Utilization Intention of Community Pharmacy Service under the Dual Threats of Air Pollution and COVID-19 Epidemic: Moderating Effects of Knowledge and Attitude toward COVID-19
Abstract
:1. Introduction
1.1. Reseach Background
1.2. Literature Review
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Data Analysis
3. Results
3.1. Subjects Profile
3.2. Analyses of Variables
3.3. Associations among Variables
4. Discussion
4.1. Variations of Perceived Threats and Benefits
4.2. District and Socioeconomic Factors of Samples from High Air Pollution Regions
4.3. Area
4.4. Gender
4.5. Education
4.6. Knowledge and Attitude as Moderator
4.7. Telepharmacy
5. Conclusions, Limitations, and Future Research
5.1. Conlusions
5.2. Limitation of the Study
5.3. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Taiwan Centers for Diseases Control (CDC). COVID-19 (SARS-CoV-2 Infection). Available online: https://sites.google.com/cdc.gov.tw/2019-ncov/ (accessed on 5 January 2022).
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [Green Version]
- Landrigan, P.J. Air pollution and health. Lancet Public Health 2017, 2, e4–e5. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Bherwani, H.; Gautam, S.; Anjum, S.; Musugu, K.; Kumar, N.; Anshul, A.; Kumar, R. Air pollution aggravating COVID-19 lethality? Exploration in Asian cities using statistical models. Environ. Dev. Sustain. 2021, 23, 6408–6417. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. Air pollution declines during COVID-19 lockdowns mitigate the global health burden. Environ. Res. 2021, 192, 110403. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tao, S.; Zhang, Y.; Li, S.; Ma, L.; Yu, Y.; Sun, G.; Li, T.; Tao, F. Geographic distribution of mental health problems among Chinese college students during the COVID-19 pandemic: Nationwide, web-based survey study. J. Med. Internet Res. 2021, 23, e23126. Available online: https://www.jmir.org/2021/1/e23126 (accessed on 9 March 2022). [CrossRef] [PubMed]
- Pope, C.A., 3rd. Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who’s at risk? Environ. Health Perspect. 2000, 108 (Suppl. 4), 713–723. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Environment Protection Administration (EPA). Month Report on Days of Poor Air Quality Executive Yuan, Taiwan, R.O.C. Available online: https://airtw.epa.gov.tw/CHT/Query/Bad_Day.aspx (accessed on 1 March 2022).
- Industry Development Bureau (IDB). Industrial Land Use and Supply Service, Industrial Development Bureau, MOEA, Taiwan, R.O.C. Available online: https://idbpark.moeaidb.gov.tw/ (accessed on 1 March 2022).
- Okoro, R.N. COVID-19 pandemic: The role of community pharmacists in chronic kidney disease management supportive care. Res. Soc. Adm. Pharm. 2021, 17, 1925–1928. [Google Scholar] [CrossRef]
- National Health Insurance Administration (NHIA). Medical Service Indicator (updated: 23 December 2021). Available online: https://www.nhi.gov.tw/english/Content_List (accessed on 5 January 2022).
- Janz, N.K.; Becker, M.H. The health belief model: A decade later. Health Educ. Q. 1984, 11, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, A.L.; Dogaru, B.C.; Duta, C.; Manolescu, B.N. Testing five social-cognitive models to explain predictors of personal oral health behaviours and intention to improve them. Oral. Health Prev. Dent. 2014, 12, 345–355. [Google Scholar]
- Champion, V.L.; Skinner, C.S. The health belief model. In Health Behavior and Health Education: Theory, Research, and Practice, 4th ed.; Glanz, K., Rimer, B.K., Viswanath, K., Eds.; Jossey-Bass: San Francisco, CA, USA, 2008; Volume 4, pp. 45–65. [Google Scholar]
- Rosenstock, I.M. The health belief model and preventive health behavior. Health Educ. Monogr. 1974, 2, 354–386. [Google Scholar] [CrossRef]
- Rosenstock, I.M.; Strecher, V.J.; Becker, M.H. Social learning theory and the health belief model. Health Edu. Q. 1988, 15, 175–183. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy: The Exercise of Control; W. H. Freeman: New York, NY, USA, 1997. [Google Scholar]
- Tanner-Smith, E.E.; Brown, T.N. Evaluating the Health Belief Model: A critical review of studies predicting mammographic and pap screening. Soc. Theory Health 2010, 8, 95–125. [Google Scholar] [CrossRef]
