Influence of Two Exercise Programs on Heart Rate Variability, Body Temperature, Central Nervous System Fatigue, and Cortical Arousal after a Heart Attack
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
Randomization and Masking
2.2. Outcome Measures and Assessments
2.2.1. Exercise Testing
2.2.2. Thermography, Heart Rate Variability, and Cortical Arousal
- Time-Domain Analysis: (a) square root of differences between adjacent RR intervals (RMSSD);
- Non-linear analyses:©) non-linear metrics: the RR variability from heartbeat to short term Poincaré graph (width) (SD1), the RR variability from heartbeat to long-term Poincaré graph (length) (SD2), short-term fluctuation of the detrended fluctuation analysis (alpha-1), long-term fluctuation of the detrended fluctuation analysis (alpha-2), and the sample entropy (SampEn), which measures the regularity and complexity of a time series.
2.3. Protocol and Experimental Procedures
2.4. Ethical Considerations
3. Results
3.1. Thermography
3.2. Heart Rate Variability
3.3. Central Nervous System Fatigue, Blood Pressure, and Cortical Arousal
4. Discussion
Limitations of the Study and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CR | Cardiac rehabilitation |
CVD | Cardiovascular diseases |
CNS | Central nervous system |
CFFT | Critical flicker fusion threshold |
HAP | Heart attack patients |
HRV | Heart rate variability |
HR | Heart rate |
HIIT | High-Intensity Interval Training |
alpha-2 | Long-term fluctuation of the detrended fluctuation analysis |
ms | Milliseconds |
MICT | Moderate-intensity Continuous Training |
NYHA | New York Heart Association |
peakHR | Peak Heart Rate |
SampEn | Sample entropy |
alpha-1 | Short-term fluctuation of the detrended fluctuation analysis |
RMSSD | Square root of differences between adjacent RR intervals |
VSA | Visual analogue scale |
WHO | World Health Organization |
References
- World Health Organization. Cardiovascular Disease. Fact Sheet N 317; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- European Association for Cardiovascular Prevention and Rehabilitation Committee for Science Guidelines; EACPR; Corrà, U.; Piepoli, M.F.; Carré, F.; Heuschmann, P.; Hoffmann, U.; Verschuren, M.; Halcox, J.; Document Reviewers; et al. Secondary prevention through cardiac rehabilitation: Physical activity counselling and exercise training: Key components of the position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. Heart J. 2010, 31, 1967–1974. [Google Scholar] [PubMed][Green Version]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- García-Bravo, S.; Cano-de-la-Cuerda, R.; Domínguez-Paniagua, J.; Campuzano-Ruiz, R.; Barreñada-Copete, E.; López-Navas, M.J.; Araujo-Narváez, A.; García-Bravo, C.; Florez-Garcia, M.; Botas-Rodríguez, J.; et al. Effects of Virtual Reality on Cardiac Rehabilitation Programs for Ischemic Heart Disease: A Randomized Pilot Clinical Trial. Int. J. Environ. Res. Public Health 2020, 17, 8472. [Google Scholar] [CrossRef] [PubMed]
