; Westerterp-Plantenga, M.S. Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men. Br. J. Nutr. 2012, 109, 748–756. [Google Scholar] [CrossRef] [Green Version]
- López-Cano, C.; Gutiérrez-Carrasquilla, L.; Sánchez, E.; González, J.; Yeramian, A.; Martí, R.; Hernández, M.; Cao, G.; Ribelles, M.; Gómez, X.; et al. Sympathetic Hyperactivity and Sleep Disorders in Individuals with Type 2 Diabetes. Front. Endocrinol. 2019, 10, 752. [Google Scholar] [CrossRef]
- Grandner, M.A.; Seixas, A.; Shetty, S.; Shenoy, S. Sleep Duration and Diabetes Risk: Population Trends and Potential Mechanisms. Curr. Diabetes Rep. 2016, 16, 106. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-H.; Wong, B.-Y.; Lin, S.-H.; Chiu, Y.-C.; Pan, Y.-C.; Lee, Y.-H. Development of a mobile application (App) to delineate “digital chronotype” and the effects of delayed chronotype by bedtime smartphone use. J. Psychiatr. Res. 2018, 110, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Vassou, C.; Georgousopoulou, E.N.; Chrysohoou, C.; Yannakoulia, M.; Pitsavos, C.; Cropley, M.; Panagiotakos, D.B. Irrational beliefs trigger depression and anxiety symptoms, and associated with increased inflammation and oxidative stress markers in the 10-year diabetes mellitus risk: The ATTICA epidemiological study. J. Diabetes Metab. Disord. 2021, 20, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Atasoy, S.; Johar, H.; Herder, C.; Rathmann, W.; Koenig, W.; Roden, M.; Peters, A.; Kruse, J.; Ladwig, K.-H. Generalized anxiety disorder symptoms and type 2 diabetes onset: Findings from the Prospective Cooperative Health Research in the Region of Augsburg F4 and FF4 studies. J. Psychosom. Res. 2021, 145, 110480. [Google Scholar] [CrossRef] [PubMed]
- Mason, I.C.; Qian, J.; Adler, G.K.; Scheer, F.A.J.L. Impact of circadian disruption on glucose metabolism: Implications for type 2 diabetes. Diabetologia 2020, 63, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Stenvers, D.J.; Scheer, F.A.J.L.; Schrauwen, P.; La Fleur, S.E.; Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 2018, 15, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Eckel, R.H.; Depner, C.M.; Perreault, L.; Markwald, R.R.; Smith, M.R.; McHill, A.W.; Higgins, J.; Melanson, E.L.; Wright, K.P. Morning Circadian Misalignment during Short Sleep Duration Impacts Insulin Sensitivity. Curr. Biol. 2015, 25, 3004–3010. [Google Scholar] [CrossRef]
Characteristic | Total | No-DM | DM | p-Value |
---|---|---|---|---|
Age (years) | 45.2 ± 14.8 | 43.21 ± 14.04 | 55.22 ± 14.21 | <0.001 ** |
