Prevalence and Risk Factors of Problematic Internet Use among Hungarian Adult Recreational Esports Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection Instrument
2.3. Process and Data Analysis
3. Results
3.1. Demographics
3.2. Risk Factors and Previous Diseases
3.3. Internet Use
3.4. Prevalence and Risk Factors of Internet Addiction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffiths, M. Gambling on the internet: A brief note. J. Gambl. Stud. 1996, 12, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Kapus, K.; Nyulas, R.; Nemeskeri, Z.; Zadori, I.; Muity, G.; Kiss, J.; Feher, A.; Fejes, E.; Tibold, A.; Feher, G. Prevalence and Risk Factors of Internet Addiction among Hungarian High School Students. Int. J. Environ. Res. Public Health 2021, 18, 6989. [Google Scholar] [CrossRef] [PubMed]
- Spada, M.M. An overview of problematic Internet use. Addict. Behav. 2014, 39, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Van Rooij, A.J.; Kardefelt-Winther, D. Lost in the chaos: Flawed literature should not generate new disorders. J. Behav. Add 2017, 6, 128–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, H.; Fehér, G.; Tibold, A.; Esgalhado, G.; Costa, V.; Monteiro, S. The Impact of Internet Addiction and Job Satisfaction on Mental Health Symptoms among a Sample of Portuguese Workers. Int. J. Environ. Res. Public Health 2021, 18, 6943. [Google Scholar] [CrossRef]
- Fam, J.Y. Prevalence of internet gaming disorder in adolescents: A meta-analysis across three decades. Scand. J. Psychol. 2018, 59, 524–531. [Google Scholar] [CrossRef]
- Bickham, D.S. Current Research and Viewpoints on Internet Addiction in Adolescents. Curr. Pediatr. Rep. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Gervasi, A.M.; La Marca, L.; Costanzo, A.; Pace, U.; Guglielmucci, F.; Schimmenti, A. Personality and internet gaming disorder: A systematic review of recent literature. Curr. Addict. Rep. 2017, 4, 293–307. [Google Scholar] [CrossRef]
- Chandrima, R.M.; Kircaburun, K.; Kabir, H.; Riaz, B.K.; Kuss, D.J.; Griffiths, M.D.; Mamun, M.A. Adolescent problematic internet use and parental mediation: A Bangladeshi structured interview study. Addict. Behav. Rep. 2020, 12, 100288. [Google Scholar] [CrossRef]
- Ho, R.C.; Zhang, M.W.; Tsang, T.Y.; Toh, A.H.; Pan, F.; Lu, Y.; Cheng, C.; Yip, P.S.; Lam, L.T.; Lai, C.M.; et al. The association between internet addiction and psychiatric co-morbidity: A meta-analysis. BMC Psychiatry 2014, 14, 183. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, J.H.; Pallesen, S.; King, D.L.; Hysing, M.; Erevik, E.K. Problematic Gaming and Sleep: A Systematic Review and Meta-Analysis. Front. Psychiatry 2021, 12, 675237. [Google Scholar] [CrossRef] [PubMed]
- Ostinelli, E.G.; Zangani, C.; Giordano, B.; Maestri, D.; Gambini, O.; D’Agostino, A.; Furukawa, T.A.; Purgato, M. Depressive symptoms and depression in individuals with internet gaming disorder: A systematic review and meta-analysis. J. Affect. Disord. 2021, 284, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Reed, P.; Vile, R.; Osborne, L.A.; Romano, M.; Truzoli, R. Problematic Internet Usage and Immune Function. PLoS ONE 2015, 10, e0134538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuka, Y.; Kaneita, Y.; Itani, O.; Matsumoto, Y.; Jike, M.; Higuchi, S.; Kanda, H.; Kuwabara, Y.; Kinjo, A.; Osaki, Y. The association between Internet usage and sleep problems among Japanese adolescents: Three repeated cross-sectional studies. Sleep 2021, 44, zsab175. [Google Scholar] [CrossRef]