- García-Bravo, S.; Cuesta-Gómez, A.; Campuzano-Ruiz, R.; Jesús López-Navas, M.; Domínguez-Paniagua, J.; Araújo-Narváez, A.; Barreñada-Copete, E.; García-Bravo, C.; Tomás Flórez-García, M.; Botas-Rodríguez, J.; et al. Virtual reality and video games in cardiac rehabilitation programs. A systematic review. Disabil. Rehabil. 2019, 43, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Dibben, G.; Faulkner, J.; Oldridge, N.; Rees, K.; Thompson, D.; Zwisler, A.; Taylor, R. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2021, 2021, CD001800. [Google Scholar]
- Freyssin, C.; Verkindt, C.; Prieur, F.; Benaich, P.; Maunier, S.; Blanc, P. Cardiac rehabilitation in chronic heart failure: Effect of an 8-week, high-intensity interval training versus continuous training. Arch. Physiol. Med. Rehabil. 2012, 93, 1359–1364. [Google Scholar] [CrossRef][Green Version]
- Keteyian, S.J.; Hibner, B.A.; Bronsteen, K.; Kerrigan, D.; Aldred, H.A.; Reasons, L.M.; Saval, M.A.; Brawner, C.A.; Schairer, J.R.; Thompson, T.; et al. Greater improvements in cardiorespiratory fitness using higher-intensity interval training in the standard cardiac rehabilitation setting. J. Cardiopulm. Rehabil. Prev. 2014, 34, 98–105. [Google Scholar] [CrossRef]
- Benda, N.M.; Seeger, J.H.; Stevens, G.F.; Hijmans-Kersten, B.P.; van Dijk, A.J.; Bellersen, L.; Lamfers, E.; Hopman, M.T.E.; Thijssen, D.J. Effects of high-intensity interval training versus continuous training on physical fitness, cardiovascular function, and quality of life in heart failure patients. PLoS ONE 2015, 10, e0141256. [Google Scholar] [CrossRef][Green Version]
- Gonçalves, C.; Raimundo, A.; Abreu, A.; Bravo, J. Exercise intensity in patients with cardiovascular diseases: Systematic review with meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 3574. [Google Scholar] [CrossRef]
- Hanssen, H.; Boardman, H.; Deiseroth, A.; Moholdt, T.; Simonenko, M.; Krankel, N.; Niebauer, J.; Tiberi, M.; Abreu, A.; Solberg, E.E.; et al. Personalized exercise prescription in the prevention and treatment of arterial hypertension: A Consensus Document from the European Association of Preventive Cardiology (EAPC) and the ESC Council on Hypertension. Eur. J. Prev. Cardiol. 2022, 29, 205–215. [Google Scholar] [CrossRef]
- Fisher, G.; Brown, A.; Bohan Brown, M.; Alcorn, A.; Noles, C.; Winwood, L.; Resuehr, H.; George, B.; Jeansonne, M.; Allison, D.B. High intensity interval vs. moderate intensity training for improving cardiometabolic health in overweight or obese males: A randomized controlled trial. PLoS ONE 2015, 10, e0138853. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.; Abreu, A.; Ambrosetti, M.; Cornelissen, V.; Gevaert, A.; Kemps, H.; Laukkanen, J.A.; Pedretti, R.; Simonenko, M.; Wilhelm, M.; et al. Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: Why and how: A position statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2022, 29, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Chrysohoou, C.; Angelis, A.; Tsitsinakis, G.; Spetsioti, S.; Nasis, I.; Tsiachris, D.; Rapakoulias, P.; Pitsavos, C.; Koulouris, N.; Vogiatzis, I.; et al. Cardiovascular effects of high-intensity interval aerobic training combined with strength exercise in patients with chronic heart failure: A randomized phase III clinical trial. Int. J. Cardiol. 