- Tong, K.K.; Chen, J.H.; Yu, E.W.Y.; Wu, A.M. Adherence to COVID-19 precautionary measures: Applying the health belief model and generalised social beliefs to a probability community sample. Appl. Psychol. Health Well-Being 2020, 12, 1205–1223. [Google Scholar] [CrossRef]
- Syed, M.H.; Meraya, A.M.; Yasmeen, A.; Albarraq, A.A.; Alqahtani, S.S.; Syed, N.K.A.; Algarni, M.A.; Alam, N. Application of the health belief model to assess community preventive practices against COVID-19 in Saudi Arabia. Saudi Pharm. J. 2021, 29, 1329–1335. [Google Scholar] [CrossRef]
- Bechard, L.E.; Bergelt, M.; Neudorf, B.; DeSouza, T.C.; Middleton, L.E. Using the health belief model to understand age differences in perceptions and responses to the COVID-19 pandemic. Front. Psychol. 2021, 12, 1216. [Google Scholar] [CrossRef]
- Suess, C.; Maddock, J.E.; Dogru, T.; Mody, M.; Lee, S. Using the health belief model to examine travelers’ willingness to vaccinate and support for vaccination requirements prior to travel. Tour Manag. 2022, 88, 104405. [Google Scholar] [CrossRef]
- Dewey, J. The theory of emotion. Psychol. Rev. 1895, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Valence, G.; d’Astous, A.; Fortier, L. Compulsive buying: Concept and measurement. J. Consum. Policy 1988, 11, 419–433. [Google Scholar] [CrossRef]
- Poole, M.S.; Van de Ven, A.H. Using paradox to build management and organization theories. Acad. Manag. Rev. 1989, 14, 562–578. [Google Scholar] [CrossRef]
- Lewis, M.W.; Smith, W.K. Paradox as a metatheoretical perspective: Sharpening the focus and widening the scope. J. Appl. Behav. Sci. 2014, 50, 127–149. [Google Scholar] [CrossRef]
- Sleesman, D.J. Pushing through the tension while stuck in the mud: Paradox mindset and escalation of commitment. Organ Behav Hum Decis Process 2019, 155, 83–96. [Google Scholar] [CrossRef]
- Govaerts, M.J.; van der Vleuten, C.P.; Holmboe, E.S. Managing tensions in assessment: Moving beyond either–or thinking. Med. Educ. 2019, 53, 64–75. [Google Scholar] [CrossRef]
- Gioia, D.A.; Manz, C.C. Linking cognition and behavior: A script processing interpretation of vicarious learning. Acad. Manag. Rev. 1985, 10, 527–539. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Englewood Cliffs: Prentice Hall, NJ, USA, 1986. [Google Scholar]
- Roberts, D. Vicarious learning: A review of the literature. Nurse Educ. Pract. 2010, 10, 13–16. [Google Scholar] [CrossRef]
- Askew, C.; Field, A.P. Vicarious learning and the development of fears in childhood. Behav. Res. Ther. 2007, 45, 2616–2627. [Google Scholar] [CrossRef]
- Kim, J.Y.; Miner, A.S. Vicarious learning from the failures and near-failures of others: Evidence from the US commercial banking industry. Acad. Manag. J. 2007, 50, 687–714. [Google Scholar] [CrossRef] [Green Version]
- Bandura, A. The explanatory and predictive scope of self-efficacy theory. J. Soc. Clin. Psychol. 1986, 4, 359–373. [Google Scholar] [CrossRef]
- Carpenter, C.J. A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Commun. 2010, 25, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Glasgow, R.E.; Peeples, M.; Skovlund, S.E. Where is the patient in diabetes performance measures? The case for including patient-centered and self-management measures. Diabetes Care 2008, 31, 1046–1050. [Google Scholar] [CrossRef] [Green Version]
- Bandura, A. The anatomy of stages of change. Am. J. Health Promot. 1997, 12, 8–10. [Google Scholar] [CrossRef]
- Peng, Y.; Pei, C.; Zheng, Y.; Wang, J.; Zhang, K.; Zheng, Z.; Zhu, P. A cross-sectional survey of knowledge, attitude and practice associated with COVID-19 among undergraduate students in China. BMC Public Health 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Azlan, A.A.; Hamzah, M.R.; Sern, T.J.; Ayub, S.H.; Mohamad, E. Public knowledge, attitudes and practices towards COVID-19: A cross-sectional study in Malaysia. PLoS ONE 2020, 15, e0233668. [Google Scholar] [CrossRef]
