Geospatial Assessment of Pesticide Concentration in Ambient Air and Colorectal Cancer Incidence in Arkansas, 2013–2017
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Heikkinen, S.M.M.; Madanat-Harjuoja, L.; Seppä, K.J.M.; Rantanen, M.E.; Hirvonen, E.M.; Malila, N.K.; Pitkäniemi, J.M. Familial Aggregation of Early-onset Cancers. Int. J. Cancer 2020, 146, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Lindor, N.M.; McMaster, M.L.; Lindor, C.J.; Greene, M.H. Concise Handbook of Familial Cancer Susceptibility Syndromes–Second Edition. JNCI Monogr. 2008, 2008, 3–93. [Google Scholar] [CrossRef] [PubMed]
- Abolhassani, M.; Asadikaram, G.; Paydar, P.; Fallah, H.; Aghaee-Afshar, M.; Moazed, V.; Akbari, H.; Moghaddam, S.D.; Moradi, A. Organochlorine and Organophosphorous Pesticides May Induce Colorectal Cancer; A Case-Control Study. Ecotoxicol. Environ. Saf. 2019, 178, 168–177. [Google Scholar] [CrossRef]
- Martin, F.L. Increased Exposure to Pesticides and Colon Cancer: Early Evidence in Brazil. Chemosphere 2018, 209, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, N.; Asadikaram, G.; Ebadzadeh, M.; Kamalati, A.; Pakmanesh, H.; Dadgar, R.; Moazed, V.; Paydar, P.; Fallah, H.; Abolhassani, M. Organochlorine and Organophosphorus Pesticides and Bladder Cancer: A Case-control Study. J. Cell. Biochem. 2019, 120, 14847–14859. [Google Scholar] [CrossRef] [PubMed]
- Nawi, A.M.; Chin, S.F.; Mazlan, L.; Jamal, R. Delineating Colorectal Cancer Distribution, Interaction, and Risk Prediction by Environmental Risk Factors and Serum Trace Elements. Sci. Rep. 2020, 10, 18670. [Google Scholar] [CrossRef]
- Yang, T.; Li, X.; Farrington, S.M.; Dunlop, M.G.; Campbell, H.; Timofeeva, M.; Theodoratou, E. A Systematic Analysis of Interactions between Environmental Risk Factors and Genetic Variation in Susceptibility to Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1145–1153. [Google Scholar] [CrossRef]
- Siegel, R.L.; Sahar, L.; Robbins, A.; Jemal, A. Where Can Colorectal Cancer Screening Interventions Have the Most Impact? Cancer Epidemiol. Biomark. Prev. 2015, 24, 1151–1156. [Google Scholar] [CrossRef]
- Alexander, D.D.; Weed, D.L.; Mink, P.J.; Mitchell, M.E. A Weight-of-Evidence Review of Colorectal Cancer in Pesticide Applicators: The Agricultural Health Study and Other Epidemiologic Studies. Int. Arch. Occup. Environ. Health 2012, 85, 715–745. [Google Scholar] [CrossRef]
- Salerno, C.; Carcagnì, A.; Sacco, S.; Palin, L.A.; Vanhaecht, K.; Panella, M.; Guido, D. An Italian Population-Based Case-Control Study on the Association between Farming and Cancer: Are Pesticides a Plausible Risk Factor? Arch. Environ. Occup. Health 2016, 71, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Deziel, N.C.; Friesen, M.C.; Hoppin, J.A.; Hines, C.J.; Thomas, K.; Freeman, L.E.B. A Review of Nonoccupational Pathways for Pesticide Exposure in Women Living in Agricultural Areas. Environ. Health Perspect. 2015, 123, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Deziel, N.C.; Beane Freeman, L.E.; Hoppin, J.A.; Thomas, K.; Lerro, C.C.; Jones, R.R.; Hines, C.J.; Blair, A.; Graubard, B.I.; Lubin, J.H.; et al. An Algorithm for Quantitatively Estimating Non-Occupational Pesticide Exposure Intensity for Spouses in the Agricultural Health Study. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human Health Implications of Organic Food and Organic Agriculture: A Comprehensive Review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- EPA Introduction to Pesticide Drift. Available online: https://www.epa.gov/reducing-pesticide-drift/introduction-pesticide-drift (accessed on 10 September 2020).