2015, 179, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Haykowsky, M.J.; Timmons, M.P.; Kruger, C.; McNeely, M.; Taylor, D.A.; Clark, A.M. Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am. J. Cardiol. 2013, 111, 1466–1469. [Google Scholar] [CrossRef] [PubMed]
- Weston, K.S.; Wesloff, U.; Coombes, J.S. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. Br. J. Sport. Med. 2014, 48, 1227–1234. [Google Scholar] [CrossRef]
- Aguilera, J.F.T.; Elias, V.F.; Clemente-Suárez, V.J. Autonomic and cortical response of soldiers in different combat scenarios. BMJ Mil. Health 2021, 167, 172–176. [Google Scholar] [CrossRef]
- Sánchez-Conde, P.; Clemente-Suárez, V.J. Autonomic stress response of nurse students in an objective structured clinical examination (OSCE). Sustainability 2021, 13, 5803. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Stein, P.K. Heart rate variability in risk stratification of cardiac patients. Prog. Cardiovasc. Dis. 2013, 56, 153–159. [Google Scholar] [CrossRef]
- Mendoza-Castejón, D.; Clemente-Suárez, V.J. Autonomic profile, physical activity, body mass index and academic performance of school students. Sustainability 2020, 12, 6718. [Google Scholar] [CrossRef]
- Bustamante-Sánchez, A.; Tornero-Aguilera, J.F.; Fernández-Elías, V.E.; Hormeño-Holgado, A.J.; Dalamitros, A.A.; Clemente-Suárez, V.J. Effect of stress on autonomic and cardiovascular systems in military population: A systematic review. Cardiol. Res. Pract. 2020, 2020, 7986249. [Google Scholar] [CrossRef]
- Viegas, F.; Mello, M.; Rodrigues, S.A.; Costa, C.; Freitas, L.; Rodrigues, E.; Silva, A. The use of thermography and its control variables: A systematic review. Rev. Bras. Med. Esporte 2020, 26, 82–86. [Google Scholar] [CrossRef]
- Sillero-Quintana, M.; Fernández-Jaén, T.; Fernández-Cuevas, I.; Gómez-Carmona, P.M.; Arnaiz-Lastras, J.; Pérez, M.D.; Guillén, P. Infrared thermography as a support tool for screening and early diagnosis in emergencies. J. Med. Imaging Health Inform. 2015, 5, 1223–1228. [Google Scholar] [CrossRef]
- Ring, E.F.J.; Ammer, K. Infrared thermal imaging in medicine. Physiol. Meas. 2012, 33, R33–R46. [Google Scholar] [CrossRef] [PubMed]
- Li, X.S.; Wang, D.H. Suppression of thermogenic capacity during reproduction in primiparous brandt′s voles (Microtus brandtii). J. Therm. Biol. 2005, 30, 431–436. [Google Scholar] [CrossRef]
- Clamente-Suárez, V.; Parraca, J.; Silva, V.; Batalha, N.; Costa, A.; Tomas-Carus, P. Differences in Peripheral Vascular Response of a Fibromyalgia Patient in a Physical Fatigue Situation. A Case Control Report; Perspectivas Online: Biológicas &Saúde: Rio de Janeiro, Brazil, 2021; Volume 11, pp. 1–10. [Google Scholar]