- Sari, D.K.; Amelia, R.; Dharmajaya, R.; Sari, L.M.; Fitri, N.K. Positive correlation between general public knowledge and attitudes regarding COVID-19 outbreak 1 month after first cases reported in Indonesia. J. Community Health 2021, 46, 182–189. [Google Scholar] [CrossRef]
- Cai, G.; Hong, Y.; Xu, L.; Gao, W.; Wang, K.; Chi, X. An evaluation of green ryokans through a tourism accommodation survey and customer-satisfaction-related CASBEE–IPA after COVID-19 pandemic. Sustainability 2021, 13, 145. [Google Scholar] [CrossRef]
- Abdelhafiz, A.S.; Mohammed, Z.; Ibrahim, M.E.; Ziady, H.H.; Alorabi, M.; Ayyad, M.; Sultan, E.A. Knowledge, perceptions, and attitude of Egyptians towards the novel coronavirus disease (COVID-19). J. Community Health 2020, 45, 881–890. [Google Scholar] [CrossRef]
- Özdin, S.; Bayrak Özdin, Ş. Levels and predictors of anxiety, depression and health anxiety during COVID-19 pandemic in Turkish society: The importance of gender. Int. J. Soc. Psychiatry 2020, 66, 504–511. [Google Scholar] [CrossRef]
- Al-Hanawi, M.K.; Angawi, K.; Alshareef, N.; Qattan, A.; Helmy, H.Z.; Abudawood, Y.; AlQurashi, M.; Kattan, W.; Kadasah, N.A.; Chirwa, G.C.; et al. Knowledge, attitude and practice toward COVID-19 among the public in the Kingdom of Saudi Arabia: A cross-sectional study. Front. Public Health 2020, 8, 217. [Google Scholar] [CrossRef]
- Luceño-Moreno, L.; Talavera-Velasco, B.; Jaén-Díaz, M.; Martín-García, J. Hardy personality assessment: Validating the Occupational Hardiness Questionnaire in police officers. Prof. Psychol. Res. Pract. 2020, 51, 297. [Google Scholar] [CrossRef]
- Gallè, F.; Sabella, E.A.; Ferracuti, S.; De Giglio, O.; Caggiano, G.; Protano, C.; Valeriani, F.; Parisi, E.A.; Valerio, G.; Liguori, G.; et al. Sedentary behaviors and physical activity of Italian undergraduate students during lockdown at the time of COVID-19 pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6171. [Google Scholar] [CrossRef]
- Ng, T.W.; Feldman, D.C. Age, work experience, and the psychological contract. J. Organ. Behav. 2009, 30, 1053–1075. [Google Scholar] [CrossRef]
- Aiken, L.S.; West, S.G.; Reno, R.R. Multiple Regression: Testing and Interpreting Interactions; Sage: Thousand Oaks, CA, USA, 1991. [Google Scholar]
- Harrison, J.A.; Mullen, P.D.; Green, L.W. A meta-analysis of studies of the health belief model with adults. Health Educ. Res. 1992, 7, 107–116. [Google Scholar] [CrossRef]
- Hyman, R.B.; Baker, S.; Ephraim, R.; Moadel, A.; Philip, J. Health Belief Model variables as predictors of screening mammography utilization. J. Behav. Med. 1994, 17, 391–406. [Google Scholar] [CrossRef]
- Determann, D.; Lambooij, M.S.; de Bekker-Grob, E.W.; Hayen, A.P.; Varkevisser, M.; Schut, F.T.; de Wit, G.A. What health plans do people prefer? The trade-off between premium and provider choice. Soc. Sci. Med. 2016, 165, 10–18. [Google Scholar] [CrossRef]
- Tibuakuu, M.; Michos, E.D.; Navas-Acien, A.; Jones, M.R. Air pollution and cardiovascular disease: A focus on vulnerable populations worldwide. Curr. Epidemiol. Rep. 2018, 5, 370–378. [Google Scholar] [CrossRef]
- Servadio, J.L.; Lawal, A.S.; Davis, T.; Bates, J.; Russell, A.G.; Ramaswami, A.; Convertino, M.; Botchwey, N. Demographic inequities in health outcomes and air pollution exposure in the Atlanta area and its relationship to urban infrastructure. J. Urban Health 2019, 96, 219–234. [Google Scholar] [CrossRef]
- Li, L.; Jing, R.; Guo, J.; Song, Y.; Geng, S.; Wang, J.; Zhang, H.; Lai, X.; Lyu, Y.; Feng, H.; et al. The associations of geographic location and perceived risk of infection with the intentions to get vaccinated against COVID-19 in China. Expert Rev. Vaccines 2021, 20, 1351–1360. [Google Scholar] [CrossRef]
- Daoust, J.F. Elderly people and responses to COVID-19 in 27 Countries. PLoS ONE 2020, 15, e0235590. [Google Scholar] [CrossRef]
- Hogan, C.; Atta, M.; Anderson, P.; Stead, T.; Solomon, M.; Banerjee, P.; Sleigh, B.; Shivdat, J.; McAdams, A.W.; Ganti, L. Knowledge and attitudes of us adults regarding COVID-19. Int. J. Emerg. Med. 2020, 13, 1–6. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Gender and COVID-19: Advocacy Brief 14 May 2020. Available online: WHO/2019-nCoV/Advocacy_brief/Gender/2020.1 (accessed on 5 January 2022).
