Financial Literacy, Financial Education, and Cancer Screening Behavior: Evidence from Japan
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Variables
2.3. Descriptive Statistics
Number of Cancer Screenings | Gender | Education | Unemployed | Total | |||
---|---|---|---|---|---|---|---|
Female | Male | Below University Degree | Above University Degree | No | Yes | ||
0 | 723 | 588 | 1043 | 268 | 1276 | 35 | 1311 |
53.67% | 43.68% | 51.43% | 40.3% | 48.37% | 63.64% | 48.68% | |
1 | 173 | 192 | 267 | 98 | 357 | 8 | 365 |
12.84% | 14.26% | 13.17% | 14.74% | 13.53% | 14.55% | 13.55% | |
2 | 187 | 217 | 285 | 119 | 397 | 7 | 404 |
13.88% | 16.12% | 14.05% | 17.89% | 15.05% | 12.73% | 15% | |
3 | 247 | 279 | 372 | 154 | 523 | 3 | 526 |
18.34% | 20.73% | 18.34% | 23.16% | 19.83% | 5.45% | 19.53% | |
4 | 17 | 70 | 61 | 26 | 85 | 2 | 87 |
1.26% | 5.2% | 3.01% | 3.91% | 3.22% | 3.64% | 3.23% | |
Total | 1347 | 1346 | 2028 | 665 | 2638 | 55 | 2693 |
100% | 100% | 100% | 100% | 100% | 100% | 100% | |
Mean difference | t = 5.7938 *** | t = −4.7235 *** | t = 2.5508 ** |
Number of Cancer Screenings | Current Smoker | Current Drinker | Frequent Gambler | Total | |||
---|---|---|---|---|---|---|---|
No | Yes | No | Yes | No | Yes | ||
0 | 981 | 330 | 716 | 595 | 1180 | 131 | 1311 |
46.49% | 56.6% | 50.78% | 46.38% | 48.58% | 49.62% | 48.68% | |
1 | 289 | 76 | 204 | 161 | 324 | 41 | 365 |
13.7% | 13.04% | 14.47% | 12.55% | 13.34% | 15.53% | 13.55% | |
2 | 327 | 77 | 204 | 200 | 361 | 43 | 404 |
15.5% | 13.21% | 14.47% | 15.59% | 14.86% | 16.29% | 15% | |
3 | 444 | 82 | 253 | 273 | 488 | 38 | 526 |
21.04% | 14.07% | 17.94% | 21.28% | 20.09% | 14.39% | 19.53% | |
4 | 69 | 18 | 33 | 54 | 76 | 11 | 87 |
3.27% | 3.09% | 2.34% | 4.21% | 3.13% | 4.17% | 3.23% | |
Total | 2110 | 583 | 1410 | 1283 | 2429 | 264 | 2693 |
100% | 100% | 100% | 100% | 100% | 100% | 100% | |
Mean difference | t = 4.4427 *** | t = −3.5599 ** | t = 0.9381 |
Number of Cancer Screenings | Financial Literacy | Financial Education | Total | ||
---|---|---|---|---|---|
Score < 0.5 | Score ≥ 0.5 | No | Yes | ||
0 | 470 | 841 | 1104 | 207 | 1311 |
52.93% | 46.59% | 49.73% | 43.76% | 48.68% | |
1 | 110 | 255 | 305 | 60 | 365 |
12.39% | 14.13% | 13.74% | 12.68% | 13.55% | |
2 | 132 | 272 | 325 | 79 | 404 |
14.86% | 15.07% | 14.64% | 16.7% | 15% | |
3 | 159 | 367 | 421 | 105 | 526 |
17.91% | 20.33% | 18.96% | 22.2% | 19.53% | |
4 | 17 | 70 | 65 | 22 | 87 |
1.91% | 3.88% | 2.93% | 4.65% | 3.23% | |
Total | 888 | 1805 | 2220 | 473 | 2693 |
100% | 100% | 100% | 100% | 100% | |
Mean difference | t = −3.2526 *** | t = −2.9948 ** |
2.4. Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamashima, C. Cancer screening guidelines and policy making: 15 years of experience in cancer screening guideline development in Japan. Jpn. J. Clin. Oncol. 2018, 48, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Kondo, K.; Tada, T. The relation between the cancer screening rate and the cancer mortality rate in Japan. J. Med. Investig. 2010, 57, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, H.; Goto, R.; Hamashima, C. What is the most effective strategy for improving the cancer screening rate in Japan? Asian Pac. J. Cancer Prev. 2014, 15, 2607–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, Y.; Sobue, T.; Morimoto, A.; Egawa-Takata, T.; Hashizume, C.; Kishida, H.; Okamoto, S.; Yoshino, K.; Fujita, M.; Enomoto, T.; et al. Evaluation of a free-coupon program for cervical cancer screening among the young: A nationally funded program conducted by a local government in Japan. J. Epidemiol. 2015, 25, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Hamashima, C.; Sano, H. Association between age factors and strategies for promoting participation in gastric and colorectal cancer screenings. BMC Cancer 2018, 18, 345. [Google Scholar] [CrossRef] [Green Version]
- Katanoda, K.; Ito, Y.; Sobue, T. International comparison of trends in cancer mortality: Japan has fallen behind in screening-related cancers. Jpn. J. Clin. Oncol. 2021, 51, 1680–1686. [Google Scholar] [CrossRef]
- Goto, R.; Hamashima, C.; Mun, S.; Lee, W.C. Why screening rates vary between Korea and Japan—Differences between two national healthcare systems. Asian Pac. J. Cancer Prev. 2015, 16, 395–400. [Google Scholar] [CrossRef]
- Ono, S.; Yuktadatta, P.; Taniguchi, T.; Iitsuka, T.; Noguchi, M.; Tanaka, S.; Ito, H.; Nakamura, K.; Yasuhara, N.; Miyawaki, C.; et al. Financial literacy and exercise behavior: Evidence from Japan. Sustainability 2021, 13, 4189. [Google Scholar] [CrossRef]
- Watanapongvanich, S.; Binnagan, P.; Putthinun, P.; Khan, M.S.R.; Kadoya, Y. Financial literacy and gambling behavior: Evidence from Japan. J. Gambl. Stud. 2021, 37, 445–465. [Google Scholar] [CrossRef] [Green Version]
- Yuktadatta, P.; Khan, M.S.R.; Kadoya, Y. Financial literacy and exercise behavior in the United States. Sustainability 2021, 13, 9452. [Google Scholar] [CrossRef]
- Grossman, M. On the concept of health capital and the demand for health. J. Pol. Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef] [Green Version]
- Grossman, M. The Human Capital Model. In Handbook of Health Economics; Culyer, A.J., Newhouse, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 1, Available online: https://econpapers.repec.org/bookchap/eeeheachp/1-07.htm (accessed on 8 December 2021).