- De Rezende Barbosa, M.; Silva, N.; de Azevedo, F.; Pastre, C.; Vanderlei, L. Comparison of Polar® RS 800G3TM heart rate monitor with Polar® S810iTM and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin. Physiol. Funct. Imaging 2016, 36, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Diaz-Manzano, M. Evaluation of Central Fatigue by the Critical Flicker Fusion Threshold in Cyclists. J. Med. Syst. 2019, 43, 61. [Google Scholar] [CrossRef]
- Ramírez-Adrados, A.; Fernández-Elías, V.E.; Fernández-Martínez, S.; Martínez-Pascual, B.; Gonzalez-de-Ramos, C.; Clemente-Suárez, V.J. The Effect of Studying a Double Degree in the Psychophysiological Stress Response in the Bachelor’s Thesis Defense. Int. J. Environ. Res. Public Health 2022, 19, 1207. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Arroyo-Toledo, J.J. Use of Biotechnology Devices to Analyse Fatigue Process in Swimming Training. J. Med. Syst. 2017, 41, 94. [Google Scholar] [CrossRef]
- Fuentes, J.P.; Villafaina, S.; Collado-Mateo, D.; de la Vega, R.; Gusi, N.; Clemente-Suárez, V.J. Use of Biotechnological Devices in the Quantification of Psychophysiological Workload of Professional Chess Players. J. Med. Syst. 2018, 42, 40. [Google Scholar] [CrossRef]
- Delgado-Moreno, R.; Robles-Pérez, J.J.; Aznar-Laín, S.; Clemente-Suárez, V.J. Effect of Experience and Psychophysiological Modification by Combat Stress in Soldier’s Memory. J. Med. Syst. 2019, 43, 150. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J. The Application of Cortical Arousal Assessment to Control Neuromuscular Fatigue During Strength Training. J. Mot. Behav. 2017, 49, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Castejon, D.; Fraile-García, J.; Diaz-Manzano, M.; Fuentes-Garcia, J.P.; Clemente-Suárez, V.J. Differences in the autonomic nervous system stress status of urban and rural school teachers. Physiol. Behav. 2020, 222, 112925. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Flórez, L.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J. Could academic experience modulate psychophysiological stress response of biomedical sciences students in laboratory? Physiol. Behav. 2020, 223, 113017. [Google Scholar] [CrossRef]
- Beltrán-Velasco, A.I.; Bellido-Esteban, A.; Ruisoto-Palomera, P.; Mendoza, K.H.; Clemente-Suárez, V.J. The effect of cultural differences in psychophysiological stress response in high education context: A pilot study. Appl. Psychophysiol. Biofeedback 2020, 45, 23–29. [Google Scholar] [CrossRef]
- Catai, A.M.; Pastre, C.M.; de Godoy, M.F.; da Silva, E.; de Medeiros Takahashi, A.C.; Vanderlei, L.C. Heart rate variability: Are you using it properly? Standardisation checklist of procedures. Braz. J. Phys. Ther. 2020, 24, 91–102. [Google Scholar] [CrossRef]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- McKean, M.R.; Stockwell, T.B.; Burkett, B.J. Response to Constant and Interval Exercise Protocols in the Elderly. J. Exerc. Physiol. Online 2012, 15, 30–39. [Google Scholar]
- Clemente-Suarez, V.J.; Fernandes, R.J.; Arroyo-Toledo, J.J.; Figueiredo, P.; Gonzalez-Rave, J.M.; Vilas-Boas, J.P. Autonomic adaptation after traditional and reverse swimming training periodizations. Acta Physiol. Hung. 2015, 102, 105–113. [Google Scholar] [CrossRef][Green Version]
