Chronic Home Radon Exposure Is Associated with Higher Inflammatory Biomarker Concentrations in Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Home Radon Testing
2.3. Questionnaires and Biometrics
2.4. Computing a Radon Exposure Index
2.5. Saliva Sample Acquisition and Analysis
2.6. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Radon and Inflammation Descriptives
3.3. Associations between Radon and Inflammation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bearer, C.F. Environmental Health Hazards: How Children Are Different from Adults. Future Child. 1995, 5, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samet, J.M. Risk Assessment and Child Health. Pediatrics 2004, 113, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Viswanathan, S.; Whyatt, R.; Tang, D.; Miller, R.L.; Rauh, V. Children’s Environmental Health Research—Highlights from the Columbia Center for Children’s Environmental Health. Ann. N. Y. Acad. Sci. 2006, 1076, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Silver, M.K.; Li, X.; Liu, Y.; Li, M.; Mai, X.; Kaciroti, N.; Kileny, P.; Tardif, T.; Meeker, J.D.; Lozoff, B. Low-Level Prenatal Lead Exposure and Infant Sensory Function. Environ. Health 2016, 15, 65. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.S.; Rauh, V.A.; Bansal, R.; Hao, X.; Toth, Z.; Nati, G.; Walsh, K.; Miller, R.L.; Arias, F.; Semanek, D.; et al. Effects of Prenatal Exposure to Air Pollutants (Polycyclic Aromatic Hydrocarbons) on the Development of Brain White Matter, Cognition, and Behavior in Later Childhood. JAMA Psychiatry 2015, 72, 531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myhre, O.; Låg, M.; Villanger, G.D.; Oftedal, B.; Øvrevik, J.; Holme, J.A.; Aase, H.; Paulsen, R.E.; Bal-Price, A.; Dirven, H. Early Life Exposure to Air Pollution Particulate Matter (PM) as Risk Factor for Attention Deficit/Hyperactivity Disorder (ADHD): Need for Novel Strategies for Mechanisms and Causalities. Toxicol. Appl. Pharmacol. 2018, 354, 196–214. [Google Scholar] [CrossRef]
- Sanders, A.P.; Claus Henn, B.; Wright, R.O. Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature. Curr. Environ. Health Rep. 2015, 2, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.-H.M.; Hsu, H.-H.L.; Coull, B.A.; Bellinger, D.C.; Kloog, I.; Schwartz, J.; Wright, R.O.; Wright, R.J. Prenatal Particulate Air Pollution and Neurodevelopment in Urban Children: Examining Sensitive Windows and Sex-Specific Associations. Environ. Int. 2016, 87, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lewis, G. Environmental Toxicity and Poor Cognitive Outcomes in Children and Adults. J. Environ. Health 2014, 76, 130–138. [Google Scholar]
- Bornschein, S.; Hausteiner, C.; Konrad, F.; Förstl, H.; Zilker, T. Psychiatric Morbidity and Toxic Burden in Patients with Environmental Illness: A Controlled Study. Psychosom. Med. 2006, 68, 104–109. [Google Scholar] [CrossRef]
- Lundberg, A. Psychiatric Aspects of Air Pollution. Otolaryngol. Head Neck Surg. 1996, 114, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-K.; Seo, S.; Jin, Y.W. Health Effects of Radon Exposure. Yonsei Med. J. 2019, 60, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Ravina, A.; Wakeford, R. The Increasing Exposure of the Global Population to Ionizing Radiation. Epidemiology 2020, 31, 155–159. [Google Scholar] [CrossRef]
- Sethi, T.K.; El-Ghamry, M.N.; Kloecker, G.H. Radon and Lung Cancer. Clin. Adv. Hematol. Oncol. 2012, 10, 157–164. [Google Scholar] [PubMed]
- Vogeltanz-Holm, N.; Schwartz, G.G. Radon and Lung Cancer: What Does the Public Really Know? J. Environ. Radioact. 2018, 192, 26–31. [Google Scholar] [CrossRef]
- United Stated Environmental Protection Agency A Citizens Guide to Radon 2016. Available online: https://www.epa.gov/sites/production/files/2016-12/documents/2016_a_citizens_guide_to_radon.pdf (accessed on 21 October 2022).