WC (cm) | 79.5 ± 12.2 | 78.38 ± 12.07 | 84.90 ± 11.25 | <0.001 ** |
BMI (kg/m2) | 23.9 ± 3.7 | 23.69 ± 3.61 | 24.92 ± 3.67 | <0.001 ** |
Sex | <0.001 ** | |||
Male | 604 (50.3) | 478 (47.7) | 126 (63.6) | |
Female | 596 (49.7) | 524 (52.3) | 72 (36.4) | |
Marital status | <0.001 ** | |||
Unmarried | 162 (13.5) | 156 (15.6) | 6 (3.0) | |
Married | 927 (77.3) | 750 (74.9) | 177 (89.4) | |
Divorced or widowed | 111 (9.3) | 96 (9.6) | 15 (7.6) | |
Education | <0.001 ** | |||
Junior high school and below | 570 (47.5) | 452 (45.1) | 118 (59.6) | |
High school and above | 630 (52.5) | 550 (54.9) | 80 (40.4) | |
Annual household income (RMB) | <0.001 ** | |||
<80,000 RMB | 704 (58.7) | 556 (55.5) | 148 (74.7) | |
80,000- RMB | 426 (35.5) | 384 (38.3) | 42 (21.2) | |
>300,000 RMB | 70 (5.8) | 62 (6.2) | 8 (4.0) | |
Smoking (yes) | 249 (20.8) | 193 (19.3) | 56 (28.3) | 0.004 ** |
Alcohol (yes) | 268 (22.3) | 214 (21.4) | 54 (27.3) | 0.068 |
Physical activity level | <0.001 ** | |||
Low | 584 (50.3) | 502 (52.0) | 82 (41.8) | |
Moderate | 393 (33.9) | 299 (31.0) | 94 (48.0) | |
High | 184 (15.8) | 164 (17.0) | 20 (10.2) | |
Sleep duration | 7.19 ± 1.58 | 7.4 ± 1.5 | 6.3 ± 1.5 | <0.001 ** |
PSQI # | 5.77 ± 3.84 | 5.3 ± 3.6 | 8.3 ± 4.1 | <0.001 ** |
ESS | 8.68 ± 5.36 | 8.0 ± 5.1 | 12.1 ± 5.4 | <0.001 ** |
BPS # | 24.59 ± 6.29 | 24.9 ± 5.9 | 23.1 ± 7.8 | <0.001 ** |
SJL # | 0.35 ± 0.59 | 0.4 ± 0.6 | 0.18 ± 0.5 | <0.001 ** |
Sleep chronotype | <0.001 ** | |||
Morning | 240 (20.0) | 181 (18.1) | 59 (29.8) | |
Intermediate | 670 (55.8) | 560 (55.9) | 110 (55.6) | |
Night | 290 (24.2) | 261 (26.0) | 29 (14.6) | |
DEBQ | 68.9 ± 21.4 | 70.09 ± 21.93 | 62.76 ± 17.54 | <0.001 ** |
Restrained eating # | 22.1 ± 9.0 | 22.60 ± 9.06 | 19.67 ± 7.98 | <0.001 ** |
Emotional eating # | 21.5 ± 10.2 | 22.09 ± 10.46 | 18.67 ± 8.11 | <0.001 ** |
External eating | 25.2 ± 8.6 | 25.39 ± 8.56 | 24.42 ± 8.47 | 0.144 |
DASS-21 # | 10.5 ± 9.3 | 9.70 ± 8.90 | 14.55 ± 10.28 | <0.001 ** |
Stress # | 5.0 ± 4.0 | 4.49 ± 3.66 | 7.58 ± 4.65 | <0.001 ** |
Anxiety # | 2.9 ± 3.1 | 2.63 ± 3.00 | 4.32 ± 3.44 | <0.001 ** |
Depression # | 2.6 ± 3.3 | 2.58 ± 3.26 | 2.66 ± 3.54 | 0.547 |
Neuroticism | 20.6 ± 8.9 | 20.65 ± 8.86 | 20.46 ± 9.15 | 0.782 |
Hypertension | 222 (18.5) | 150 (15.0) | 72 (36.4) | <0.001 ** |
Dyslipidemia | 176 (14.7) | 103 (10.3) | 73 (36.9) | <0.001 ** |
CHD | 28 (2.3) | 12 (1.2) | 16 (8.1) | <0.001 ** |
Stroke | 65 (5.4) | 20 (2.0) | 45 (22.7) | <0.001 ** |
Arthritis | 101 (8.4) | 79 (7.9) | 22 (11.1) | 0.135 |