- Clemente-Suárez, V.J.; Ramos-Campo, D.J.; Tornero-Aguilera, J.F.; Parraca, J.A.; Batalha, N. The Effect of Periodization on Adherence to the Training Program. Int. J. Environ. Res. Public Health 2021, 18, 12973. [Google Scholar] [CrossRef]
- Wisløff, U.; Støylen, A.; Loennechen, J.P.; Bruvold, M.; Rognmo, Ø.; Haram, P.M.; Tjønna, A.E.; Helgerud, J.; Slørdahl, S.A.; Lee, S.J.; et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: A randomized study. Circulation 2007, 115, 3086–3094. [Google Scholar] [CrossRef][Green Version]
- Turri-Silva, N.; Vale-Lira, A.; Verboven, K.; Quaglioti Durigan, J.L.; Hansen, D.; Cipriano, G., Jr. High-intensity interval training versus progressive high-intensity circuit resistance training on endothelial function and cardiorespiratory fitness in heart failure: A preliminary randomized controlled trial. PLoS ONE 2021, 16, e0257607. [Google Scholar] [CrossRef] [PubMed]
- Moholdt, T.T.; Amundsen, B.H.; Rustad, L.A.; Wahba, A.; Løvø, K.T.; Gullikstad, L.R.; Bye, A.; Skogvoll, E.; Wisløff, U.; Slørdahl, S.A. Aerobic interval training versus continuous moderate exercise after coronary artery bypass surgery: A randomized study of cardiovascular effects and quality of life. Am. Heart J. 2009, 158, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Gutherie, A.H.; Hammond, B.R., Jr. Critical flicker fusion frequency: Relation to resting systolic blood pressure. Optom. Vis. Sci. 2004, 81, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Truszczyński, O.; Wojtkowiak, M.; Biernacki, M.; Kowalczuk, K. The effect of hypoxia on the critical flicker fusion threshold in pilots. Int. J. Occup. Med. Environ. Health 2009, 22, 13–18. [Google Scholar] [CrossRef][Green Version]
- Sharma, T.; Galea, A.; Zachariah, E.; Das, M.; Taylor, D.; Ruprah, M.; Kumari, V. Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects. J. Psychopharmacol. 2002, 16, 183–187. [Google Scholar] [CrossRef]
- Balestra, C.; Machado, M.L.; Theunissen, S.; Balestra, A.; Cialoni, D.; Clot, C.; Besnard, S.; Kammacher, L.; Delzenne, J.; Germonpré, P.; et al. Critical flicker fusion frequency: A marker of cerebral arousal during modified gravitational conditions related to parabolic flights. Front. Physiol. 2018, 9, 1403. [Google Scholar] [CrossRef]
- Lecca, L.I.; Fadda, P.; Fancello, G.; Medda, A.; Meloni, M. Cardiac Autonomic Control and Neural Arousal as Indexes of Fatigue in Professional Bus Drivers. Saf. Health Work. 2022, 13, 148–154. [Google Scholar] [CrossRef]
- Ghadieh, A.S.; Saab, B. Evidence for exercise training in the management of hypertension in adults. Can. Fam. Physician 2015, 61, 233–239. [Google Scholar]
- Arshi, B.; Geurts, S.; Tilly, M.J.; van den Berg, M.; Kors, J.A.; Rizopoulos, D.; Ikram, M.A.; Kavousi, M. Heart rate variability is associated with left ventricular systolic, diastolic function and incident heart failure in the general population. BMC Med. 2022, 20, 91. [Google Scholar] [CrossRef]