- Laquarta, J. Indoor Air Quality. In Indoor Environmental Quality; IntechOpen: London, UK, 2019; p. 13. [Google Scholar]
- Stanley, F.K.T.; Irvine, J.L.; Jacques, W.R.; Salgia, S.R.; Innes, D.G.; Winquist, B.D.; Torr, D.; Brenner, D.R.; Goodarzi, A.A. Radon Exposure Is Rising Steadily within the Modern North American Residential Environment, and Is Increasingly Uniform across Seasons. Sci. Rep. 2019, 9, 18472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in Homes and Risk of Lung Cancer: Collaborative Analysis of Individual Data from 13 European Case-Control Studies. BMJ 2005, 330, 223. [Google Scholar] [CrossRef] [Green Version]
- Nebraska Department of Health and Human Services. Radon. Available online: http://dhhs.ne.gov/Pages/Radon.aspx (accessed on 7 December 2020).
- Novilla, M.L.B.; Johnston, J.D.; Beard, J.D.; Pettit, L.L.; Davis, S.F.; Johnson, C.E. Radon Awareness and Policy Perspectives on Testing and Mitigation. Atmosphere 2021, 12, 1016. [Google Scholar] [CrossRef]
- Wang, Y.; Ju, C.; Stark, A.D.; Teresi, N. Radon Awareness, Testing, and Remediation Survey among New York State Residents. Health Phys. 2000, 78, 641–647. [Google Scholar] [CrossRef]
- Al-Zoughool, M.; Krewski, D. Health Effects of Radon: A Review of the Literature. Int. J. Radiat. Biol. 2009, 85, 57–69. [Google Scholar] [CrossRef]
- Chauhan, V.; Howland, M.; Mendenhall, A.; O’Hara, S.; Stocki, T.J.; McNamee, J.P.; Wilkins, R.C. Effects of Alpha Particle Radiation on Gene Expression in Human Pulmonary Epithelial Cells. Int. J. Hyg. Environ. Health 2012, 215, 522–535. [Google Scholar] [CrossRef] [PubMed]
- Leng, S.; Thomas, C.L.; Snider, A.M.; Picchi, M.A.; Chen, W.; Willis, D.G.; Carr, T.G.; Krzeminski, J.; Desai, D.; Shantu, A.; et al. Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners. Environ. Health Perspect. 2016, 124, 445–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.-Y.; Tong, J. Adverse Effects Attributed to Long-Term Radon Inhalation in Rats. J. Toxicol. Environ. Health Part A 2007, 70, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, P.K.; LaRue, K.E.A.; Goodwin, E.H.; Lehnert, B.E. Alpha Particles Induce the Production of Interleukin-8 by Human Cells. Radiat. Res. 1999, 152, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.; Allen, J.; Laney, R.; Curnow, A. The Cellular and Molecular Carcinogenic Effects of Radon Exposure: A Review. Int. J. Mol. Sci. 2013, 14, 14024–14063. [Google Scholar] [CrossRef] [Green Version]
- Bollen, J.; Trick, L.; Llewellyn, D.; Dickens, C. The Effects of Acute Inflammation on Cognitive Functioning and Emotional Processing in Humans: A Systematic Review of Experimental Studies. J. Psychosom. Res. 2017, 94, 47–55. [Google Scholar] [CrossRef]
- Danese, A.; Lewis, S.J. Psychoneuroimmunology of Early-Life Stress: The Hidden Wounds of Childhood Trauma? Neuropsychopharmacology 2017, 42, 99–114. [Google Scholar] [CrossRef] [Green Version]
- DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The Devil Is in the Details. J. Neurochem. 2016, 139 (Suppl. S2), 136–153. [Google Scholar] [CrossRef] [Green Version]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Miller, A.H.; Raison, C.L. The Role of Inflammation in Depression: From Evolutionary Imperative to Modern Treatment Target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, K.B.; Miller, G.E.; Rogosch, F.A.; Cicchetti, D. Maltreatment Exposure across Childhood and Low-Grade Inflammation: Considerations of Exposure Type, Timing, and Sex Differences. Dev. Psychobiol. 2021, 63, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Loftis, J.M.; Byrne, M.L.; Measelle, J. Special Issue: Contexts and Consequences of Childhood Inflammation. Brain Behav. Immun. 2020, 86, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.; Chen, E.; Cole, S.W. Health Psychology: Developing Biologically Plausible Models Linking the Social World and Physical Health. Annu. Rev. Psychol. 2009, 60, 501–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, A.C.; Crockett, L.; Richards, M.; Boxer, A. A Self-Report Measure of Pubertal Status: Reliability, Validity, and Initial Norms. J. Youth Adolesc. 1988, 17, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Shirtcliff, E.A.; Dahl, R.E.; Pollak, S.D. Pubertal Development: Correspondence Between Hormonal and Physical Development: Hormonal Correlates of Pubertal Stage. Child Dev. 2009, 80, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barratt, W. The Barratt Simplified Measure of Social Status (BSMSS): Measuring SES; Indiana State University: Terre Haute, IN, USA, 2006. [Google Scholar]
- Guxens, M.; Sunyer, J. A Review of Epidemiological Studies on Neuropsychological Effects of Air Pollution. Swiss Med. Wkly. 2012, 141, w13322. [Google Scholar] [CrossRef]
- Jankowska-Kieltyka, M.; Roman, A.; Nalepa, I. The Air We Breathe: Air Pollution as a Prevalent Proinflammatory Stimulus Contributing to Neurodegeneration. Front. Cell. Neurosci. 2021, 15, 647643. [Google Scholar] [CrossRef]
- Decker, M.-L.; Grobusch, M.P.; Ritz, N. Influence of Age and Other Factors on Cytokine Expression Profiles in Healthy Children—A Systematic Review. Front. Pediatr. 2017, 5, 255. [Google Scholar] [CrossRef]
- O’Connor, M.-F.; Bower, J.E.; Cho, H.J.; Creswell, J.D.; Dimitrov, S.; Hamby, M.E.; Hoyt, M.A.; Martin, J.L.; Robles, T.F.; Sloan, E.K.; et al. To Assess, to Control, to Exclude: Effects of Biobehavioral Factors on Circulating Inflammatory Markers. Brain Behav. Immun. 2009, 23, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Spyridaki, E.C.; Avgoustinaki, P.D.; Margioris, A.N. Obesity, Inflammation and Cognition. Curr. Opin. Behav. Sci. 2016, 9, 169–175. [Google Scholar] [CrossRef]
- Farooq, R.K.; Asghar, K.; Kanwal, S.; Zulqernain, A. Role of Inflammatory Cytokines in Depression: Focus on Interleukin-1β (Review). Biomed. Rep. 2017, 6, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaeizadeh, S.-A.; Abdizadeh, M.F.; Meshkat, Z.; Khodashenas, E.; Darroudi, S.; Fazeli, M.; Ferns, G.A.; Avan, A.; Ghayour-Mobarhan, M. There Is an Association between Serum High-Sensitivity C-Reactive Protein (Hs-CRP) Concentrations and Depression Score in Adolescent Girls. Psychoneuroendocrinology 2018, 88, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Zainal, N.H.; Newman, M.G. Increased Inflammation Predicts Nine-Year Change in Major Depressive Disorder Diagnostic Status. J. Abnorm. Psychol. 2021, 130, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Fourrier, C.; Singhal, G.; Baune, B.T. Neuroinflammation and Cognition across Psychiatric Conditions. CNS Spectr. 2019, 24, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Avci, A.Y.; Lakadamyali, H.; Arikan, S.; Benli, U.S.; Kilinc, M. High Sensitivity C-Reactive Protein and Cerebral White Matter Hyperintensities on Magnetic Resonance Imaging in Migraine Patients. J. Headache Pain 2015, 16, 9. [Google Scholar] [CrossRef] [Green Version]
