Molecular Hydrogen Positively Affects Physical and Respiratory Function in Acute Post-COVID-19 Patients: A New Perspective in Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Therapeutic Protocol
2.3. Basis Anthropometric Measurement
2.4. Pulmonary Function Testing
2.5. Physical Fitness, Perceived Exertion, and Dyspnea Assessment
2.6. Psychometric Variables Assessment
2.7. Hydrogen/Placebo Inhalation Protocol
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alimohamadi, Y.; Sepandi, M.; Taghdir, M.; Hosamirudsari, H. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. J. Prev. Med. Hyg. 2020, 61, E304–E312. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jin, J.; Luo, W.; Gan, Y.; Chen, B.; Li, W. Risk factors for predicting mortality of COVID-19 patients: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0243124. [Google Scholar] [CrossRef]
- Nasserie, T.; Hittle, M.; Goodman, S.N. Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: A systematic review. JAMA Netw. Open 2021, 4, e2111417. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Alwazeer, D.; Liu, F.F.-C.; Wu, X.Y.; LeBaron, T.W. Combating oxidative stress and inflammation in COVID-19 by molecular hydrogen therapy: Mechanisms and perspectives. Oxid. Med. Cell. Longev. 2021, 2021, 5513868. [Google Scholar] [CrossRef]
- Cumpstey, A.F.; Clark, A.D.; Santolini, J.; Jackson, A.A.; Feelisch, M. COVID-19: A redox disease—What a stress pandemic can teach us about resilience and what we may learn from the reactive species interactome about its treatment. Antioxid. Redox Signal. 2021, 35, 1226–1268. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Rubini, A. IL-6 increases airway resistance in the rat. Cytokine 2010, 51, 266–273. [Google Scholar] [CrossRef]
- Paul, B.D.; Lemle, M.D.; Komaroff, A.L.; Snyder, S.H. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA 2021, 118, e2024358118. [Google Scholar] [CrossRef] [PubMed]
- Demeco, A.; Marotta, N.; Barletta, M.; Pino, I.; Marinaro, C.; Petraroli, A.; Moggio, L.; Ammendolia, A. Rehabilitation of patients post-COVID-19 infection: A literature review. J. Int. Med. Res. 2020, 48, 300060520948382. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.L. Cytokine hypothesis of overtraining: A physiological adaptation to excessive stress? Med. Sci. Sports Exerc. 2000, 32, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Blanco, C.; Gonzalez-Gerez, J.J.; Bernal-Utrera, C.; Anarte-Lazo, E.; Perez-Ale, M.; Saavedra-Hernandez, M. Short-term effects of a conditioning telerehabilitation program in confined patients affected by COVID-19 in the acute phase. A pilot randomized controlled trial. Medicina 2021, 57, 684. [Google Scholar] [CrossRef]
- Curci, C.; Pisano, F.; Bonacci, E.; Camozzi, D.M.; Ceravolo, C.; Bergonzi, R.; De Franceschi, S.; Moro, P.; Guarnieri, R.; Ferrillo, M.; et al. Early rehabilitation in post-acute COVID-19 patients: Data from an Italian COVID-19 rehabilitation unit and proposal of a treatment protocol. Eur. J. Phys. Rehabil. Med. 2020, 56, 633–641. [Google Scholar] [CrossRef]
- Simonelli, C.; Paneroni, M.; Vitacca, M.; Ambrosino, N. Measures of physical performance in COVID-19 patients: A mapping review. Pulmonology 2021, 27, 518–528. [Google Scholar] [CrossRef]
- Townsend, L.; Dyer, A.H.; Jones, K.; Dunne, J.; Mooney, A.; Gaffney, F.; O’Connor, L.; Leavy, D.; O’Brien, K.; Dowds, J.; et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 2020, 15, e0240784. [Google Scholar] [CrossRef]
- Holland, A.E.; Spruit, M.A.; Troosters, T.; Puhan, M.A.; Pepin, V.; Saey, D.; McCormack, M.C.; Carlin, B.W.; Sciurba, F.C.; Pitta, F.; et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1428–1446. [Google Scholar] [CrossRef]
- Spielmanns, M.; Pekacka-Egli, A.-M.; Schoendorf, S.; Windisch, W.; Hermann, M. Effects of a comprehensive pulmonary rehabilitation in severe post-COVID-19 patients. Int. J. Environ. Res. Public Health 2021, 18, 2695. [Google Scholar] [CrossRef]
- Ohta, S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014, 144, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.-I.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Ichihara, M.; Sobue, S.; Ito, M.; Ito, M.; Hirayama, M.; Ohno, K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen—Comprehensive review of 321 original articles. Med. Gas Res. 2015, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Li, T.-T.; Sun, T.; Wang, Y.-Z.; Wan, Q.; Li, W.-Z.; Yang, W.-C. Molecular hydrogen alleviates lung injury after traumatic brain injury: Pyroptosis and apoptosis. Eur. J. Pharmacol. 2022, 914, 174664. [Google Scholar] [CrossRef] [PubMed]
- Ara, J.; Fadriquela, A.; Ahmed, F.; Bajgai, J.; Sajo, M.E.J.; Lee, S.P.; Kim, T.S.; Jung, J.Y.; Kim, C.S.; Kim, S.-K.; et al. Hydrogen water drinking exerts antifatigue effects in chronic forced swimming mice via antioxidative and anti-inflammatory activities. BioMed Res. Int. 2018, 2018, 2571269. [Google Scholar] [CrossRef] [PubMed]