- Ernst, G. Heart-Rate Variability—More than Heart Beats? Front. Public Health 2017, 5, 240. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shea, M.G.; Headley, S.; Mullin, E.M.; Brawner, C.A.; Schilling, P.; Pack, Q.R. Comparison of Ratings of Perceived Exertion and Target Heart Rate-Based Exercise Prescription in Cardiac Rehabilitation: A randomized controlled pilot study. J. Cardiopulm. Rehabil. Prev. 2022, 42, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Takeyama, J.; Itoh, H.; Kato, M.; Koike, A.; Aoki, K.; Fu, L.T.; Watanabe, H.; Nagayama, M.; Katagiri, T. Effects of physical training on the recovery of the autonomic nervous activity during exercise after coronary artery bypass grafting: Effects of physical training after CABG. Jpn. Circ. J. 2000, 64, 809–813. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Oya, M.; Itoh, H.; Kato, K.; Tanabe, K.; Murayama, M. Effects of exercise training on the recovery of the autonomic nervous system and exercise capacity after acute myocardial infarction. Jpn. Circ. J. 1999, 63, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, S.; Uemura, S.; Tomoda, Y.; Yamamoto, H.; Matsukura, Y.; Horii, M.; Iwamoto, E.; Hashimoto, T.; Dohi, K. Effects of exercise training on the heart rate variability and QT dispersion of patients with acute myocardial infarction. Jpn. Circ. J. 1999, 63, 577–582. [Google Scholar] [CrossRef][Green Version]
- Tsai, M.-W.; Chie, W.-C.; Kuo, T.; Chen, M.-F.; Liu, J.-P.; Chen, T.; Wu, Y.-T. Effects of exercise training on heart rate variability after coronary angioplasty. Phys Ther. 2006, 86, 626–635. [Google Scholar] [CrossRef]
- Iellamo, F.; Legramante, J.M.; Massaro, M.; Raimondi, G.; Galante, A. Effects of a residential exercise training on baroreflex sensitivity and heart rate variability in patients with coronary artery disease: A randomized, controlled study. Circulation 2000, 102, 2588–2592. [Google Scholar] [CrossRef][Green Version]
- Upadhyay, R.K. Emerging risk biomarkers in cardiovascular diseases and disorders. J. Lipids 2015, 2015, 971453. [Google Scholar] [CrossRef]
- Costa, A.R.; Freire, A.; Parraca, J.A.; Silva, V.; Tomas-Carus, P.; Villafaina, S. Heart Rate Variability and Salivary Biomarkers Differences between Fibromyalgia and Healthy Participants after an Exercise Fatigue Protocol: An Experimental Study. Diagnostics 2022, 12, 2220. [Google Scholar] [CrossRef]
- Schamne, J.C.; Ressetti, J.C.; Lima-Silva, A.E.; Okuno, N.M. Impaired Cardiac Autonomic Control in Women With Fibromyalgia Is Independent of Their Physical Fitness. J. Clin. Rheumatol. Pract. Rep. Rheum. Musculoskelet. Dis. 2021, 27, S278–S283. [Google Scholar] [CrossRef]
- Lang, Y.; Wang, Y.; Zhan, J.; Bai, Y.; Hou, C.; Wu, J.; Huang, R.; Wang, Y.; Huang, Y. Chest-scale self-compensated epidermal electronics for standard 6-precordial-lead ECG. Npj Flex. Electron. 2022, 6, 29. [Google Scholar]