- WHO-IARC. Asia and cancers. In The Global Cancer Observatory (GLOBOCAN); WHO-IARC: Lyon, France, 2021; Volume 136. [Google Scholar]
- Shah, S.A.; Mahmood, M.I.; Ahmad, N. Low socioeconomic status associated with poor cancer screening perceptions in Malaysia: Analysis of determinant of health among general population. Asian Pac. J. Cancer Prev. 2020, 21, 3137–3144. [Google Scholar] [CrossRef] [PubMed]
- Vrinten, C.; Gallagher, A.; Waller, J.; Marlow, L.A.V. Cancer stigma and cancer screening attendance: A population based survey in England. BMC Cancer 2019, 19, 566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadet, T.J.; Burke, S.L.; Stewart, K.; Howard, T.; Schonberg, M. Cultural and emotional determinants of cervical cancer screening among older Hispanic women. Health Care Women Int. 2017, 38, 1289–1312. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.; Oaten, M.; Occhipinti, S.; Chambers, S.K.; Stevenson, R.J. An investigation of the emotion of disgust as an affective barrier to intention to screen for colorectal cancer. Eur. J. Cancer Care 2017, 26, e12582. [Google Scholar] [CrossRef]
- Morgan, P.J.; Long, T.Q. Financial literacy, financial inclusion, and savings behavior in Laos. J. Asian Econ. 2020, 68, 101197. [Google Scholar] [CrossRef]
- Yoshino, N.; Morgan, P.J.; Trinh, L.Q. Financial Literacy in Japan: Determinants and Impacts; ADBI Working Papers: Tokyo, Japan, 2017. [Google Scholar]
- Bucher-Koenen, T.; Lusardi, A. Financial literacy and retirement planning in Germany. J. Pension Econ. Fin. 2011, 10, 565–584. [Google Scholar] [CrossRef] [Green Version]
- Lusardi, A.; Mitchell, O.S. Financial literacy and retirement planning in the United States. J. Pension Econ. Fin. 2011, 10, 509–525. [Google Scholar] [CrossRef] [Green Version]
- van Rooij, M.C.J.; Lusardi, A.; Alessie, R.J.M. Financial literacy and retirement planning in the Netherlands. J. Econ. Psychol. 2011, 32, 593–608. [Google Scholar] [CrossRef]
- van Rooij, M.C.J.; Lusardi, A.; Alessie, R.J.M. Financial literacy, retirement planning and household wealth. Econ. J. 2012, 122, 449–478. [Google Scholar] [CrossRef]
- Shankaran, V.; Linden, H.; Steelquist, J.; Watabayashi, K.; Kreizenbeck, K.; Leahy, T.; Overstreet, K. Development of a financial literacy course for patients with newly diagnosed cancer. Am. J. Manag. Care 2017, 23, S58–S64. [Google Scholar] [PubMed]
- Benjamin, D.J.; Brown, S.A.; Shapiro, J.M. Who is “behavioral”? cognitive ability and anomalous preferences. J. Eur. Econ. Assoc. 2013, 11, 1231–1255. [Google Scholar] [CrossRef] [PubMed]
- James, R. How Long Can You Have Cancer without Knowing about It? Healthline: San Francisco, CA, USA, 2020. [Google Scholar]
- Bretthauer, M.; Kalager, M. Principles, effectiveness and caveats in screening for cancer. Br. J. Surg. 2013, 100, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.K.; Choi, K.S.; Lee, H.Y.; Suh, M.; Park, B.; Song, S.H.; Jung, K.W.; Lee, C.W.; Choi, I.J.; Park, E.C.; et al. Effectiveness of the Korean national cancer screening program in reducing gastric cancer mortality. Gastroenterology 2017, 152, 1319–1328. [Google Scholar] [CrossRef]
- Pavlik, E.J. Ovarian cancer screening effectiveness: A realization from the UK collaborative trial of ovarian cancer screening. Womens Health 2016, 12, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Rivera, M.P.; Katki, H.A.; Tanner, N.T.; Triplette, M.; Sakoda, L.C.; Wiener, R.S.; Cardarelli, R.; Carter-Harris, L.; Crothers, K.; Fathi, J.T.; et al. Addressing disparities in lung cancer screening eligibility and healthcare access. An official American thoracic society statement. Am. J. Respir. Crit. Care Med. 2020, 202, e95–e112. [Google Scholar] [CrossRef]
- Warren Andersen, S.; Blot, W.J.; Lipworth, L.; Steinwandel, M.; Murff, H.J.; Zheng, W. Association of race and socioeconomic status with colorectal cancer screening, colorectal cancer risk, and mortality in southern US adults. JAMA Netw. Open 2019, 2, e1917995. [Google Scholar] [CrossRef]
- Wools, A.; Dapper, E.A.; de Leeuw, J.R. Colorectal cancer screening participation: A systematic review. Eur. J. Public Health 2016, 26, 158–168. [Google Scholar] [CrossRef]