Osteoporosis | 112 (9.3) | 85 (8.5) | 27 (13.6) | 0.023 * |
Cancer | 4 (0.3) | 3 (0.3) | 1 (0.5) | 0.646 |
Thyroid disease | 92 (7.7) | 57 (5.7) | 35 (17.7) | <0.001 ** |
Family history of diabetes | 229 (19.1) | 140 (14.0) | 89 (44.9) | <0.001 ** |
Number of Classes | K | Loglikelihood | AIC | BIC | aBIC | Entropy | LMR | BLRT |
---|---|---|---|---|---|---|---|---|
1 | 11 | −6596.259 | 13,214.517 | 13,270.508 | 13,235.568 | |||
2 | 23 | −5991.212 | 12,028.423 | 12,145.495 | 12,072.438 | 0.782 | <0.001 | <0.001 |
3 | 35 | −5777.129 | 11,624.257 | 11,802.410 | 11,691.236 | 0.811 | <0.001 | <0.001 |
4 | 47 | −5631.602 | 11,357.204 | 11,596.437 | 11,447.147 | 0.804 | 0.1306 | 0.1329 |
Characteristics | Class 1 (n = 350) | Class 2 (n = 137) | Class 3 (n = 713) | p-Value | Post Hoc |
---|---|---|---|---|---|
Age (years) | 41.91 ± 15.80 | 60.38 ± 12.23 | 43.88 ± 12.81 | <0.001 ** | 2 > 3 > 1 |
WC (cm) | 78.99 ± 13.27 | 82.07 ± 10.74 | 79.18 ± 11.83 | 0.015 * | 2 > 1, 3 |
BMI (kg/m2) | 23.72 ± 3.96 | 25.61 ± 3.66 | 23.65 ± 3.39 | <0.001 ** | 2 > 1, 3 |
Sex | 0.014 * | ||||
Male | 167 (47.7) | 56 (40.9) | 381 (53.4) | 2 < 3 | |
Female | 183 (52.3) | 81 (59.1) | 332 (46.6) | 2 > 3 | |
Marital status | <0.001 ** | ||||
Unmarried | 76 (21.7) | 1 (0.7) | 85 (11.9) | 1 >3 > 2 | |
Married | 256 (73.1) | 107 (78.1) | 564 (79.1) | ||
Divorced or widowed | 18 (5.1) | 29 (21.2) | 64 (9.0) | 2 > 1, 3 | |
Education | <0.001 ** | ||||
Junior high school and below | 109 (31.1) | 107 (78.1) | 354 (49.6) | 2 > 3 > 1 | |
High school and above | 241 (68.9) | 30 (21.9) | 359 (50.4) | 1 > 3 > 2 | |
Annual household income (RMB) | <0.001 ** | ||||
<80, 000 RMB | 180 (51.4) | 115 (83.9) | 409 (57.4) | 2 > 1, 3 | |
80, 000- RMB | 153 (43.7) | 19 (13.9) | 254 (35.6) | 1 > 3 > 2 | |
>300, 000 RMB | 17 (4.9) | 3 (2.2) | 50 (7.0) | ||
Smoking (yes) | 77 (22.0) | 24 (17.5) | 148 (20.8) | 0.548 | |
Alcohol (yes) | 78 (22.3) | 24 (17.5) | 166 (23.3) | 0.333 | |
Physical activity level | <0.001 ** | ||||
Low | 201 (58.6) | 53 (38.7) | 330 (48.5) | 1 > 2, 3 | |
Moderate | 78 (22.7) | 63 (46.0) | 252 (37.0) | 1 < 2, 3 | |
High | 64 (18.7) | 21 (15.3) | 99 (14.5) | ||
DEBQ | 76.85 ± 22.81 | 63.62 ± 17.07 | 65.97 ± 20.45 | <0.001 ** | 1 > 2, 3 |
Restrained eating | 25.37 ± 9.66 | 19.47 ± 6.16 | 21.03 ± 8.62 | <0.001 ** | 1 > 2, 3 |
Emotional eating | 24.36 ± 12.06 | 20.07 ± 7.75 | 20.42 ± 9.30 | <0.001 ** | 1 > 2, 3 |
External eating ‡ | 27.11 ± 8.53 | 24.08 ± 7.81 | 24.53 ± 8.56 | <0.001 ** | 1 > 2, 3 |
DASS-21 | 14.46 ± 9.51 | 13.26 ± 8.82 | 8.03 ± 8.46 | <0.001 ** | 3 < 1, 2 |