- Grund; Frank Sommerschild, H.T.; Kirkebøen, K.A.; Ilebekk, A. A new approach to normalize myocardial temperature in the open-chest pig model. J. Appl. Physiol. 1998, 84, 2190–2197. [Google Scholar]
- Whelton, S.P.; Narla, V.; Blaha, M.J.; Nasir, K.; Blumenthal, R.S.; Jenny, N.S.; Al-Mallah, M.H.; Michos, E.D. Association between resting heart rate and inflammatory biomarkers, high-sensitivity c-reactive protein, interleukin-6, and fibrinogen from the multi-ethnic study of atherosclerosis. Am. J. Cardiol. 2014, 113, 644–649. [Google Scholar] [CrossRef] [PubMed]
HAP Group (n = 2) | Healthy Group (n = 2) | |||
---|---|---|---|---|
HIIT (n = 1) | MICT (n = 1) | HIIT (n = 1) | MICT (n = 1) | |
Demographics | ||||
Age (years) | 35 | 48 | 38 | 46 |
VO2peak (mL/kg/min) | 30.7 | 30.4 | 33.3 | 32.7 |
Risk factors or comorbidities | ||||
Body Mass index (kg/m2) | 28.2 | 29.4 | 29.0 | 28.4 |
Waist Circumference (cm) | 98.4 | 101.1 | 99.5 | 100.5 |
Left ventricular ejection fraction (%) | 52 | 46 | - | - |
Diabetes mellitus | Y | Y | Y | Y |
Hypertension | N | Y | N | N |
Dyslipidemia | Y | Y | N | N |
Active smoker | N | N | N | N |
Family history of CVD | Y | Y | Y | N |
Variable | Group | Protocol | Pre | Post |
---|---|---|---|---|
Head (°C) | HAP | HIIT | 34.1 ± 0.3 | 32.6 ± 0.8 |
MICT | 34.9 ± 1.3 | 33.4 ± 3.3 | ||
Control | HIIT | 34.4 | 32.7 | |
MICT | 35.6 | 32.8 | ||
Chest (°C) | HAP | HIIT | 34.6 ± 0.5 | 32.3 ± 1.8 |
MICT | 35.2 ± 1.6 | 32.2 ± 1.5 | ||
Control | HIIT | 34.7 | 33.5 | |
MICT | 34.6 | 33.6 | ||
Abdomen (°C) | HAP | HIIT | 34.0 ± 0.4 | 32.5 ± 1.6 |
MICT | 34.3 ± 2.5 | 30.6 ± 1.1 | ||
Control | HIIT | 34.3 | 33.3 | |
MICT | 33.2 | 30.4 | ||
Right arm (°C) | HAP | HIIT | 33.0 ± 0.1 | 31.2 ± 0.6 |
MICT | 34.7 ± 1.8 | 29.4 ± 0.4 | ||
Control | HIIT | 32.9 | 32.2 | |
MICT | 33.5 | 31.9 | ||
Right forearm (°C) | HAP | HIIT | 32.8 ± 0.4 | 31.1 ± 1.0 |
MICT | 33.8 ± 1.8 | 30.5 ± 0.5 | ||
Control | HIIT | 32.4 | 32.0 | |
MICT | 34.0 | 32.3 | ||
Right hand (°C) | HAP | HIIT | 31.9 ± 0.5 | 32.7 ± 0.5 |
MICT | 33.0 ± 2.0 | 33.2 ± 2.3 | ||
Control | HIIT | 32.3 | 33.3 | |
MICT | 34.7 | 34.2 | ||
Left arm (°C) | HAP | HIIT | 32.9 ± 0.6 | 30.5 ± 1.2 |
MICT | 34.3 ± 2.1 | 29.7 ± 0.8 | ||
Control | HIIT | 33.3 | 32.2 | |
MICT | 33.5 | 30.3 | ||
Left forearm (°C) | HAP | HIIT | 33.0 ± 0.8 | 30.5 ± 0.6 |
MICT | 33.6 ± 0.6 | 29.1 ± 0.0 | ||
Control | HIIT | 32.6 | 32.1 | |
MICT | 33.7 | 31.9 | ||
Left hand (°C) | HAP | HIIT | 32.0 ± 0.6 | 32.0 ± 0.7 |
MICT | 33.4 ± 1.1 | 33.1 ± 2.3 | ||
Control | HIIT | 32.8 | 32.8 | |
MICT | 34.3 | 34.2 |
Variable | Group | Protocol | Pre | Exercise | Post |
---|---|---|---|---|---|
Maximum heart rate (bpm) | HAP | HIIT | 65.0 ± 7.1 | 137.012.7 | 96.0 ± 9.9 |
MICT | 78.0 ± 4.2 | 123.0 ± 24.0 | 95.5 ± 19.1 | ||
Control | HIIT | 84 | 170 | 97 | |
MICT | 80 | 138 | 111 | ||
Average heart rate (bpm) | HAP | HIIT | 69.5 ± 3.5 | 113.0 ± 9.9 | 87.0 ± 7.1 |
MICT | 62.5 ± 7.8 | 104.0 ± 18.4 | 87.0 ± 19.0 | ||
Control | HIIT | 78 | 133 | 89 | |
MICT | 75 | 112 | 97 | ||
RMSSD (ms) | HAP | HIIT | 27.9 ± 12.8 | 8.3 ± 1.7–19.6 | 10.9 ± 3.3 |