- Fujiwara, M.; Inagaki, M.; Nakaya, N.; Fujimori, M.; Higuchi, Y.; Kakeda, K.; Uchitomi, Y.; Yamada, N. Association between serious psychological distress and nonparticipation in cancer screening and the modifying effect of socioeconomic status: Analysis of anonymized data from a national cross-sectional survey in Japan. Cancer 2018, 124, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Lusardi, A.; Mitchell, O.S. Planning and financial literacy: How do women fare? Am. Econ. Rev. 2008, 98, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Fornero, E.; Monticone, C. Financial literacy and pension plan participation in Italy. J. Pension Econ. Fin. 2011, 10, 547–564. [Google Scholar] [CrossRef]
- Kadoya, Y.; Khan, M.S.R.; Hamada, T.; Dominguez, A. Financial literacy and anxiety about life in old age: Evidence from the USA. Rev. Econ. Household 2018, 16, 859–878. [Google Scholar] [CrossRef]
- Kadoya, Y.; Khan, M.S.R. Can financial literacy reduce anxiety about life in old age? J. Risk Res. 2018, 21, 1533–1550. [Google Scholar] [CrossRef]
- Kadoya, Y.; Khan, M.S.R. What determines financial literacy in Japan? J. Pension Econ. Fin. 2020, 19, 353–371. [Google Scholar] [CrossRef] [Green Version]
- Klapper, L.; Panos, G.A. Financial literacy and retirement planning: The Russian case. J. Pension Econ. Fin. 2011, 10, 599–618. [Google Scholar] [CrossRef] [Green Version]
- Messy, F.-A.; Monticone, C. Financial Education Policies in Asia and the Pacific; OECD: Paris, France, 2016. [Google Scholar] [CrossRef]
- Watanapongvanich, S.; Khan, M.S.R.; Putthinun, P.; Ono, S.; Kadoya, Y. Financial literacy, financial education, and smoking behavior: Evidence from Japan. Front. Public Health 2021, 8, 612976. [Google Scholar] [CrossRef]
- Sekita, S. Financial literacy and retirement planning in Japan. J. Pension Econ. Fin. 2011, 10, 637–656. [Google Scholar] [CrossRef] [Green Version]
- OECD. The Importance of Financial Education; OECD: Paris, France, 2006. [Google Scholar]
- Amari, M.; Salhi, B.; Jarboui, A. Evaluating the effects of sociodemographic characteristics and financial education on saving behavior. Int. J. Sociol. Soc. Policy 2020, 40, 1423–1438. [Google Scholar] [CrossRef]
- Lusardi, A. Household Saving Behavior: The Role of Literacy, Information and Financial Education Programs; Center for Research on Pensions and Welfare Policies: Turin, Italy, 2007. [Google Scholar]
- Brown, J.R.; Previtero, A. Procrastination, present-biased preferences, and financial behaviors. In Proceedings of the 16th Annual Joint Meeting of the Retirement Research Consortium, Washington, DC, USA, 7–8 August 2014. [Google Scholar]
- Green, B.B.; BlueSpruce, J.; Tuzzio, L.; Vernon, S.W.; Shay, L.A.; Catz, S.L. Reasons for never and intermittent completion of colorectal cancer screening after receiving multiple rounds of mailed fecal tests. BMC Public Health 2017, 17, 531. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, A.; Gneezy, A.; Berry, E.; Miller, S.; Koch, M.; Argenbright, K.E.; Gupta, S. The effect of deadlines on cancer screening completion: A randomized controlled trial. Sci. Rep. 2021, 11, 13876. [Google Scholar] [CrossRef]
- Lentz, R.; Benson, A.B., 3rd; Kircher, S. Financial toxicity in cancer care: Prevalence, causes, consequences, and reduction strategies. J. Surg. Oncol. 2019, 120, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, T.; Menkhoff, L. Does financial education impact financial literacy and financial behavior, and if so, when? World Bank Econ. Rev. 2017, 31, 611–630. [Google Scholar] [CrossRef]
- Fernandes, D.; Lynch, J.G.; Netemeyer, R.G. Financial literacy, financial education, and downstream financial behaviors. Manag. Sci. 2014, 60, 1861–1883. [Google Scholar] [CrossRef]