- Byrne, M.L.; Whittle, S.; Allen, N.B. The Role of Brain Structure and Function in the Association Between Inflammation and Depressive Symptoms: A Systematic Review. Psychosom. Med. 2016, 78, 389–400. [Google Scholar] [CrossRef]
- Kempf, S.J.; Buratovic, S.; von Toerne, C.; Moertl, S.; Stenerlöw, B.; Hauck, S.M.; Atkinson, M.J.; Eriksson, P.; Tapio, S. Ionising Radiation Immediately Impairs Synaptic Plasticity-Associated Cytoskeletal Signalling Pathways in HT22 Cells and in Mouse Brain: An In Vitro/In Vivo Comparison Study. PLoS ONE 2014, 9, e110464. [Google Scholar] [CrossRef] [Green Version]
- Kempf, S.J.; Casciati, A.; Buratovic, S.; Janik, D.; von Toerne, C.; Ueffing, M.; Neff, F.; Moertl, S.; Stenerlöw, B.; Saran, A.; et al. The Cognitive Defects of Neonatally Irradiated Mice Are Accompanied by Changed Synaptic Plasticity, Adult Neurogenesis and Neuroinflammation. Mol. Neurodegener. 2014, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Felger, J.C.; Li, Z.; Haroon, E.; Woolwine, B.J.; Jung, M.Y.; Hu, X.; Miller, A.H. Inflammation Is Associated with Decreased Functional Connectivity within Corticostriatal Reward Circuitry in Depression. Mol. Psychiatry 2016, 21, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.K.; Muscatell, K.A.; Irwin, M.R.; Cole, S.W.; Eisenberger, N.I. Inflammation Selectively Enhances Amygdala Activity to Socially Threatening Images. Neuroimage 2012, 59, 3222–3226. [Google Scholar] [CrossRef] [Green Version]
- Nusslock, R.; Brody, G.H.; Armstrong, C.C.; Carroll, A.L.; Sweet, L.H.; Yu, T.; Barton, A.W.; Hallowell, E.S.; Chen, E.; Higgins, J.P.; et al. Higher Peripheral Inflammatory Signaling Associated with Lower Resting-State Functional Brain Connectivity in Emotion Regulation and Central Executive Networks. Biol. Psychiatry 2019, 86, 153–162. [Google Scholar] [CrossRef]
- Jiang, N.M.; Tofail, F.; Ma, J.Z.; Haque, R.; Kirkpatrick, B.; Nelson, C.A.; Petri, W.A. Early Life Inflammation and Neurodevelopmental Outcome in Bangladeshi Infants Growing Up in Adversity. Am. J. Trop. Med. Hyg. 2017, 97, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Kempf, S.J.; Azimzadeh, O.; Atkinson, M.J.; Tapio, S. Long-Term Effects of Ionising Radiation on the Brain: Cause for Concern? Radiat. Environ. Biophys. 2013, 52, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Musella, A.; Gentile, A.; Rizzo, F.R.; De Vito, F.; Fresegna, D.; Bullitta, S.; Vanni, V.; Guadalupi, L.; Stampanoni Bassi, M.; Buttari, F.; et al. Interplay between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Front. Aging Neurosci. 2018, 10, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.-Q.; Yin, G.; Huang, J.-R.; Xi, S.-J.; Qian, F.; Lee, R.-X.; Peng, X.-C.; Tang, F.-R. Ionizing Radiation-Induced Brain Cell Aging and the Potential Underlying Molecular Mechanisms. Cells 2021, 10, 3570. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, L.; Chen, C.; Field, R.W.; D’Alton, M.; Kahe, K. Does Protracted Radon Exposure Play a Role in the Development of Dementia? Environ. Res. 2022, 210, 112980. [Google Scholar] [CrossRef]