- Spagnolo, P.A.; Manson, J.E.; Joffe, H. Sex and gender differences in health: What the COVID-19 pandemic can teach us. Ann. Intern. Med. 2020, 173, 385–386. [Google Scholar] [CrossRef]
- Rogers, R.W. A protection motivation theory of fear appeals and attitude change1. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Nino, M.; Harris, C.; Drawve, G.; Fitzpatrick, K.M. Race and ethnicity, gender, and age on perceived threats and fear of COVID-19: Evidence from two national data sources. SSM Popul. Health 2021, 13, 100717. [Google Scholar] [CrossRef] [PubMed]
- Carcioppolo, N.; Christy, K.R.; Jensen, J.D.; King, A.J.; Goonewardene, J.; Raftery, D. Biomarker profiling for breast cancer detection: Translational research to determine acceptance of a novel breast cancer screening technique. Health Syst. 2019, 8, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Ko, N.Y.; Lu, W.H.; Chen, Y.L.; Li, D.J.; Chang, Y.P.; Wang, P.W.; Yen, C.F. Cognitive, affective, and behavioral constructs of COVID-19 health beliefs: A comparison between sexual minority and heterosexual individuals in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 4282. [Google Scholar] [CrossRef]
- Baldoni, S.; Amenta, F.; Ricci, G. Telepharmacy services: Present status and future perspectives: A review. Medicina 2019, 55, 327. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.L.; Su, C.L.; Lin, F.L.; Li, C.Y.; Huang, L.J.; Wang, L.H.; Huang, C.F. Telepharmacy. Formosa J. Med. 2020, 24, 586–594. (In Chinese) [Google Scholar] [CrossRef]
- Liu, M.C.; Chang, Y.C.; Hsieh, Y.H. The opportunity and challenge of telepharmacy apply to long term care institution. J. Taiwan Phar. 2010, 26, 144–149. (In Chinese) [Google Scholar]
- Ibrahim, O.M.; Ibrahim, R.M.; Abdel-Qader, D.H.; Al Meslamani, A.Z.; Al Mazrouei, N. Evaluation of Telepharmacy Services in Light of COVID-19. Telemed E-Health 2021, 27, 649–656. [Google Scholar] [CrossRef]
Year | 2018 | 2019 | 2020 | 2021 | ||||
---|---|---|---|---|---|---|---|---|
Station/days | A | B | A | B | A | B | A | B |
Avg. | 141 | 91 | 43 | 19 | 32 | 10 | 33 | 18 |
A1 Cianjhen | 210 | 209 | 98 | 59 | 74 | 32 | 64 | 45 |
A2 Daliao | 243 | 170 | 57 | 57 | 30 | 30 | 73 | 56 |
A3 Fongshan | 217 | 212 | 46 | 46 | 20 | 20 | 54 | 54 |
A4 Linyuan | 245 | 71 | 67 | 36 | 53 | 18 | 102 | 41 |
A5 Siaogang | 249 | 215 | 98 | 47 | 79 | 27 | 57 | 47 |
Factors | Category | n | % |
---|---|---|---|
Gender | Male | 157 | 41.87 |
Female | 218 | 58.13 | |
Age | <30 | 73 | 19.47 |
31–40 | 114 | 30.40 | |
41–50 | 101 | 26.93 | |
51–60 | 65 | 17.33 | |
>61 | 22 | 5.87 | |
Marriage | Married | 241 | 64.27 |
Single | 134 | 35.73 | |
Education | <High School | 66 | 17.60 |