- Davis, J.L.; Buchanan, K.L.; Katz, R.V.; Green, B.L. Gender differences in cancer screening beliefs, behaviors, and willingness to participate: Implications for health promotion. Am. J. Mens Health 2012, 6, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Wardle, J.; Miles, A.; Atkin, W. Gender differences in utilization of colorectal cancer screening. J. Med. Screen. 2005, 12, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Meissner, H.I.; Breen, N.; Klabunde, C.N.; Vernon, S.W. Patterns of colorectal cancer screening uptake among men and women in the United States. Cancer Epidemiol. Biomark. Prev. 2006, 15, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Teo, C.H.; Ling, C.J.; Ng, C.J. Improving Health Screening Uptake in Men: A Systematic Review and Meta-analysis. Am. J. Prev. Med. 2018, 54, 133–143. [Google Scholar] [CrossRef]
- Kressin, N.R.; Manze, M.; Russell, S.L.; Katz, R.V.; Claudio, C.; Green, B.L.; Wang, M.Q. Self-reported willingness to have cancer screening and the effects of sociodemographic factors. J. Natl. Med. Assoc. 2010, 102, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Starker, A.; Saß, A.-C. Inanspruchnahme von Krebsfrüherkennungsuntersuchungen (Participation in Cancer Screening Programmes). Bundesgesundheitsbl 2013, 56, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, Y.; Nakamura, K.; Takano, T. Reduced likelihood of cancer screening among women in urban areas and with low socio-economic status: A multilevel analysis in Japan. Public Health 2005, 119, 875–884. [Google Scholar] [CrossRef]
- Fukuda, Y.; Nakamura, K.; Takano, T.; Nakao, H.; Imai, H. Socioeconomic status and cancer screening in Japanese males: Large inequality in middle-aged and urban residents. Environ. Health Prev. Med. 2007, 12, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Stimpson, J.P.; Wilson, F.A.; Reyes-Ortiz, C.A. Influence of number of children on cancer screening among adults in the United States. J. Med. Screen. 2009, 16, 170–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osawa, E.; Ojima, T.; Akiyama, Y.; Yamagata, Z. National campaign to promote maternal and child health in 21st century Japan. J. Natl. Inst. Public Health 2019, 68, 2–7. [Google Scholar]
- Hahm, M.I.; Park, E.C.; Choi, K.S.; Lee, H.Y.; Park, J.H.; Park, S. Inequalities in adoption of cancer screening from a diffusion of innovation perspective: Identification of late adopters. Cancer Epidemiol. 2011, 35, 90–96. [Google Scholar] [CrossRef]
- Tabuchi, T. Cancer and Socioeconomic Status. In Springer Series on Epidemiology and Public Health; Springer: Singapore, 2020; pp. 31–40. [Google Scholar]
- Kim, Y.-H.; Kim, K.; Han, K.-d.; Kim, J.-S. Gender differences in elders’ participation in the national cancer screening program: Evidence from the korean national health and nutrition examination survey 2010–12. Iran. J. Public Health 2015, 44, 1176–1186. [Google Scholar]
- Kwak, M.-S.; Park, E.-C.; Bang, J.-Y.; Sung, N.-Y.; Lee, J.-Y.; Choi, K.-S. Factors associated with cancer screening participation, Korea. J. Prev. Med. Public Health 2005, 38, 473–481. [Google Scholar]
- Brunner, E.; Cable, N.; Iso, H. Health in Japan: Social Epidemiology of Japan Since the 1964 Tokyo Olympics; Oxford University Press: Oxford, UK, 2020. [Google Scholar]
- Kondo, K. Spatial persistence of Japanese unemployment rates. Jpn. World Econ. 2015, 36, 113–122. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kang, H.-T. Association between socioeconomic status and cancer screening in Koreans over 40 years in age based on the 2010–2012 Korean national health and nutrition examination survey. Korean J. Fam. Med. 2016, 37, 287–292. [Google Scholar] [CrossRef]
- Kim, H.-J.; Yim, H.-W.; Kim, N.-C. Factors affecting cancer screening intention and behavior of the Korean elderly. Asian Pac. J. Cancer Prev. 2014, 15, 8461–8467. [Google Scholar] [CrossRef] [Green Version]
- Martires, K.J.; Kurlander, D.E.; Minwell, G.J.; Dahms, E.B.; Bordeaux, J.S. Patterns of cancer screening in primary care from 2005 to 2010. Cancer 2014, 120, 253–261. [Google Scholar] [CrossRef]
- Jonnalagadda, S.; Bergamo, C.; Lin, J.J.; Lurslurchachai, L.; Diefenbach, M.; Smith, C.; Nelson, J.E.; Wisnivesky, J.P. Beliefs and attitudes about lung cancer screening among smokers. Lung Cancer 2012, 77, 526–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.M.W.; Andersen, M.R.; Litwin, P. Avoidance and reassurance seeking in response to health anxiety are differentially related to use of healthcare. J. Public Health 2022, 30, 475–480. [Google Scholar] [CrossRef]