- Dozor, A.J. The Role of Oxidative Stress in the Pathogenesis and Treatment of Asthma. Ann. N. Y. Acad. Sci. 2010, 1203, 133–137. [Google Scholar] [CrossRef]
- Mukharesh, L.; Greco, K.F.; Banzon, T.; Koutrakis, P.; Li, L.; Hauptman, M.; Phipatanakul, W.; Gaffin, J.M. Environmental Radon and Childhood Asthma. Pediatr. Pulmonol. 2022, 57, 3165–3168. [Google Scholar] [CrossRef]
- Pando-Sandoval, A.; Ruano-Ravina, A.; Candal-Pedreira, C.; Rodríguez-García, C.; Represas-Represas, C.; Golpe, R.; Fernández-Villar, A.; Pérez-Ríos, M. Risk Factors for Chronic Obstructive Pulmonary Disease in Never-Smokers: A Systematic Review. Clin. Respir. J. 2022, 16, 261–275. [Google Scholar] [CrossRef]
- Ferrante, G.; La Grutta, S. The Burden of Pediatric Asthma. Front. Pediatr. 2018, 6, 186. [Google Scholar] [CrossRef] [Green Version]
- Kwan, W.S.; Nikezic, D.; Roy, V.A.L.; Yu, K.N. Multiple Stressor Effects of Radon and Phthalates in Children: Background Information and Future Research. Int. J. Environ. Res. Public Health 2020, 17, 2898. [Google Scholar] [CrossRef] [PubMed]
- Di Maggio, F.M.; Minafra, L.; Forte, G.I.; Cammarata, F.P.; Lio, D.; Messa, C.; Gilardi, M.C.; Bravatà, V. Portrait of Inflammatory Response to Ionizing Radiation Treatment. J. Inflamm. 2015, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Van DerMeeren, A.; Bertho, J.-M.; Vandamme, M.; Gaugler, M.-H. Ionizing Radiation Enhances IL-6 and IL-8 Production by Human Endothelial Cells. Mediat. Inflamm. 1997, 6, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, T. Study of Antioxidative Effects and Anti-Inflammatory Effects in Mice Due to Low-Dose X-Irradiation or Radon Inhalation. J. Radiat. Res. 2013, 54, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, T.; Etani, R.; Kanzaki, N.; Kobashi, Y.; Yunoki, Y.; Ishida, T.; Sakoda, A.; Ishimori, Y.; Yamaoka, K. Radon Inhalation Induces Manganese-Superoxide Dismutase in Mouse Brain via Nuclear Factor-ΚB Activation. J. Radiat. Res. 2017, 58, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Zdrojewicz, Z.; Strzelczyk, J. (Jodi) Radon Treatment Controversy. Dose-Response 2006, 4, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Franke, A.; Reiner, L.; Pratzel, H.G.; Franke, T.; Resch, K.L. Long-term Efficacy of Radon Spa Therapy in Rheumatoid Arthritis—A Randomized, Sham-controlled Study and Follow-up. Rheumatology 2000, 39, 894–902. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Wei, Q.; Pan, R.; Yi, W.; Xu, Z.; Duan, J.; Tang, C.; He, Y.; Liu, X.; Song, S.; et al. Elevated Environmental PM2.5 Increases Risk of Schizophrenia Relapse: Mediation of Inflammatory Cytokines. Sci. Total Environ. 2021, 753, 142008. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental Exposure to Microplastics: An Overview on Possible Human Health Effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Kuribayashi, T. Elimination Half-Lives of Interleukin-6 and Cytokine-Induced Neutrophil Chemoattractant-1 Synthesized in Response to Inflammatory Stimulation in Rats. Lab. Anim. Res. 2018, 34, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, 2004433. [Google Scholar] [CrossRef]
