Equity in Health-Seeking Behavior of Groups Using Different Transportations
Abstract
:1. Introduction
2. Literature Review
2.1. Travel Behavior and Transportation
2.2. Health-Seeking Behavior and Transportation
3. Research Design
3.1. Data Collection and Processing
3.1.1. Hospital Data
3.1.2. Public Transport Records
3.1.3. Taxi Trajectory Data
3.2. Methods
3.2.1. Inferring Health-Seeking Trips from Smart Card Data
3.2.2. Extracting Health-Seeking Trips from Taxi Trajectory Data
3.3. Research Framework
4. Results and Discussion
4.1. Coverage of Hospital Service Area
4.2. Time Efficiency to Seek Healthcare
4.3. Transportation Access
4.4. Policy Implications
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vincent, D.; San, S.M. Is healthcare really equal for all? Assessing the horizontal and vertical equity in healthcare utilisation among older Ghanaians. Int. J. Equity Health 2018, 17, 1–12. [Google Scholar]
- Panagiotopoulos, G.; Kaliampakos, D. Accessibility and spatial inequalities in Greece. Appl. Spat. Anal. Policy 2018, 12, 1–20. [Google Scholar] [CrossRef]
- Zhang, S.; Song, X.; Zhou, J. An equity and efficiency integrated grid-to-level 2SFCA approach: Spatial accessibility of multilevel healthcare. Int. J. Equity Health 2021, 20, 229. [Google Scholar] [CrossRef]
- Idei, R.; Kato, H. Medical-purposed travel behaviors in rural areas in developing countries: A case study in rural Cambodia. Transportation 2020, 47, 1415–1438. [Google Scholar] [CrossRef]
- Jin, Z.; Northridge, M.E.; Metcalf, S.S. Modeling the influence of social ties and transportation choice on access to oral healthcare for older adults. Appl. Geogr. 2018, 96, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Mao, L.; Wang, J. Determinants of travel mode choice for seeking healthcare: A comparison between elderly and non-elderly patients. J. Transp. Geogr. 2021, 92, 103023. [Google Scholar] [CrossRef]
- Kwan, M. Gender, the home-work link, and space-time patterns of nonemployment activities. Econ. Geogr. 1999, 75, 370–394. [Google Scholar] [CrossRef]
- Medina, S.; Erath, A. Estimating dynamic workplace capacities by means of public transport smart card data and household travel survey in Singapore. Transp. Res. Rec. 2013, 2344, 20–30. [Google Scholar] [CrossRef]
- Du, F.; Wang, J.; Jin, H. Whether Public Hospital Reform Affects the Hospital Choices of Patients in Urban Areas: New Evidence from Smart Card Data. Int.J. Environ. Res. Public Health 2021, 18, 8037. [Google Scholar] [CrossRef]
- Wang, J.; Du, F.; Huang, J.; Liu, Y. Access to hospitals: Potential vs. observed. Cities 2020, 100, 102671. [Google Scholar] [CrossRef]
- Huang, J.; Levinson, D.; Wang, J.; Zhou, J.; Wang, Z. Tracking job and housing dynamics with smartcard data. Proc. Natl. Acad. Sci. USA 2018, 115, 12710–12715. [Google Scholar] [CrossRef] [Green Version]
- Deville, P.; Linard, C.; Martine, S.; Gilbert, M.; Stevens, R.F.; Gaughan, E.A.; Blondel, D.V.; Tatem, J.A. Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. USA 2014, 111, 15888–15893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Ma, J.; Susilo, Y.; Liu, Y.; Wang, M. The promises of big data and small data for travel behavior (aka human mobility) analysis. Transp. Res. Part C Emerg. Technol. 2016, 68, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Levinson, D.; Wang, J.; Jin, H. Job-worker spatial dynamics in Beijing: Insights from Smart Card Data. Cities 2019, 86, 83–93. [Google Scholar] [CrossRef]
- Hu, Y.; Miller, H.J.; Li, X. Detecting and analyzing mobility hotspots using surface networks. Trans. GIS 2014, 18, 911–935. [Google Scholar] [CrossRef]
- Liu, X.; Gong, L.; Gong, Y.; Liu, Y. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 2015, 43, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Gschwender, A.; Munizaga, M.; Simonetti, C. Using smart card and GPS data for policy and planning: The case of Transantiago. Res. Transp. Econ. 2016, 59, 242–249. [Google Scholar] [CrossRef]
- Tu, W.; Cao, R.; Yue, Y.; Zhou, B.; Li, Q. Spatial variations in urban public ridership derived from GPS trajectories and smart card data. J. Transp. Geogr. 2018, 69, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, Y.; Tu, W.; Ratti, C. Do different datasets tell the same story about urban mobility—A comparative study of public transit and taxi usage. J. Transp. Geogr. 2018, 70, 78–90. [Google Scholar] [CrossRef]