- Knudsen, A.K.; Berge, L.I.; Skogen, J.C.; Veddegjærde, K.-E.; Wilhelmsen, I. The prospective association between health anxiety and cancer detection: A cohort study linking the Hordaland Health Study (HUSK) with the norwegian cancer registry. J. Psychosom. Res. 2015, 79, 148–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Chen, L.; Jung, M.Y.; Baezconde-Garbanati, L.; Juon, H.S. Acculturation and cancer screening among Asian Americans: Role of health insurance and having a regular physician. J. Community Health 2014, 39, 201–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeters, N.; Rijk, K.; Soetens, B.; Storms, B.; Hermans, K. A Systematic literature review to identify successful elements for financial education and counseling in groups. J. Consum. Aff. 2018, 52, 415–440. [Google Scholar] [CrossRef]
- Goel, V.; Rosella, L.C.; Fu, L.; Alberga, A. The relationship between life satisfaction and healthcare utilization: A longitudinal study. Am. J. Prev. Med. 2018, 55, 142–150. [Google Scholar] [CrossRef]
- Fitzpatrick, T.; Rosella, L.C.; Calzavara, A.; Petch, J.; Pinto, A.D.; Manson, H.; Goel, V.; Wodchis, W.P. Looking beyond income and education: Socioeconomic status gradients among future high-cost users of health care. Am. J. Prev. Med. 2015, 49, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Rosella, L.C.; Fitzpatrick, T.; Wodchis, W.P.; Calzavara, A.; Manson, H.; Goel, V. High-cost health care users in Ontario, Canada: Demographic, socio-economic, and health status characteristics. BMC Health Serv. Res. 2014, 14, 532. [Google Scholar] [CrossRef] [Green Version]
Variables | Definitions |
---|---|
Number of cancer screenings | Ordinal variable: number of different cancer types screening tests (except breast, uterine cancer) taken within 1 year |
Financial literacy | Continuous variable: average score for number of correct answers from the following three financial literacy questions: 1. Suppose you had 10,000 JPY in a savings account and the interest rate is 2% per year and you never withdraw money or interest payments. After 5 years, how much would you have in this account in total? 2. Imagine that the interest rate on your savings account is 1% per year and inflation is 2% per year. After 1 year, how much would you be able to buy with the money in this account? 3. Please indicate whether the following statement is true or false. “Buying a company stock usually provides a safer return than a stock mutual fund”. |
Financial education | Binary variable: 1 = received compulsory financial education at school, 0 = otherwise |
Male | Binary variable: 1 = male, 0 = female |
Age | Age of participants |
University degree | Binary variable: 1 = obtained a university degree or higher, 0 = otherwise |
Marriage | Binary variable: 1 = married, 0 = otherwise |
Divorce | Binary variable: 1 = divorced, 0 = otherwise |
Household size | The number of people living in the household |
Children | Binary variable: 1 = have at least one child, 0 = otherwise |
Unemployed | Binary variable: 1 = unemployed, 0 = otherwise |
Household income | Annual earned income before taxes and with bonuses of entire household in 2010 (JPY) |
Log of household income | Log (household income) |
Household assets | The balanced amount of financial assets (savings, stocks, insurance, etc.) of entire household (JPY) |
Log of household assets | Log (household assets) |
Current smoker | Binary variable: 1 = smoke (occasionally–more than one pack a day), 0 = do not smoke (never smoke, hardly smoke, already quit smoking) |
Current drinker | Binary variable: 1 = drink (sometimes-5 cans a day), 0 = do not drink (do not drink at all, hardly drink) |
Frequent gambler | Binary variable: 1 = frequent gambler (once a week or more), 0 = otherwise |
Myopic view of the future | Binary variable: 1 = agree/completely agree with “Since the future is uncertain, it is a waste to think about it”, 0 = otherwise |
Current level of happiness | Continuous variable: percentage score from the question “Overall, how happy would you say you are currently?” |