MICT | 23.4 ± 10.0 | 11.5 ± 6.8–11.9 | 9.5 ± 3.2 | ||
Control | HIIT | 25.3 | 10.2–15,1 | 16.3 | |
MICT | 25 | 5.7–19.3 | 76.1 | ||
PNN50 (ms) | HAP | HIIT | 9.5 ± 12.7 | 0.2 ± 0.0 | 0.4 ± 0.5 |
MICT | 4.3 ± 5.4 | 0.5 ± 0.6 | 0.5 ± 0.6 | ||
Control | HIIT | 4.2 | 0.8 | 0.7 | |
MICT | 2.7 | 1.9 | 0.3 | ||
Stress Index | HAP | HIIT | 12.4 ± 1.9 | 25.3 ± 6.6 | 21.3 ± 6.2 |
MICT | 16.3 ± 2.1 | 19.4 ± 2.9 | 35.7 ± 15.4 | ||
Control | HIIT | 10.9 | 15.3 | 16.1 | |
MICT | 13 | 21 | 11.4 | ||
SD1 (ms) | HAP | HIIT | 19.8 ± 9.0 | 5.4 ± 0.5 | 7,7 ± 2.3 |
MICT | 16.5 ± 7.1 | 8.1 ± 4.8 | 6.7 ± 2.3 | ||
Control | HIIT | 18 | 7.2 | 11.6 | |
MICT | 17.7 | 13.2 | 53.6 | ||
SD2 (ms) | HAP | HIIT | 41.0 ± 11.7 | 16.9 ± 6.1 | 27.5 ± 9.1 |
MICT | 26.5 ± 3.1 | 10.0 ± 4.8 | 11.2 ± 6.6 | ||
Control | HIIT | 52.9 | 27 | 40.5 | |
MICT | 33.1 | 7.4 | 43.5 | ||
ApEn | HAP | HIIT | 0.9 ± 0.0 | 1.0 ± 0.3 | 1.0 ± 0.0 |
MICT | 0.8 ± 0.1 | 1.4 ± 0.1 | 1.0 ± 0.0 | ||
Control | HIIT | 0.9 | 1.0 | 0.7 | |
MICT | 1.0 | 1.4 | 1.0 | ||
SampEn | HAP | HIIT | 1.8 ± 0.0 | 0.8 ± 0.4 | 1.2 ± 0.2 |
MICT | 1.6 ± 0.3 | 1.5 ± 0.2 | 1.7 ± 0.0 | ||
Control | HIIT | 1.2 | 0.9 | 0.8 | |
MICT | 1.6 | 1.1 | 1.4 |
Variable | Group | Protocol | Pre | Post |
---|---|---|---|---|
Subjective fatigue scale (0–100) | HAP | HIIT | 10.0 ± 0.0 | 67.5 ± 3.5 |
MICT | 10.0 ± 0.0 | 85.5 ± 3.5 | ||
Control | HIIT | 10 | 65 | |
MICT | 10 | 40 | ||
Systolic blood pressure (mmHg) | HAP | HIIT | 130.0 ± 26.9 | 121.0 ± 12.7 |
MICT | 132.5 ± 19.1 | 124.0 ± 18.4 | ||
Control | HIIT | 120 | 104 | |
MICT | 124 | 138 | ||
Diastolic blood pressure (mmHg) | HAP | HIIT | 80.0 ± 14.1 | 77.0 ± 2.8 |
MICT | 66.5 ± 13.4 | 73.0 ± 1.4 | ||
Control | HIIT | 72 | 83 | |
MICT | 81 | 82 | ||
CFFT (hz) | HAP | HIIT | 36.5 ± 7.7 | 37.9 ± 8.0 |
MICT | 38.2 ± 4.1 | 39.4 ± 4.5 | ||
Control | HIIT | 39.7 | 40.3 | |
MICT | 39.7 | 41.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, C.; Parraca, J.A.; Bravo, J.; Abreu, A.; Pais, J.; Raimundo, A.; Clemente-Suárez, V.J. Influence of Two Exercise Programs on Heart Rate Variability, Body Temperature, Central Nervous System Fatigue, and Cortical Arousal after a Heart Attack. Int. J. Environ. Res. Public Health 2023, 20, 199. https://doi.org/10.3390/ijerph20010199
Gonçalves C, Parraca JA, Bravo J, Abreu A, Pais J, Raimundo A, Clemente-Suárez VJ. Influence of Two Exercise Programs on Heart Rate Variability, Body Temperature, Central Nervous System Fatigue, and Cortical Arousal after a Heart Attack. International Journal of Environmental Research and Public Health. 2023; 20(1):199. https://doi.org/10.3390/ijerph20010199
Chicago/Turabian StyleGonçalves, Catarina, Jose A. Parraca, Jorge Bravo, Ana Abreu, João Pais, Armando Raimundo, and Vicente Javier Clemente-Suárez. 2023. "Influence of Two Exercise Programs on Heart Rate Variability, Body Temperature, Central Nervous System Fatigue, and Cortical Arousal after a Heart Attack" International Journal of Environmental Research and Public Health 20, no. 1: 199. https://doi.org/10.3390/ijerph20010199