- Kobashi, Y. Comparison of Antioxidative Effects between Radon and Thoron Inhalation in Mouse Organs. Radiation and Environmental Biophysics 2020, 59, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.-H.; Chen, Z.-H.; Liu, X.; Wu, Y.-W.; Li, J.-X.; Cao, Y.; Hei, T.K.; Tong, J. Oxidative Damage in Various Tissues of Rats Exposed to Radon. J. Toxicol. Environ. Health Part A 2012, 75, 694–699. [Google Scholar] [CrossRef]
- Lagarde, F.; Falk, R.; Almrén, K.; Nyberg, F.; Svensson, H.; Pershagen, G. Glass-Based Radon-Exposure Assessment and Lung Cancer Risk. J. Expo. Sci. Environ. Epidemiol. 2002, 12, 344–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahaffey, J.A.; Parkhurst, M.A.; James, A.C.; Cross, F.T.; Alavanja, M.C.R.; Boice, J.D.; Ezrine, S.; Henderson, P.; Brownson, R.C. Estimating Past Exposure to Indoor Radon from Household Glass. Health Phys. 1993, 64, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, C. Retrospective Determination of Radon in Houses. Nature 1988, 334, 338–340. [Google Scholar] [CrossRef]
- Chen, J. Canadian Lung Cancer Relative Risk from Radon Exposure for Short Periods in Childhood Compared to a Lifetime. Int. J. Environ. Res. Public Health 2013, 10, 1916–1926. [Google Scholar] [CrossRef]
Assay Range | Analytical Sensitivity | Functional Sensitivity | Intra-Assay CV | Inter-Assay CV | |
---|---|---|---|---|---|
CRP | 25–1600 pg/mL | 0.042 pg/mL | 19.44 pg/mL | 1.93% | 3.58% |
IL-1β | 0.646–375 pg/mL | 0.05 pg/mL | 0.646 pg/mL | 2.65% | 4.98% |
IL-6 | 0.633–488 pg/mL | 0.06 pg/mL | 0.633 pg/mL | 3.85% | 2.88% |
IL-8 | 0.591–375 pg/mL | 0.07 pg/mL | 0.591 pg/mL | 1.31% | 3.12% |
TNF-α | 0.690–248 pg/mL | 0.04 pg/mL | 0.690 pg/mL | 4.90% | 3.19% |
Original (pg/mL) | Natural Log Transformed | |||||
---|---|---|---|---|---|---|
M | SD | Range | M | SD | Range | |
CRP | 319.74 | 1651.54 | 9.72–12,466.16 | 3.96 | 1.36 | 2.37–9.43 |
IL-1β | 115.00 | 134.32 | 24.03–791.56 | 4.43 | 0.75 | 3.22–6.68 |
IL-6 | 7.21 | 10.23 | 0.32–58.79 | 1.67 | 0.86 | 0.27–4.09 |
IL-8 | 881.89 | 675.63 | 280.02–4292.42 | 6.62 | 0.54 | 5.64–8.36 |
TNF-α | 5.10 | 5.18 | 0.35–25.76 | 1.58 | 0.65 | 0.30–3.29 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Radon Exposure | – | ||||||||||
2. CRP | 0.34 | – | |||||||||
3. IL-1β | 0.28 | 0.32 | – | ||||||||
4. IL-6 | 0.10 | 0.20 | 0.40 | – | |||||||
5. IL-8 | 0.12 | 0.33 | 0.53 | 0.45 | – | ||||||
6. TNF-α | 0.28 | 0.21 | 0.79 | 0.58 | 0.68 | – | |||||
7. Age | 0.20 | 0.21 | 0.13 | 0.10 | −0.08 | −0.04 | – | ||||
8. PDS | 0.13 | 0.36 | 0.17 | −0.02 | −0.05 | −0.12 | 0.72 | – | |||
9. Sex | −0.10 | 0.10 | −0.03 | −0.07 | −0.27 | −0.29 | 0.08 | 0.40 | – | ||
10. SES | −0.18 | −0.01 | −0.28 | −0.29 | −0.08 | −0.34 | −0.14 | −0.05 | −0.01 | – | |
11. BMI | 0.12 | 0.51 | 0.17 | −0.04 | −0.01 | −0.06 | 0.46 | 0.64 | 0.25 | −0.11 | – |
Path | β | b | SE | b/SE | p |
---|---|---|---|---|---|
CRP On | |||||
Radon Exposure | 0.307 | 0.277 | 0.103 | 2.682 | 0.007 |