- Concerto, C.; Rodolico, A.; Avanzato, C.; Fusar-Poli, L.; Signorelli, M.S.; Battaglia, F.; Aguglia, E. Autistic Traits and Attention-Deficit Hyperactivity Disorder Symptoms Predict the Severity of Internet Gaming Disorder in an Italian Adult Population. Brain Sci. 2021, 11, 774. [Google Scholar] [CrossRef] [PubMed]
- Cabelguen, C.; Rocher, B.; Leboucher, J.; Schreck, B.; Challet-Bouju, G.; Hardouin, J.B.; Grall-Bronnec, M. Attention deficit hyperactivity disorder and gaming disorder: Frequency and associated factors in a clinical sample of patients with Gaming Disorder. J. Behav. Addict. 2021, 10, 1061–1067. [Google Scholar] [CrossRef]
- Chen, C.; Dai, S.; Shi, L.; Shen, Y.; Ou, J. Associations Between Attention Deficit/Hyperactivity Disorder and Internet Gaming Disorder Symptoms Mediated by Depressive Symptoms and Hopelessness Among College Students. Neuropsychiatr. Dis. Treat. 2021, 17, 2775–2782. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D.; Pontes, H.M. Chaos and confusion in DSM-5 diagnosis of Internet Gaming Disorder: Issues, concerns, and recommendations for clarity in the field. J. Behav. Addict. 2017, 6, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Wang, Z.; Li, C.; Lu, J.; Long, J.; Li, R.; Wu, Q.; Jiang, H.; Du, J.; Li, R.; et al. The Clinical Consistency and Utility of ICD-11 Diagnostic Guidelines for Gaming Disorder: A Field Study Among the Chinese Population. Front. Psychol. 2021, 12, 781992. [Google Scholar] [CrossRef]
- Lelonek-Kuleta, B.; Bartczuk, R.P. Online Gambling Activity, Pay-to-Win Payments, Motivation to Gamble and Coping Strategies as Predictors of Gambling Disorder Among esports Bettors. J. Gambl. Stud. 2021, 37, 1079–1098. [Google Scholar] [CrossRef]
- Palanichamy, T.; Sharma, M.K.; Sahu, M.; Kanchana, D.M. Influence of Esports on stress: A systematic review. Ind. Psychol. J. 2020, 29, 191–199. [Google Scholar]
- Lim, S.G.; Jung, S.H.; Huh, J.H. Visual Algorithm of VR Esports for Online Health Care. Healthcare 2021, 9, 824. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.; Sum, S.; Chan, M.; Lai, E.; Cheng, N. Will esports result in a higher prevalence of problematic gaming? A review of the global situation. J. Behav. Addict. 2019, 8, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Chappell, D.; Eatough, V.; Davies, M.N.; Griffiths, M. EverQuest—It’s just a computer game right? An interpretative phenomenological analysis of online gaming addiction. Int. J. Ment. Health Addict. 2006, 4, 205–216. [Google Scholar] [CrossRef]
- Bányai, F.; Griffiths, M.D.; Demetrovics, Z.; Király, O. The mediating effect of motivations between psychiatric distress and gaming disorder among esport gamers and recreational gamers. Comp. Psychol. 2019, 94, 152117. [Google Scholar] [CrossRef]
- DiFrancisco-Donoghue, J.; Werner, W.G.; Douris, P.C.; Zwibel, H. Esports players, got muscle? Competitive video game players’ physical activity, body fat, bone mineral content, and muscle mass in comparison to matched controls. J. Sport Health Sci. 2020. [Google Scholar] [CrossRef]