College | 244 | 65.07 | |
Master’s & up | 65 | 17.33 | |
Occupation | Office workers | 109 | 29.07 |
State employee | 38 | 10.13 | |
Self-business | 56 | 14.93 | |
Healthcare | 50 | 13.33 | |
Home keeping | 122 | 32.53 | |
Income | 30 K or lower | 45 | 12.00 |
31–40 K | 114 | 30.40 | |
41–50 K | 104 | 27.73 | |
51–60 K | 56 | 14.93 | |
61 K and up | 56 | 14.93 | |
District | Cianjhen | 55 | 14.67 |
Daliao | 61 | 16.27 | |
Fongshan | 67 | 17.87 | |
Linyuan | 75 | 20.00 | |
Siaogang | 117 | 31.20 |
Var. | M | SD | Sex | Mar. | Age a | Edu b | Income c | Job d | Area e |
---|---|---|---|---|---|---|---|---|---|
Sus. | 3.36 | 0.81 | n. s. | n. s. | n. s. | n. s. | n. s. | 2 > 1,5 * | 5 > 1,2,3,4 *** |
Sev. | 4.12 | 0.68 | n. s. | n. s. | 3,4 > 1 | n. s. | n. s. | 4 > 1,3,5 *** | n. s. |
Ben. | 3.74 | 0.65 | n. s. | n. s. | n. s. | n. s. | 5 > 1,2 *** | n. s. | n. s. |
Bar. | 2.90 | 0.74 | n. s. | n. s. | 1 > 3,4 * | 1 > 2 * | n. s. | n. s. | n. s. |
SE | 3.65 | 0.78 | n. s. | n. s. | n. s. | n. s. | 5 > 1,3 ** | n. s. | 2,3 > 5;3 > 1 *** |
Int. | 3.97 | 0.75 | n. s. | n. s. | 4 > 2 ** | n. s. | 5 > 1,3 ** | n. s. | n. s. |
Know. | 3.72 | 0.86 | n. s. | n. s. | n. s. | 2,3 > 1 *** | 5 > 1,2,3 *** | 4 > 1,2,3,5 *** | 5 > 3,4 *** |
Att. | 3.58 | 0.89 | n. s. | n. s. | n. s. | 2,3 > 1 *** | 5 > 1,2,3 *** | 4 > 1,2,3,5 *** | 5 > 3,4;1 > 3 *** |
M1 | M2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Unstd. | Std. | t | p | Unstd. | Std. | t | p | |||
B est. | SE | β | ||||||||
(constant) | 3.136 | 0.302 | 10.388 *** | 0.000 | 0.994 | 0.318 | 3.127 ** | 0.002 | ||
Gender | 0.051 | 0.089 | 0.033 | 0.566 | 0.572 | 0.026 | 0.072 | 0.017 | 0.365 | 0.716 |
Age | 0.043 | 0.039 | 0.065 | 1.102 | 0.271 | 0.023 | 0.032 | 0.035 | 0.717 | 0.474 |
Marriage | 0.083 | 0.091 | 0.053 | 0.909 | 0.364 | 0.075 | 0.073 | 0.048 | 1.027 | 0.305 |
Income | 0.106 | 0.037 | 0.175 | 2.885 ** | 0.004 | 0.022 | 0.030 | 0.037 | 0.742 | 0.458 |
Education. | 0.028 | 0.076 | 0.022 | 0.370 | 0.711 | 0.034 | 0.061 | 0.026 | 0.548 | 0.584 |
Occupation | 0.016 | 0.024 | 0.035 | 0.670 | 0.503 | −0.014 | 0.019 | −0.030 | −0.724 | 0.470 |
District | 0.034 | 0.030 | 0.066 | 1.164 | 0.245 | 0.031 | 0.025 | 0.059 | 1.237 | 0.217 |
Threat | 0.226 | 0.051 | 0.189 | 4.401 *** | 0.000 | |||||
Net benefit | 0.206 | 0.032 | 0.275 | 6.410 *** | 0.000 | |||||
Self-efficacy | 0.428 | 0.042 | 0.441 | 10.084 *** | 0.000 | |||||
R | 0.198 | 0.625 | ||||||||
R2 | 0.039 | 0.390 | ||||||||
Adj. R2 | 0.021 | 0.373 | ||||||||
△R2 | 0.351 | |||||||||
F | 23.278 | |||||||||
p | 0.000 |
DV | Perceived Threat | Likelihood of Action | PSU Intention | |||
---|---|---|---|---|---|---|
District | Β | p | β | p | β | p |