- Nuyttens, D.; Devarrewaere, W.; Verboven, P.; Foqué, D. Pesticide-Laden Dust Emission and Drift from Treated Seeds during Seed Drilling: A Review. Pest Manag. Sci. 2013, 69, 564–575. [Google Scholar] [CrossRef] [PubMed]
- EPA National Air Toxics Assessment. Available online: https://www.epa.gov/national-air-toxics-assessment (accessed on 10 September 2020).
- Lee, W.J.; Sandler, D.P.; Blair, A.; Samanic, C.; Cross, A.J.; Alavanja, M.C.R. Pesticide Use and Colorectal Cancer Risk in the Agricultural Health Study. Int. J. Cancer 2007, 121, 339–346. [Google Scholar] [CrossRef]
- Matich, E.K.; Laryea, J.A.; Seely, K.A.; Stahr, S.; Su, L.J.; Hsu, P.-C. Association between Pesticide Exposure and Colorectal Cancer Risk and Incidence: A Systematic Review. Ecotoxicol. Environ. Saf. 2021, 219, 112327. [Google Scholar] [CrossRef]
- EPA 2014 NATA: Assessment Methods. Available online: https://www.epa.gov/national-air-toxics-assessment/2014-nata-assessment-methods (accessed on 23 March 2021).
- Arkansas Department of Health Arkansas Cancer Registry. Available online: https://www.healthy.arkansas.gov/programs-services/topics/arkansas-cancer-registry (accessed on 23 March 2021).
- United States Census Bureau American Community Survey (ACS). Available online: https://www.census.gov/programs-surveys/acs (accessed on 23 March 2021).
- Cossman, J.S.; Cossman, R.E.; James, W.L.; Campbell, C.R.; Blanchard, T.C.; Cosby, A.G. Persistent Clusters of Mortality in the United States. Am. J. Public Health 2007, 97, 2148–2150. [Google Scholar] [CrossRef]
- Jemal, A.; Siegel, R.L.; Ma, J.; Islami, F.; DeSantis, C.; Goding Sauer, A.; Simard, E.P.; Ward, E.M. Inequalities in Premature Death from Colorectal Cancer by State. J. Clin. Oncol. 2015, 33, 829–835. [Google Scholar] [CrossRef]
- Rogers, C.R.; Moore, J.X.; Qeadan, F.; Gu, L.Y.; Huntington, M.S.; Holowatyj, A.N. Examining Factors Underlying Geographic Disparities in Early-Onset Colorectal Cancer Survival among Men in the United States. Am. J. Cancer Res. 2020, 10, 1592–1607. [Google Scholar]
- Whatley, Z.; Daram, S.R.; Yousuf, S.; Tang, S. Gastrointestinal Cancers in Mississippi. South. Med. J. 2014, 107, 229–234. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zahnd, W.E.; Jenkins, W.D.; Mueller-Luckey, G.S. Cancer Mortality in the Mississippi Delta Region: Descriptive Epidemiology and Needed Future Research and Interventions. J. Health Care Poor Underserved 2017, 28, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Joseph, D.A.; King, J.B.; Richards, T.B.; Thomas, C.C.; Richardson, L.C. Use of Colorectal Cancer Screening Tests by State. Prev. Chronic. Dis. 2018, 15, 170535. [Google Scholar] [CrossRef] [PubMed]
- Upholt, W.M.; Kearney, P.C. Pesticides. N. Engl. J. Med. 1966, 275, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, G.G.; Cannon, S.B.; Pratt, C.B.; Arthur, R.D. Serum Pesticide Levels in Patients with Childhood Colorectal Carcinoma. Cancer 1981, 48, 774–778. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Trifluralin. IARC Monogr. Eval. Carcinog. Risks Hum. 1991, 53, 515–534. [Google Scholar]
- Kang, D.; Park, S.K.; Beane-Freeman, L.; Lynch, C.F.; Knott, C.E.; Sandler, D.P.; Hoppin, J.A.; Dosemeci, M.; Coble, J.; Lubin, J.; et al. Cancer Incidence among Pesticide Applicators Exposed to Trifluralin in the Agricultural Health Study. Environ. Res. 2008, 107, 271–276. [Google Scholar] [CrossRef]
- Oddone, E. Occupational Exposures and Colorectal Cancers: A Quantitative Overview of Epidemiological Evidence. World J. Gastroenterol. 2014, 20, 12431. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risk to Humans. DDT, Lindane, and 2,4-D; International Agency for Research on Cancer: Lyon, France, 2018; ISBN 978-92-832-0179-3. [Google Scholar]
- Schreinemachers, D.M. Cancer Mortality in Four Northern Wheat-Producing States. Environ. Health Perspect. 2000, 108, 873–881. [Google Scholar] [CrossRef]
- Donley, N. The USA Lags behind Other Agricultural Nations in Banning Harmful Pesticides. Environ. Health 2019, 18, 44. [Google Scholar] [CrossRef]
- Pesticide Action Network International PAN International Consolidated List of Banned Pesticides, 5th Edition. Available online: http://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (accessed on 23 March 2021).