- Darnai, G.; Perlaki, G.; Zsidó, A.N.; Inhóf, O.; Orsi, G.; Horváth, R.; Nagy, S.A.; Lábadi, B.; Tényi, D.; Kovács, N.; et al. Internet addiction and functional brain networks: Task-related fMRI study. Sci. Rep. 2019, 9, 15777. [Google Scholar] [CrossRef]
- Young, K.S. Internet addiction: The emergence of a new clinical disorder. CyberPsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Demetrovics, Z.; Szeredi, B.; Rózsa, S. The three-factor model of Internet addiction: The development of the Problematic Internet Use Questionnaire. Behav. Res. Methods 2008, 40, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Kern, L.; Acier, D. French adaptation of the problematic internet use questionnaire. L’Évolution Psychiatr. 2013, 78, 357–371. [Google Scholar] [CrossRef]
- Pohl, M.; Feher, G.; Kapus, K.; Feher, A.; Nagy, G.D.; Kiss, J.; Fejes, É.; Horvath, L.; Tibold, A. The Association of Internet Addiction with Burnout, Depression, Insomnia, and Quality of Life among Hungarian High School Teachers. Int. J. Environ. Res. Public Health 2022, 19, 438. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Kapus, K.; Hesszenberger, D.; Pohl, M.; Kósa, G.; Kiss, J.; Pusch, G.; Fejes, É.; Tibold, A.; Feher, G. Prevalence and Risk Factors of Internet Addiction among Hungarian High School Teachers. Life 2021, 11, 194. [Google Scholar] [CrossRef] [PubMed]
- Koronczai, B.; Urbán, R.; Kökönyei, G.; Paksi, B.; Papp, K.; Kun, B.; Arnold, P.; Kállai, J.; Demetrovics, Z. Confirmation of the three-factor model of problematic internet use on off-line adolescent and adult samples. Cyberpsychol. Behav. Soc. Netw. 2011, 14, 657–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, G.; Kapus, K.; Hesszenberger, D.; Pohl, M.; Kosa, G.; Kiss, J.; Pusch, G.; Fejes, E.; Tibold, A.; Feher, G. Internet Addiction and Burnout in A Single Hospital: Is There Any Association? Int. J. Environ. Res. Public Health 2021, 18, 615. [Google Scholar] [CrossRef]
- Grover, S.; Sahoo, S.; Bhalla, A.; Avasthi, A. Problematic internet use and its correlates among resident doctors of a tertiary care hospital of North India: A cross-sectional study. Asian J. Psychiatry 2019, 39, 42–47. [Google Scholar] [CrossRef]
- Bányai, F.; Zsila, Á.; Griffiths, M.D.; Demetrovics, Z.; Király, O. Career as a Professional Gamer: Gaming Motives as Predictors of Career Plans to Become a Professional Esport Player. Front. Psychol. 2020, 11, 1866. [Google Scholar] [CrossRef]
- Available online: https://www.owayo.co.uk/magazine/esports-women-en.htm (accessed on 24 January 2022).
- Wang, W.C. Exploring the Relationship Among Free-Time Management, Leisure Boredom, and Internet Addiction in Undergraduates in Taiwan. Psychol. Rep. 2019, 122, 1651–1665. [Google Scholar] [CrossRef]
- Yen, J.-Y.; Ko, C.-H.; Yen, C.-F.; Chen, S.-H.; Chung, W.-L.; Chen, C.-C. Psychiatric symptoms in adolescents with internet addiction: Comparison with substance use. Psychiatry Clin. Neurosci. 2008, 62, 9–16. [Google Scholar] [CrossRef]