Anxiety about health | Binary variable: 1 = agree/completely agree with “I have anxiety about my health”, 0 = otherwise |
Poor health status | Binary variable: 1 = describe current health status as poor, 0 = otherwise |
Variable | Mean | Standard Deviation (SD) | Min | Max |
---|---|---|---|---|
Main variables | ||||
Number of cancer screenings | 1.1508 | 1.2988 | 0 | 4 |
Financial literacy | 0.6206 | 0.3341 | 0 | 1 |
Financial education | 0.1756 | 0.3806 | 0 | 1 |
Other variables | ||||
Male | 0.4998 | 0.5001 | 0 | 1 |
Age | 55.1381 | 9.2772 | 40 | 77 |
University degree | 0.25 | 0.43 | 0 | 1 |
Marriage | 0.8652 | 0.3416 | 0 | 1 |
Divorce | 0.0423 | 0.2014 | 0 | 1 |
Household size | 3.43 | 1.43 | 1 | 10 |
Children | 0.8819 | 0.3228 | 0 | 1 |
Unemployed | 0.0204 | 0.1415 | 0 | 1 |
Household income | 6,523,023 | 3,845,144 | 1,000,000 | 20,000,000 |
Log of household income | 15.5161 | 0.6151 | 13.8155 | 16.8112 |
Household asset | 14,500,000 | 18,100,000 | 2,500,000 | 100,000,000 |
Log of household asset | 15.9348 | 1.0226 | 14.7318 | 18.4207 |
Current smoker | 0.2165 | 0.4119 | 0 | 1 |
Current Drinker | 0.4764 | 0.4995 | 0 | 1 |
Frequent gambler | 0.0980 | 0.2974 | 0 | 1 |
Myopic view of the future | 0.1682 | 0.3741 | 0 | 1 |
Current level of happiness | 0.6384 | 0.1780 | 0 | 1 |
Anxiety about health | 0.4300 | 0.4952 | 0 | 1 |
Poor health status | 0.0167 | 0.1282 | 0 | 1 |
Observations | 2693 |
Number of Cancer Screenings | Age | Total | ||
---|---|---|---|---|
40–49 | 50–59 | ≥60 | ||
0 | 495 | 400 | 416 | 1311 |
55.93% | 47.45% | 43.11% | 48.68% | |
1 | 114 | 113 | 138 | 365 |
12.88% | 13.4% | 14.3% | 13.55% | |
2 | 113 | 123 | 168 | 404 |
12.77% | 14.59% | 17.41% | 15% | |
3 | 152 | 182 | 192 | 526 |
17.18% | 21.59% | 19.9% | 19.53% | |
4 | 11 | 25 | 51 | 87 |
1.24% | 2.97% | 5.28% | 3.23% | |
Total | 885 | 843 | 965 | 2693 |
100% | 100% | 100% | 100% | |
Mean difference | F = 17.63 *** |
Variables | Dependent Variable: Number of Cancer Screenings | |||||||
---|---|---|---|---|---|---|---|---|
Financial Literacy as Main Explanatory Variable | Financial Education as Main Explanatory Variable | |||||||
Model 1.1 | Model 1.2 | Model 1.3 | Model 1.4 | Model 2.1 | Model 2.2 | Model 2.3 | Model 2.4 | |
Financial literacy | 0.056 | 0.0522 | 0.0486 | 0.04 | ||||
(−0.0676) | (−0.0676) | (−0.0675) | (−0.0677) | |||||
Financial education | 0.103 * | 0.104 * | 0.104 * | 0.110 * | ||||
(−0.0571) | (−0.0569) | (−0.0569) | (−0.0572) | |||||
Male | 0.224 *** | 0.286 *** | 0.284 *** | 0.291 *** | 0.232 *** | 0.293 *** | 0.291 *** | 0.298 *** |
(−0.0467) | (−0.0514) | (−0.0514) | (−0.0517) | (−0.0462) | (−0.0511) | (−0.0511) | (−0.0514) | |
Age | 0.0152 *** | 0.0142 *** | 0.0144 *** | 0.0144 *** | 0.0147 *** | 0.0137 *** | 0.0139 *** | 0.0140 *** |
(−0.00279) | (−0.0028) | (−0.0028) | (−0.00282) | (−0.00279) | (−0.0028) | (−0.0028) | (−0.00282) | |
University degree | 0.0985 * | 0.071 | 0.0691 | 0.0672 | 0.103 * | 0.0747 | 0.0724 | 0.0694 |
(−0.0535) | (−0.0539) | (−0.0539) | (−0.0541) | (−0.0529) | (−0.0533) | (−0.0532) | (−0.0534) | |
Marriage | 0.141 | 0.124 | 0.125 | 0.0913 | 0.137 | 0.12 | 0.121 | 0.0859 |
(−0.0945) | (−0.0945) | (−0.0944) | (−0.0954) | (−0.0944) | (−0.0945) | (−0.0943) | (−0.0953) | |
Divorce | 0.0904 | 0.114 | 0.119 | 0.0882 | 0.098 | 0.121 | 0.126 | 0.095 |
(−0.141) | (−0.141) | (−0.141) | (−0.142) | (−0.141) | (−0.141) | (−0.141) | (−0.142) | |
Household size | −0.00952 | −0.00993 | −0.0104 | −0.00747 | −0.011 | −0.0114 | −0.0117 | −0.00859 |
(−0.0181) | (−0.0181) | (−0.0182) | (−0.0182) | (−0.018) | (−0.0181) | (−0.0181) | (−0.0182) | |
Children | 0.217 *** | 0.211 *** | 0.212 *** | 0.206 ** | 0.214 *** | 0.208 ** | 0.208 *** | 0.201 ** |
(−0.0802) | (−0.0808) | (−0.0807) | (−0.081) | (−0.0804) | (−0.0809) | (−0.0808) | (−0.0811) | |
Unemployed | −0.131 | −0.133 | −0.127 | −0.103 | −0.13 | −0.132 | −0.125 | −0.1 |
(−0.167) | (−0.169) | (−0.169) | (−0.169) | (−0.166) | (−0.169) | (−0.168) | (−0.168) | |
Log of household income | 0.209 *** | 0.207 *** | 0.207 *** | 0.188 *** | 0.211 *** | 0.209 *** | 0.208 *** | 0.188 *** |