- International Agency for Research on Cancer. Carbon Tetrachloride. IARC Monogr. Eval. Carcinog. Risks Hum. 1999, 71, 401–432. [Google Scholar]
- International Agency for Research on Cancer. Ethylene Dibromide (1,2-Dibromoethane). IARC Monogr. Eval. Carcinog. Risks Hum. 1999, 71, 641–669. [Google Scholar]
- International Agency for Research on Cancer. Methyl Bromide. IARC Monogr. Eval. Carcinog. Risks Hum. 1999, 71, 721–735.
- Bond, E.J. Manual of Fumigation for Insect Control; FAO plant production and protection paper; FAO: Rome, Italy, 1984; ISBN 978-92-5-101483-7. [Google Scholar]
Chemical Name | Model 1 * | Model 2 * | ||||||
---|---|---|---|---|---|---|---|---|
Adj. R2 | p-Value | Moran’s I | p-Value | Adj. R2 | p-Value | Moran’s I | p-Value | |
2,4-D | −0.009 | 0.556 | 0.274 | <0.001 | 0.031 | 0.164 | 0.148 | 0.021 |
Carbon Tetrachloride | 0.015 | 0.152 | 0.267 | <0.001 | 0.069 | 0.030 | 0.140 | 0.028 |
Carbon Disulfide | −0.003 | 0.375 | 0.294 | <0.001 | 0.007 | 0.625 | 0.130 | 0.040 |
Ethylene Dibromide | 0.023 | 0.102 | 0.251 | 0.001 | 0.070 | 0.029 | 0.123 | 0.050 |
Methyl Bromide | 0.005 | 0.243 | 0.273 | <0.001 | 0.055 | 0.056 | 0.138 | 0.030 |
Trifluralin | 0.050 | 0.030 | 0.199 | 0.010 | 0.027 | 0.200 | 0.075 | 0.208 |
Chemical Name | R2 | Adj. R2 | Moran’s I | p-Value |
---|---|---|---|---|
2,4-D | 0.285 | 0.124 | 0.024 | 0.592 |
Carbon Tetrachloride | 0.318 | 0.164 | 0.018 | 0.649 |
Carbon Disulfide | 0.253 | 0.086 | −0.005 | 0.903 |
Ethylene Dibromide | 0.302 | 0.137 | 0.013 | 0.698 |
Methyl Bromide | 0.309 | 0.148 | 0.022 | 0.611 |
Trifluralin | 0.244 | 0.083 | 0.018 | 0.647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, L.J.; Young, S.G.; Collins, J.; Matich, E.; Hsu, P.-C.; Chiang, T.-C. Geospatial Assessment of Pesticide Concentration in Ambient Air and Colorectal Cancer Incidence in Arkansas, 2013–2017. Int. J. Environ. Res. Public Health 2022, 19, 3258. https://doi.org/10.3390/ijerph19063258
Su LJ, Young SG, Collins J, Matich E, Hsu P-C, Chiang T-C. Geospatial Assessment of Pesticide Concentration in Ambient Air and Colorectal Cancer Incidence in Arkansas, 2013–2017. International Journal of Environmental Research and Public Health. 2022; 19(6):3258. https://doi.org/10.3390/ijerph19063258
Chicago/Turabian StyleSu, Lihchyun Joseph, Sean G. Young, Josephine Collins, Eryn Matich, Ping-Ching Hsu, and Tung-Chin Chiang. 2022. "Geospatial Assessment of Pesticide Concentration in Ambient Air and Colorectal Cancer Incidence in Arkansas, 2013–2017" International Journal of Environmental Research and Public Health 19, no. 6: 3258. https://doi.org/10.3390/ijerph19063258
APA StyleSu, L. J., Young, S. G., Collins, J., Matich, E., Hsu, P.-C., & Chiang, T.-C. (2022). Geospatial Assessment of Pesticide Concentration in Ambient Air and Colorectal Cancer Incidence in Arkansas, 2013–2017. International Journal of Environmental Research and Public Health, 19(6), 3258. https://doi.org/10.3390/ijerph19063258