- Riper, H.; Hoogendoorn, A.; Cuijpers, P.; Karyotaki, E.; Boumparis, N.; Mira, A.; Andersson, G.; Berman, A.H.; Bertholet, N.; Bischof, G.; et al. Effectiveness and treatment moderators of internet interventions for adult problem drinking: An individual patient data meta-analysis of 19 randomised controlled trials. PLoS Med. 2018, 15, e1002714. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Xia, N.; Zou, Y.; Chen, Z.; Wen, Y. Smartphone addiction may be associated with adolescent hypertension: A cross-sectional study among junior school students in China. BMC Ped. 2019, 19, 310. [Google Scholar] [CrossRef] [Green Version]
- Córdoba-Rodríguez, D.P.; Iglesia, I.; Gomez-Bruton, A.; Rodríguez, G.; Casajús, J.A.; Morales-Devia, H.; Moreno, L.A. Fat-free/lean body mass in children with insulin resistance or metabolic syndrome: A systematic review and meta-analysis. BMC Ped. 2022, 22, 58. [Google Scholar] [CrossRef] [PubMed]
(N = 2313) | % |
---|---|
Gender | |
Female | 7.6 (176) |
Male | 92.4 (2137) |
Age | |
18–25 years | 90.3 (2088) |
26–35 years | 7.95 (184) |
36–45 years | 0.86 (20) |
46–55 years | 0.82 (19) |
56–62 years | 0.04 (1) |
above 62 years | 0.04 (1) |
Marital status | |
single | 71.0 (1643) |
in a relationship | 25.9 (600) |
married | 2.6 (59) |
divorced/widowed | 0.5 (11) |
Number of children | |
no children | 97.2 (2249) |
1 child | 1.3 (30) |
2 children | 1.1 (25) |
more than 3 children | 0.4 (9) |
Education background | |
elementary education | 30.1 (696) |
secondary education | 60.0 (1388) |
higher education | 9.9 (229) |
Employment status | |
employment | 34.8 (804) |
entrepreneur | 3.5 (82) |
student | 30.1 (696) |
other | 31.6 (731) |
Work schedule | |
full time | 35.4 (819) |
part time | 14.1 (326) |
flexible | 13.5 (313) |
other | 37.0 (855) |
Time spent with work | |
less than 10 h | 36.4 (842) |
10–20 h | 13.3 (308) |
20–30 h | 9.7 (225) |
30–40 h | 18.1 (419) |
more than 40 h | 22.4 (519) |
Secondary employment | |
no | 79.7 (1843) |
yes | 20.3 (470) |
Concomitant Diseases (%) | |
---|---|
on regular medication | 11.6 (268/2313) |
smoking | 25.3 (586/2313) |
alcohol use | 14.1 (325/2313) |
drug use | 22.0 (508/2313) |
diabetes | 2.3 (54/2313) |
hypertension | 8.5 (197/2313) |
cardiovascular disease | 3.6 (83/2313) |
musculoskeletal pain | 2.6 (59/2313) |
history of depression | 2.9 (68/2313) |
Not Addicted to Internet (n = 1852) | Internet Addiction (n = 461) | |
---|---|---|
Gender | ||
Male | 92.7% (1717/1852) | 91.1% (420/461) |
Female | 7.3% (135/1852) | 8.9% (41/461) |
Age | ||
18–25 years | 89.5% (1658/1852) | 93.3% (430/461) * |
26–35 years | 8.4% (155/1852) | 6.3% (29/461) |
36–45 years | 0.9% (18/1852) | 0.4% (2/461) |
46–55 years | 1.0% (19/1852) | 0% (0/461) |
56–62 years | 0.1% (1/1852) | 0% (0/461) |
above 62 years | 0.1% (1/1852) | 0% (0/461) |
Marital status | ||
single | 70.3% (1302/1852) | 74.0% (341/461) * |
in a relationship | 26.3% (488/1852) | 24.3% (112/461) |
married | 3.0% (52/1852) | 1.5% (7/461) |
divorced/widowed | 0.4% (8/1852) | 0.2% (1/461) |
Number of children | ||
no children | 96.8% (1792/1852) | 99.1% (457/461) |
1 child | 1.5% (28/1852) | 4.5% (2/461) * |
2 children | 1.2% (23/1852) | 4.5% (2/461) * |
more than 3 children | 0.5% (9/1852) | 0% (0/461) |
Education background | ||
elementary education | 29.4% (545/1852) | 32.8% (151/461) |
secondary education | 60.6% (1122/1852) | 57.7% (266/461) |