A1 Cianjhen | −0.257 *** | 0.000 | −0.128 * | 0.041 | −0.131 * | 0.039 |
A2 Daliao | −0.262 *** | 0.000 | 0.069 | 0.240 | 0.034 | 0.565 |
A3 Fongshan | −0.301 *** | 0.000 | −0.018 | 0.759 | 0.029 | 0.633 |
A4 Linyuan | −0.307 *** | 0.000 | −0.012 | 0.836 | 0.023 | 0.691 |
A5 Siaogang | 0.000 | 0.000 | 0.000 | |||
R | 0.359 | 0.264 | 0.233 | |||
R2 | 0.129 | 0.070 | 0.054 | |||
Adj. R2 | 0.105 | 0.044 | 0.029 | |||
F | 5.401 *** | 0.000 | 2.720 ** | 0.003 | 2.098 * | 0.024 |
IV-DV | Unstd. | Std. | t | P | |
---|---|---|---|---|---|
Threat | B est. | SE | β | ||
(constant) | 0.039 | 0.275 | 0.140 | 0.889 | |
Threat (Z) | 0.237 | 0.060 | 0.237 *** | 3.962 | 0.000 |
KA (Z) | 0.004 | 0.073 | 0.003 | 0.057 | 0.954 |
Threat (Z) x KA (Z) | −0.100 | 0.049 | −0.103 * | −2.038 | 0.042 |
Net benefit | |||||
(constant) | −0.502 | 0.222 | −2.255 * | 0.025 | |
Likelihood (Z) | 0.369 | 0.048 | 0.369 | 7.719 *** | 0.000 |
KA (Z) | 0.137 | 0.060 | 0.111 | 2.297 * | 0.022 |
Net benefit (Z) x KA (Z) | 0.021 | 0.046 | 0.022 | 0.450 | 0.653 |
Self-efficacy | |||||
(constant) | −0.687 | 0.204 | −3.369 ** | 0.001 | |
Self-efficacy (Z) | 0.517 | 0.044 | 0.517 | 11.665 *** | 0.000 |
KA (Z) | 0.188 | 0.055 | 0.152 | 3.456 ** | 0.001 |
Self-efficacy (Z) x KA (Z) | 0.048 | 0.046 | 0.046 | 1.038 | 0.300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.-M.; Wu, H.-W.; Liao, H.-E. Utilization Intention of Community Pharmacy Service under the Dual Threats of Air Pollution and COVID-19 Epidemic: Moderating Effects of Knowledge and Attitude toward COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 3744. https://doi.org/10.3390/ijerph19063744
Deng Y-M, Wu H-W, Liao H-E. Utilization Intention of Community Pharmacy Service under the Dual Threats of Air Pollution and COVID-19 Epidemic: Moderating Effects of Knowledge and Attitude toward COVID-19. International Journal of Environmental Research and Public Health. 2022; 19(6):3744. https://doi.org/10.3390/ijerph19063744
Chicago/Turabian StyleDeng, Yueen-Mei, Hong-Wei Wu, and Hung-En Liao. 2022. "Utilization Intention of Community Pharmacy Service under the Dual Threats of Air Pollution and COVID-19 Epidemic: Moderating Effects of Knowledge and Attitude toward COVID-19" International Journal of Environmental Research and Public Health 19, no. 6: 3744. https://doi.org/10.3390/ijerph19063744
APA StyleDeng, Y.-M., Wu, H.-W., & Liao, H.-E. (2022). Utilization Intention of Community Pharmacy Service under the Dual Threats of Air Pollution and COVID-19 Epidemic: Moderating Effects of Knowledge and Attitude toward COVID-19. International Journal of Environmental Research and Public Health, 19(6), 3744. https://doi.org/10.3390/ijerph19063744