- Ghasemlou, K.; Ergun, M.; Dadashzadeh, N. Exploring Equity in Public Transportation Planning Using Smart Card Data. Sensors 2021, 21, 3039. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Mao, L.; Wang, J.; Jin, H. Inferring transit-based health seeking patterns from smart card data–A case study in Beijing, China. Health Place 2020, 65, 102405. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Liu, Y.; Wang, Y.; Tong, D.; Zhang, J. Investigating public facility characteristics from a spatial interaction perspective: A case study of Beijing hospitals using taxi data. ISPRS Int. J. Geo-Inf. 2017, 6, 38. [Google Scholar] [CrossRef]
- Pan, X.; Kwan, M.; Yang, L.; Zhou, S.; Zuo, Z.; Wan, B. Evaluating the accessibility of healthcare facilities using an integrated catchment area approach. Int. J. Environ. Res. Public Health 2018, 15, 2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commins, N.; Nolan, A. The determinants of mode of transport to work in the Greater Dublin Area. Transp. Policy 2011, 18, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Brands, T.; de Romph, E.; Veitch, T.; Cook, J. Modelling public transport route choice, with multiple access and egress modes. Transp. Res. Procedia 2014, 1, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Böcker, L.; Van Amen, P.; Helbich, M. Elderly travel frequencies and transport mode choices in Greater Rotterdam, the Netherlands. Transportation 2017, 44, 831–852. [Google Scholar] [CrossRef] [Green Version]
- Alsger, A.; Tavassoli, A.; Mesbah, M.; Ferreira, L.; Hickman, M. Public transport trip purpose inference using smart card fare data. Transp. Res. Part C: Emerg. Technol. 2018, 87, 123–137. [Google Scholar] [CrossRef]
- Gong, L.; Liu, X.; Wu, L.; Liu, Y. Inferring trip purposes and uncovering travel patterns from taxi trajectory data. Cartogr. Geogr. Inf. Sci. 2016, 43, 103–114. [Google Scholar] [CrossRef]
- Chester, M.; Fraser, A.; Matute, J.; Flower, C.; Pendyala, R. Parking infrastructure: A constraint on or opportunity for urban redevelopment? A study of Los Angeles County parking supply and growth. J. Am. Plan. Assoc. 2015, 81, 268–286. [Google Scholar] [CrossRef]
- Shiftan, Y.; Barlach, Y. Effect of employment site characteristics on commute mode choice. Transp. Res. Rec. 2002, 1781, 19–25. [Google Scholar] [CrossRef]
- Kim, S.; Ulfarsson, G.F. Travel mode choice of the elderly: Effects of personal, household, neighborhood, and trip characteristics. Transp. Res. Rec. 2004, 1894, 117–126. [Google Scholar] [CrossRef]
- Liu, L.; Andris, C.; Ratti, C. Uncovering cabdrivers’ behavior patterns from their digital traces. Comput. Environ. Urban 2010, 34, 541–548. [Google Scholar] [CrossRef]
- Zhang, Y.; Martens, K.; Long, Y. Revealing group travel behavior patterns with public transit smart card data. Travel Behav. Soc. 2017, 10, 42–52. [Google Scholar] [CrossRef]
- Ma, X.; Liu, C.; Wen, H.; Wang, Y.; Wu, Y. Understanding commuting patterns using transit smart card data. J. Transp. Geogr. 2017, 58, 135–145. [Google Scholar] [CrossRef]
- Santi, P.; Resta, G.; Szell, M.; Sobolevsky, S.; Strogatz, H.S.; Ratti, C. Quantifying the benefits of vehicle pooling with shareability networks. Proc. Natl. Acad. Sci. USA 2014, 111, 13290–13294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Pan, L.; Yuan, N.; Zhang, S.; Liu, D. A comparative analysis of intra-city human mobility by taxi. Phys. A Stat. Mech. Its Appl. 2015, 420, 134–147. [Google Scholar] [CrossRef]
- Kung, K.S.; Kael, G.; Stanislav, S.; Carlo, R.; Ramasco, J.J. Exploring universal patterns in human home-work commuting from mobile phone data. PLoS ONE 2014, 9, e96180. [Google Scholar] [CrossRef] [Green Version]
- Louail, T.; Lenormand, M.; Ros, G.C.O.; Picornell, M.; Herranz, R.; Frias-Martinez, E.; Ramasco, J.J.; Barthelemy, M. From mobile phone data to the spatial structure of cities. Sci. Rep. 2014, 4, 5276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, L.; Jiang, S.; Murga, M.; González, M.C. Origin–destination trips by purpose and time of day inferred from mobile phone data. Transp. Res. Part C Emerg. Technol. 2015, 58, 240–250. [Google Scholar] [CrossRef]