higher education | 10.% (185/1852) | 9.5% (44/461) |
Employment status | ||
employment | 36.8% (682/1852) | 26.5% (122/461) |
entrepreneur | 3.6% (67/1852) | 3.3% (15/461) |
student | 29.1% (539/1852) | 34.1% (157/461) * |
other | 30.5% (564/1852) | 36.1% (167/461) * |
Work schedule | ||
full time | 37.0% (686/1852) | 28.8% (133/461) |
part time | 13.7% (253/1852) | 15.8% (73/461) |
flexible | 13.3% (246/1852) | 14.5% (67/461) |
other | 36.0% (667/1852) | 40.9% (188/461) |
Time spent with work | ||
less than 10 h | 35.4% (655/1852) | 40.6% (187/461) * |
10–20 h | 13.0% (240/1852) | 14.8% (68/461) |
20–30 h | 9.9% (183/1852) | 9.1% (42/461) |
30–40 h | 18.6% (344/1852) | 16.3% (75/461) |
more than 40 h | 23.1% (430/1852) | 19.2% (89/461) |
Secondary employment | ||
no | 80.7% (1494/1852) | 75.7% (349/461) |
yes | 19.3% (358/1852) | 24.3% (112/461) * |
Not Addicted to Internet (n = 1852) | Internet Addiction (n = 461) | |
---|---|---|
Concomitant diseases | ||
medication use | 11.4% (212/1852) | 12.1% (56/461) |
current smoker | 26.1% (484/1852) | 22.1% (102/461) |
alcohol use | 12.8% (237/1852) | 19.1% (88/461) * |
drug use | 21.7% (402/1852) | 22.9% (106/461) |
diabetes | 2.2% (40/1852) | 3.0% (14/461) |
hypertension | 7.5% (138/1852) | 12.8% (59/461) * |
cardiovascular disease | 3.8% (70/1852) | 4.9% (23/461) |
musculoskeletal pain | 2.4% (44/1852) | 3.2% (15/461) |
history of depression | 2.3% (43/1852) | 5.4% (25/461) ** |
Daily internet use (approximately) | ||
1 h | 2.8% (52/1852) | 0.9% (6/461) |
2 h | 15.1% (279/1852) | 9.3% (43/461) |
3 h | 23.2% (430/1852) | 16.1% (74/461) |
4 h | 22.7% (421/1852) | 22.1% (102/461) |
5 h | 15.6% (289/1852) | 18.4% (85/461) |
6 h | 6.7% (124/1852) | 9.5% (44/461) * |
>6 h | 13.9% (260/1852) | 23.2% (107/461) ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kósa, G.; Feher, G.; Horvath, L.; Zadori, I.; Nemeskeri, Z.; Kovacs, M.; Fejes, É.; Meszaros, J.; Banko, Z.; Tibold, A. Prevalence and Risk Factors of Problematic Internet Use among Hungarian Adult Recreational Esports Players. Int. J. Environ. Res. Public Health 2022, 19, 3204. https://doi.org/10.3390/ijerph19063204
Kósa G, Feher G, Horvath L, Zadori I, Nemeskeri Z, Kovacs M, Fejes É, Meszaros J, Banko Z, Tibold A. Prevalence and Risk Factors of Problematic Internet Use among Hungarian Adult Recreational Esports Players. International Journal of Environmental Research and Public Health. 2022; 19(6):3204. https://doi.org/10.3390/ijerph19063204
Chicago/Turabian StyleKósa, Gábor, Gergely Feher, Lilla Horvath, Ivan Zadori, Zsolt Nemeskeri, Miklos Kovacs, Éva Fejes, Janos Meszaros, Zoltan Banko, and Antal Tibold. 2022. "Prevalence and Risk Factors of Problematic Internet Use among Hungarian Adult Recreational Esports Players" International Journal of Environmental Research and Public Health 19, no. 6: 3204. https://doi.org/10.3390/ijerph19063204
APA StyleKósa, G., Feher, G., Horvath, L., Zadori, I., Nemeskeri, Z., Kovacs, M., Fejes, É., Meszaros, J., Banko, Z., & Tibold, A. (2022). Prevalence and Risk Factors of Problematic Internet Use among Hungarian Adult Recreational Esports Players. International Journal of Environmental Research and Public Health, 19(6), 3204. https://doi.org/10.3390/ijerph19063204