Age | −0.176 | −0.080 | 0.076 | −1.053 | 0.292 |
Sex | −0.040 | −0.093 | 0.290 | −0.322 | 0.747 |
SES | 0.076 | 0.012 | 0.018 | 0.686 | 0.492 |
PDS | 0.169 | 0.160 | 0.193 | 0.827 | 0.408 |
BMI | 0.466 | 0.106 | 0.032 | 3.264 | 0.001 |
IL-β on | |||||
Radon Exposure | 0.328 | 0.191 | 0.079 | 2.405 | 0.016 |
Age | −0.158 | −0.046 | 0.079 | −0.583 | 0.560 |
Sex | −0.102 | −0.152 | 0.297 | −0.512 | 0.609 |
SES | −0.225 | −0.023 | 0.016 | −1.455 | 0.146 |
PDS | 0.246 | 0.150 | 0.192 | 0.783 | 0.434 |
BMI | 0.047 | 0.007 | 0.025 | 0.274 | 0.784 |
IL-6 on | |||||
Radon Exposure | 0.044 | 0.028 | 0.090 | 0.322 | 0.747 |
Age | 0.133 | 0.045 | 0.066 | 0.675 | 0.499 |
Sex | −0.035 | −0.061 | 0.262 | −0.231 | 0.817 |
SES | −0.279 | −0.033 | 0.016 | −2.121 | 0.034 |
PDS | −0.061 | −0.043 | 0.168 | −0.254 | 0.799 |
BMI | −0.086 | −0.014 | 0.028 | −0.515 | 0.606 |
IL-8 on | |||||
Radon Exposure | 0.087 | 0.030 | 0.057 | 0.532 | 0.595 |
Age | −0.287 | −0.050 | 0.048 | −1.044 | 0.297 |
Sex | −3.49 | −0.313 | 0.186 | −1.686 | 0.092 |
SES | −0.092 | −0.006 | 0.010 | −0.565 | 0.572 |
PDS | 0.272 | 0.100 | 0.119 | 0.837 | 0.403 |
BMI | 0.011 | 0.001 | 0.019 | 0.054 | 0.957 |
TNF-α on | |||||
Radon Exposure | 0.217 | 0.105 | 0.064 | 1.626 | 0.104 |
Age | −0.146 | −0.036 | 0.064 | −0.559 | 0.576 |
Sex | −0.284 | −0.352 | 0.230 | −1.535 | 0.125 |
SES | −0.326 | −0.028 | 0.012 | −2.241 | 0.025 |
PDS | 0.073 | 0.037 | 0.154 | 0.240 | 0.811 |
BMI | −0.029 | −0.003 | 0.020 | −0.173 | 0.863 |
CRP with | |||||
IL-1β | 0.186 | 0.114 | 0.103 | 1.107 | 0.268 |
IL-6 | 0.299 | 0.225 | 0.107 | 2.095 | 0.036 |
IL-8 | 0.390 | 0.152 | 0.068 | 2.232 | 0.026 |
TNF-α | 0.256 | 0.127 | 0.082 | 1.550 | 0.121 |
IL-1β with | |||||
IL-6 | 0.376 | 0.201 | 0.095 | 2.111 | 0.035 |
IL-8 | 0.539 | 0.149 | 0.054 | 2.747 | 0.006 |
TNF-α | 0.807 | 0.284 | 0.077 | 3.668 | <0.001 |
IL-6 with | |||||
IL-8 | 0.471 | 0.161 | 0.063 | 2.539 | 0.011 |
TNF-α | 0.561 | 0.243 | 0.079 | 3.091 | 0.002 |
IL-8 with | |||||
TNF-α | 0.675 | 0.152 | 0.048 | 3.190 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, B.K.; Smith, O.V.; Miller, G.E. Chronic Home Radon Exposure Is Associated with Higher Inflammatory Biomarker Concentrations in Children and Adolescents. Int. J. Environ. Res. Public Health 2023, 20, 246. https://doi.org/10.3390/ijerph20010246
Taylor BK, Smith OV, Miller GE. Chronic Home Radon Exposure Is Associated with Higher Inflammatory Biomarker Concentrations in Children and Adolescents. International Journal of Environmental Research and Public Health. 2023; 20(1):246. https://doi.org/10.3390/ijerph20010246
Chicago/Turabian StyleTaylor, Brittany K., OgheneTejiri V. Smith, and Gregory E. Miller. 2023. "Chronic Home Radon Exposure Is Associated with Higher Inflammatory Biomarker Concentrations in Children and Adolescents" International Journal of Environmental Research and Public Health 20, no. 1: 246. https://doi.org/10.3390/ijerph20010246
APA StyleTaylor, B. K., Smith, O. V., & Miller, G. E. (2023). Chronic Home Radon Exposure Is Associated with Higher Inflammatory Biomarker Concentrations in Children and Adolescents. International Journal of Environmental Research and Public Health, 20(1), 246. https://doi.org/10.3390/ijerph20010246