Stress | 6.37 ± 4.07 | 7.25 ± 4.00 | 3.89 ± 3.56 | <0.001 ** | 3 < 1, 2 |
Anxiety | 4.29 ± 3.25 | 3.72 ± 3.30 | 2.08 ± 2.75 | <0.001 ** | 3 < 1, 2 |
Depression | 3.80 ± 3.48 | 2.29 ± 2.83 | 2.06 ± 3.16 | <0.001 ** | 1 > 2, 3 |
Neuroticism ‡ | 24.94 ± 8.32 | 22.47 ± 8.74 | 18.14 ± 8.32 | <0.001 ** | 1 > 2 > 3 |
Hypertension | 80 (22.9) | 45 (32.8) | 97 (13.6) | <0.001 ** | 3 < 1, 2 |
Dyslipidemia | 45 (12.9) | 42 (30.7) | 89 (12.5) | <0.001 ** | 2 > 1, 3 |
CHD | 9 (2.6) | 11 (8.0) | 8 (1.1) | <0.001 ** | 2 > 1, 3 |
Stroke | 17 (4.9) | 19 (13.9) | 29 (4.1) | <0.001 ** | 2 > 1, 3 |
Arthritis | 33 (9.4) | 41 (29.9) | 27 (3.8) | <0.001 ** | 2 > 1> 3 |
Osteoporosis | 29 (8.3) | 43 (31.4) | 40 (5.6) | <0.001 ** | 2 > 1, 3 |
Cancer | 2 (0.6) | 2 (1.5) | 0 (0.0) | 0.016 * | 2 > 3 |
Thyroid disease | 47 (13.4) | 13 (9.5) | 32 (4.5) | <0.001 ** | 3 < 1, 2 |
Class | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Class 3 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |||||
Class 1 | 1.68 (1.18–2.39) | 0.004 | 1.79 (1.19–2.69) | 0.005 | 2.00 (1.30–3.12) | 0.002 | 1.80 (1.13–2.87) | 0.013 | 1.17 (0.70–1.85) | 0.541 |
Class 2 | 4.30 (2.84–6.52) | <0.001 | 2.81 (1.69–4.70) | <0.001 | 2.65 (1.57–4.47) | <0.001 | 3.13 (1.78–5.51) | <0.001 | 2.24 (1.26–4.00) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Ahmed, W.L.; Zhuo, L.; Yuan, H.; Wang, S.; Zhou, F. Association of Sleep Patterns with Type 2 Diabetes Mellitus: A Cross-Sectional Study Based on Latent Class Analysis. Int. J. Environ. Res. Public Health 2023, 20, 393. https://doi.org/10.3390/ijerph20010393
Liu M, Ahmed WL, Zhuo L, Yuan H, Wang S, Zhou F. Association of Sleep Patterns with Type 2 Diabetes Mellitus: A Cross-Sectional Study Based on Latent Class Analysis. International Journal of Environmental Research and Public Health. 2023; 20(1):393. https://doi.org/10.3390/ijerph20010393
Chicago/Turabian StyleLiu, Mengdie, Wali Lukman Ahmed, Lang Zhuo, Hui Yuan, Shuo Wang, and Fang Zhou. 2023. "Association of Sleep Patterns with Type 2 Diabetes Mellitus: A Cross-Sectional Study Based on Latent Class Analysis" International Journal of Environmental Research and Public Health 20, no. 1: 393. https://doi.org/10.3390/ijerph20010393
APA StyleLiu, M., Ahmed, W. L., Zhuo, L., Yuan, H., Wang, S., & Zhou, F. (2023). Association of Sleep Patterns with Type 2 Diabetes Mellitus: A Cross-Sectional Study Based on Latent Class Analysis. International Journal of Environmental Research and Public Health, 20(1), 393. https://doi.org/10.3390/ijerph20010393