(−0.0431) | (−0.0433) | (−0.0433) | (−0.044) | (−0.0431) | (−0.0433) | (−0.0433) | (−0.044) | |
Log of household assets | 0.0732 *** | 0.0645 *** | 0.0631 *** | 0.0543 ** | 0.0754 *** | 0.0665 *** | 0.0649 *** | 0.0553 ** |
(−0.0241) | (−0.0244) | (−0.0244) | (−0.0248) | (−0.0239) | (−0.0241) | (−0.0241) | (−0.0245) | |
Current smoker | −0.274 *** | −0.271 *** | −0.260 *** | −0.276 *** | −0.273 *** | −0.261 *** | ||
(−0.0574) | (−0.0574) | (−0.0574) | (−0.0575) | (−0.0574) | (−0.0575) | |||
Current drinker | 0.0539 | 0.0526 | 0.0475 | 0.0544 | 0.053 | 0.0475 | ||
(−0.0473) | (−0.0474) | (−0.0474) | (−0.0473) | (−0.0474) | (−0.0475) | |||
Frequent gambler | −0.0608 | −0.0588 | −0.059 | −0.0544 | −0.0525 | −0.0521 | ||
(−0.0743) | (−0.0743) | (−0.0743) | (−0.0744) | (−0.0744) | (−0.0744) | |||
Myopic view of the future | −0.0732 | −0.0724 | −0.074 | −0.0728 | ||||
(−0.0593) | (−0.0592) | (−0.0592) | (−0.0592) | |||||
Current level of happiness | 0.380 *** | 0.392 *** | ||||||
(−0.136) | (−0.136) | |||||||
Anxiety about health | 0.0521 | 0.0502 | ||||||
(−0.0451) | (−0.0451) | |||||||
Poor health status | −0.108 | −0.122 | ||||||
(−0.178) | (−0.178) | |||||||
Constant cut1 | 5.660 *** | 5.409 *** | 5.369 *** | 5.179 *** | 5.684 *** | 5.427 *** | 5.383 *** | 5.174 *** |
(−0.676) | (−0.679) | (−0.681) | (−0.687) | (−0.675) | (−0.677) | (−0.679) | (−0.685) | |
Constant cut2 | 6.020 *** | 5.771 *** | 5.731 *** | 5.542 *** | 6.044 *** | 5.789 *** | 5.746 *** | 5.537 *** |
(−0.677) | (−0.68) | (−0.682) | (−0.687) | (−0.676) | (−0.678) | (−0.68) | (−0.685) | |
Constant cut3 | 6.469 *** | 6.223 *** | 6.185 *** | 5.996 *** | 6.494 *** | 6.242 *** | 6.199 *** | 5.991 *** |
(−0.678) | (−0.681) | (−0.683) | (−0.688) | (−0.677) | (−0.679) | (−0.681) | (−0.686) | |
Constant cut4 | 7.617 *** | 7.377 *** | 7.338 *** | 7.152 *** | 7.643 *** | 7.397 *** | 7.354 *** | 7.148 *** |
(−0.676) | (−0.679) | (−0.681) | (−0.686) | (−0.675) | (−0.677) | (−0.679) | (−0.684) | |
Observations | 2693 | 2693 | 2693 | 2693 | 2693 | 2693 | 2693 | 2693 |
Log pseudolikelihood | −3510 | −3497 | −3496 | −3492 | −3508 | −3496 | −3495 | −3490 |
Χ2 statistics | 168.1 | 194.3 | 197.1 | 202.4 | 169.9 | 196.8 | 199.9 | 205.6 |
p-value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Variables | Dependent Variable: The Number of Cancer Screening. | |||
---|---|---|---|---|
Model 3.1 | Model 3.2 | Model 3.3 | Model 3.4 | |
Financial literacy | 0.0541 | 0.0503 | 0.0467 | 0.0398 |
(−0.0675) | (−0.0675) | (−0.0674) | (−0.0676) | |
Financial education | 0.102 * | 0.104 * | 0.103 * | 0.110 * |
(−0.0571) | (−0.0569) | (−0.0569) | (−0.0572) | |
Male | 0.227 *** | 0.288 *** | 0.286 *** | 0.294 *** |
(−0.0467) | (−0.0515) | (−0.0514) | (−0.0517) | |
Age | 0.0148 *** | 0.0137 *** | 0.0140 *** | 0.0140 *** |
(−0.0028) | (−0.00281) | (−0.0028) | (−0.00282) | |
University degree | 0.0970 * | 0.0695 | 0.0676 | 0.0655 |
(−0.0535) | (−0.0539) | (−0.0539) | (−0.054) | |
Marriage | 0.137 | 0.12 | 0.121 | 0.0864 |
(−0.0944) | (−0.0945) | (−0.0943) | (−0.0953) | |
Divorce | 0.0964 | 0.119 | 0.125 | 0.0941 |
(−0.141) | (−0.141) | (−0.141) | (−0.142) | |
Household size | −0.0101 | −0.0105 | −0.0109 | −0.00793 |
(−0.0181) | (−0.0181) | (−0.0181) | (−0.0182) | |
Children | 0.213 *** | 0.207 ** | 0.208 ** | 0.201 ** |
(−0.0804) | (−0.0809) | (−0.0808) | (−0.0811) | |
Unemployed | −0.13 | −0.132 | −0.125 | −0.101 |
(−0.166) | (−0.168) | (−0.168) | (−0.168) | |
Log of household income | 0.208 *** | 0.207 *** | 0.206 *** | 0.187 *** |
(−0.0431) | (−0.0433) | (−0.0433) | (−0.044) | |
Log of household assets | 0.0724 *** | 0.0638 *** | 0.0624 ** | 0.0533 ** |
(−0.0242) | (−0.0244) | (−0.0244) | (−0.0248) | |
Current smoker | −0.276 *** | −0.273 *** | −0.261 *** | |
(−0.0574) | (−0.0574) | (−0.0575) | ||
Current drinker | 0.0542 | 0.0529 | 0.0474 | |
(−0.0473) | (−0.0474) | (−0.0475) | ||
Frequent gambler | −0.0545 | −0.0525 | −0.0522 | |
(−0.0744) | (−0.0744) | (−0.0744) | ||
Myopic view of the future | −0.0723 | −0.0714 | ||
(−0.0592) | (−0.0592) | |||
Current level of happiness | 0.389 *** | |||
(−0.136) | ||||
Anxiety about health | 0.0511 | |||