- Li, M.; Dong, L.; Shen, Z.; Lang, W.; Ye, X. Examining the interaction of taxi and subway ridership for sustainable urbanization. Sustainability 2017, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Wang, F.; Xierali, I. Using a Huff-based model to delineate Hospital Service Areas. Professional Geographer 2017, 69, 522–530. [Google Scholar] [CrossRef]
- Du, M.; Cheng, L.; Li, X.; Yang, J. Factors affecting the travel mode choice of the urban elderly in healthcare activity: Comparison between core area and suburban area. Sustain. Cities Soc. 2020, 52, 101868. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Du, M. Analysis of travel decision-making for urban elderly healthcare activities under temporal and spatial constraints. Sustainability 2018, 10, 1560. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Song, C.; Shu, H.; Zhang, J.; Pei, T.; Zhou, C. Assessing Patient bypass Behavior Using Taxi Trip Origin-Destination (OD) Data. ISPRS Int. J. Geo-Inf. 2016, 5, 157. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Yang, M.; De Vos, J.; Witlox, F. Examining geographical accessibility to multi-tier hospital care services for the elderly: A focus on spatial equity. J. Transp. Health 2020, 19, 100926. [Google Scholar] [CrossRef]
Card ID | Get-On Stop | Get-Off Stop | ||||
---|---|---|---|---|---|---|
Latitude | Longitude | Time | Latitude | Longitude | Time | |
0002 | 116.489 | 39.968 | 10:44:00 | 116.204 | 39.927 | 11:12:00 |
2092 | 116.468 | 39.952 | 16:10:10 | 116.489 | 39.968 | 17:20:20 |
0012 | 116.470 | 39.867 | 8:10:00 | 116.450 | 39.856 | 8:30:20 |
0050 | 116.398 | 39.975 | 11:30:35 | 116.444 | 39.711 | 12:30:40 |
Taxi ID | Pick-Up Point | Drop-Off Point | ||||
---|---|---|---|---|---|---|
Latitude | Longitude | Time | Latitude | Longitude | Time | |
febc89a6 | 116.582 | 40.079 | 2 April 2015 7:35 | 116.352 | 39.980 | 2 April 2015 8:00 |
98ea748 | 116.249 | 39.984 | 2 April 2015 15:06 | 116.272 | 39.955 | 2 April 2015 15:24 |
de864n | 116.468 | 39.952 | 2 April 2015 21:03 | 116.489 | 39.968 | 2 April 2015 22:06 |
Smart Card Data | Taxi Trajectory Data | |||||
---|---|---|---|---|---|---|
Rank | Hospital | Hospital Level | No. Subdistricts | Hospital | Hospital Level | No. Subdistricts |
1 | Beijing Shijitan Hospital | Tertiary | 70 | Beijing Xiehe Hospital (East) | Tertiary | 114 |
2 | Chinese P.L.A. General Hospital | Tertiary | 54 | Beijing Tongren Hospital | Tertiary | 112 |
3 | China-Japan Friendship Hospital | Tertiary | 66 | Peking University Third Hospital | Tertiary | 110 |
4 | Beijing Anzhen Hospital | Tertiary | 64 | Chinese P.L.A. General Hospital | Tertiary | 110 |
5 | Beijing Tongren Hospital | Tertiary | 64 | Beijing Xiehe Hospital (West) | Tertiary | 108 |
6 | Beijing Xiehe Hospital (East) | Tertiary | 59 | Beijing Xuanwu Hospital | Tertiary | 106 |
7 | Peking University People’s Hospital | Tertiary | 59 | China-Japan Friendship Hospital | Tertiary | 105 |
8 | Beijing Friendship Hospital | Tertiary | 54 | Beijing Chaoyang Hospital | Tertiary | 103 |
9 | Beijing Chaoyang Hospital | Tertiary | 52 | Peking University First Hospital | Tertiary | 102 |
10 | Peking University Third Hospital | Tertiary | 51 | Beijing Anzhen Hospital | Tertiary | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, F.; Wang, J.; Liu, Y.; Zhou, Z.; Jin, H. Equity in Health-Seeking Behavior of Groups Using Different Transportations. Int. J. Environ. Res. Public Health 2022, 19, 2765. https://doi.org/10.3390/ijerph19052765
Du F, Wang J, Liu Y, Zhou Z, Jin H. Equity in Health-Seeking Behavior of Groups Using Different Transportations. International Journal of Environmental Research and Public Health. 2022; 19(5):2765. https://doi.org/10.3390/ijerph19052765
Chicago/Turabian StyleDu, Fangye, Jiaoe Wang, Yu Liu, Zihao Zhou, and Haitao Jin. 2022. "Equity in Health-Seeking Behavior of Groups Using Different Transportations" International Journal of Environmental Research and Public Health 19, no. 5: 2765. https://doi.org/10.3390/ijerph19052765
APA StyleDu, F., Wang, J., Liu, Y., Zhou, Z., & Jin, H. (2022). Equity in Health-Seeking Behavior of Groups Using Different Transportations. International Journal of Environmental Research and Public Health, 19(5), 2765. https://doi.org/10.3390/ijerph19052765