(−0.0451) | ||||
Poor health status | −0.122 | |||
(−0.178) | ||||
Constant cut1 | 5.626 *** | 5.374 *** | 5.335 *** | 5.136 *** |
(−0.676) | (−0.679) | (−0.681) | (−0.686) | |
Constant cut2 | 5.986 *** | 5.736 *** | 5.698 *** | 5.499 *** |
(−0.677) | (−0.679) | (−0.682) | (−0.687) | |
Constant cut3 | 6.436 *** | 6.190 *** | 6.151 *** | 5.953 *** |
(−0.678) | (−0.68) | (−0.683) | (−0.688) | |
Constant cut4 | 7.586 *** | 7.345 *** | 7.306 *** | 7.111 *** |
(−0.677) | (−0.678) | (−0.68) | (−0.685) | |
Observations | 2693 | 2693 | 2693 | 2693 |
Log pseudolikelihood | −3508 | −3495 | −3495 | −3490 |
Χ2 statistics | 170.5 | 197.2 | 200.1 | 205.8 |
p-value | 0 | 0 | 0 | 0 |
Variables | Dependent Variable: Number of Cancer Screenings | ||
---|---|---|---|
Model 3.4.1 (40–49) | Model 3.4.2 (50–59) | Model 3.4.3 (≥60) | |
Financial literacy | 0.0473 | 0.0391 | 0.0292 |
(−0.125) | (−0.128) | (−0.106) | |
Financial education | −0.00433 | 0.210 ** | 0.0779 |
(−0.129) | (−0.0924) | (−0.0899) | |
Male | 0.126 | 0.407 *** | 0.368 *** |
(−0.0913) | (−0.0955) | (−0.0888) | |
Age | 0.0354 *** | −0.0036 | 0.0136 |
(−0.0137) | (−0.0138) | (−0.00843) | |
University degree | 0.268 *** | 0.0776 | −0.168 * |
(−0.0932) | (−0.0937) | (−0.0977) | |
Marriage | −0.0116 | −0.128 | 0.202 |
(−0.198) | (−0.205) | (−0.137) | |
Divorce | 0.129 | −0.263 | 0.271 |
(−0.254) | (−0.309) | (−0.219) | |
Household size | 0.0148 | −0.0207 | −0.033 |
(−0.035) | (−0.0305) | (−0.0311) | |
Children | 0.218 | 0.339 ** | 0.14 |
(−0.176) | (−0.149) | (−0.127) | |
Unemployed | −0.755 ** | −0.0544 | 0.259 |
(−0.312) | (−0.318) | (−0.257) | |
Log of household income | 0.259 *** | 0.146 * | 0.197 *** |
(−0.0954) | (−0.0761) | (−0.0699) | |
Log of household assets | 0.0211 | 0.0626 | 0.0625 |
(−0.0539) | (−0.0428) | (−0.0384) | |
Current smoker | −0.197 ** | −0.342 *** | −0.225 ** |
(−0.0955) | (−0.103) | (−0.102) | |
Current drinker | 0.0235 | 0.0423 | −0.00132 |
(−0.0855) | (−0.0842) | (−0.0822) | |
Frequent gambler | −0.142 | −0.0956 | 0.0868 |
(−0.132) | (−0.118) | (−0.146) | |
Myopic view of the future | −0.184 | 0.0499 | −0.0961 |
(−0.115) | (−0.106) | (−0.0925) | |
Current level of happiness | 0.611 *** | 0.17 | 0.440 * |
(−0.229) | (−0.257) | (−0.234) | |
Anxiety about health | 0.0919 | −0.0269 | 0.0773 |
(−0.0824) | (−0.0824) | (−0.0743) | |
Poor health status | −0.242 | −0.0631 | −0.0937 |
(−0.542) | (−0.355) | (−0.224) | |
Constant cut1 | 6.848 *** | 3.456 *** | 5.432 *** |
(−1.467) | (−1.341) | (−1.236) | |
Constant cut2 | 7.213 *** | 3.813 *** | 5.807 *** |
(−1.468) | (−1.342) | (−1.238) | |
Constant cut3 | 7.649 *** | 4.248 *** | 6.303 *** |
(−1.471) | (−1.342) | (−1.240) | |
Constant cut4 | 9.070 *** | 5.494 *** | 7.297 *** |
(−1.467) | (−1.342) | (−1.236) | |
Observations | 885 | 843 | 965 |
Log pseudolikelihood | −1026 | −1097 | −1339 |
Chi2 statistics | 100.2 | 61.11 | 68.03 |
p-value | 0 | 2.58 × 10−6 | 1.95 × 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.X.T.; Lal, S.; Abdul-Salam, S.; Khan, M.S.R.; Kadoya, Y. Financial Literacy, Financial Education, and Cancer Screening Behavior: Evidence from Japan. Int. J. Environ. Res. Public Health 2022, 19, 4457. https://doi.org/10.3390/ijerph19084457
Nguyen TXT, Lal S, Abdul-Salam S, Khan MSR, Kadoya Y. Financial Literacy, Financial Education, and Cancer Screening Behavior: Evidence from Japan. International Journal of Environmental Research and Public Health. 2022; 19(8):4457. https://doi.org/10.3390/ijerph19084457
Chicago/Turabian StyleNguyen, Trinh Xuan Thi, Sumeet Lal, Sulemana Abdul-Salam, Mostafa Saidur Rahim Khan, and Yoshihiko Kadoya. 2022. "Financial Literacy, Financial Education, and Cancer Screening Behavior: Evidence from Japan" International Journal of Environmental Research and Public Health 19, no. 8: 4457. https://doi.org/10.3390/ijerph19084457
APA StyleNguyen, T. X. T., Lal, S., Abdul-Salam, S., Khan, M. S. R., & Kadoya, Y. (2022). Financial Literacy, Financial Education, and Cancer Screening Behavior: Evidence from Japan. International Journal of Environmental Research and Public Health, 19(8), 4457. https://doi.org/10.3390/ijerph19084457