- Botek, M.; Krejčí, J.; McKune, A.J.; Sládečková, B. Hydrogen-rich water supplementation and up-hill running performance: Effect of athlete performance level. Int. J. Sports Physiol. Perform. 2020, 15, 1193–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botek, M.; Krejčí, J.; McKune, A.; Valenta, M.; Sládečková, B. Hydrogen rich water consumption positively affects muscle performance, lactate response, and alleviates delayed onset of muscle soreness after resistance training. J. Strength Cond. Res. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Javorac, D.; Stajer, V.; Ratgeber, L.; Betlehem, J.; Ostojic, S. Short-term H2 inhalation improves running performance and torso strength in healthy adults. Biol. Sport 2019, 36, 333–339. [Google Scholar] [CrossRef]
- Slezak, J.; Kura, B.; LeBaron, T.W.; Singal, P.K.; Buday, J.; Barancik, M. Oxidative stress and pathways of molecular hydrogen effects in medicine. Curr. Pharm. Des. 2021, 27, 610–625. [Google Scholar] [CrossRef]
- Nicolson, G.L.; de Mattos, G.F.; Settineri, R.; Costa, C.; Ellithorpe, R.; Rosenblatt, S.; La Valle, J.; Jimenez, A.; Ohta, S. Clinical effects of hydrogen administration: From animal and human diseases to exercise medicine. Int. J. Clin. Med. 2016, 7, 32–76. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-D.; Lin, W.-C.; Kuo, H.-C. Chemical and biochemical aspects of molecular hydrogen in treating kawasaki disease and COVID-19. Chem. Res. Toxicol. 2021, 34, 952–958. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Lian, N.; Wang, Y.; Zheng, W.; Xie, K. Molecular hydrogen: A promising adjunctive strategy for the treatment of the COVID-19. Front. Med. 2021, 8, 1830. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yue, R.; Luo, X.; Liu, R.; Huang, X. Hydrogen: A Potential new adjuvant therapy for COVID-19 patients. Front. Pharmacol. 2020, 11, 1420. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M. COVID-19 and molecular hydrogen inhalation. Ther. Adv. Respir. Dis. 2020, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Russell, G.; Rehman, M.; LeBaron, T.W.; Veal, D.; Adukwu, E.; Hancock, J.T. An overview of SARS-CoV-2 (COVID-19) infection: The importance of molecular hydrogen as an adjunctive therapy. React. Oxyg. Species 2020, 10, 150–165. [Google Scholar] [CrossRef]
- Singh, R.B.; Halabi, G.; Fatima, G.; Rai, R.H.; Tarnava, A.T.; LeBaron, T.W. Molecular hydrogen as an adjuvant therapy may be associated with increased oxygen saturation and improved exercise tolerance in a COVID-19 patient. Clin. Case Rep. 2021, 9, e05039. [Google Scholar] [CrossRef]
- Guan, W.-J.; Wei, C.-H.; Chen, A.-L.; Sun, X.-C.; Guo, G.-Y.; Zou, X.; Shi, J.-D.; Lai, P.-Z.; Zheng, Z.-G.; Zhong, N.-S. Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial. J. Thorac. Dis. 2020, 12, 3448–3452. [Google Scholar] [CrossRef]
- Cole, A.R.; Raza, A.; Ahmed, H.; Polizzotti, B.D.; Padera, R.F.; Andrews, N.; Kheir, J.N. Safety of inhaled hydrogen gas in healthy mice. Med. Gas Res. 2022, 9, 133–138. [Google Scholar] [CrossRef]
- Klok, F.A.; Boon, G.J.A.M.; Barco, S.; Endres, M.; Geelhoed, J.J.M.; Knauss, S.; Rezek, S.A.; Spruit, M.A.; Vehreschild, J.; Siegerink, B. The Post-COVID-19 Functional Status scale: A tool to measure functional status over time after COVID-19. Eur. Respir. J. 2020, 56, 2001494. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Dourado, V.Z.; Nishiaka, R.K.; Simões, M.S.M.P.; Lauria, V.T.; Tanni, S.E.; Godoy, I.; Gagliardi, A.R.T.; Romiti, M.; Arantes, R.L. Classification of cardiorespiratory fitness using the six-minute walk test in adults: Comparison with cardiopulmonary exercise testing. Pulmonology 2021, 27, 500–508. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–581. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Chronic Obstructive Lung Disease. Diagnosis and Initial Assessment. In Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease; 2020 Report; Agusti, A.G., Vogelmeier, C., Eds.; Global Initiative for Chronic Obstructive Lung Disease: Fontana, WI, USA, 2020; pp. 20–39. [Google Scholar]
- Sano, M.; Shirakawa, K.; Katsumata, Y.; Ichihara, G.; Kobayashi, E. Low-flow nasal cannula hydrogen therapy. J. Clin. Med. Res. 2020, 12, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, V.A.; Allan, L.; Bethel, A.; Cowley, A.; Cross, J.L.; Day, J.; Drummond, A.; Hall, A.J.; Howard, M.; Morley, N.; et al. Rehabilitation to enable recovery from COVID-19: A rapid systematic review. Physiotherapy 2021, 111, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Botek, M.; Khanna, D.; Krejčí, J.; Valenta, M.; McKune, A.; Sládečková, B.; Klimešová, I. Molecular hydrogen mitigates performance decrement during repeated sprints in professional soccer players. Nutrients 2022, 14, 508. [Google Scholar] [CrossRef]
- Rooney, S.; Webster, A.; Paul, L. Systematic review of changes and recovery in physical function and fitness after severe acute respiratory syndrome-related coronavirus infection: Implications for COVID-19 rehabilitation. Phys. Ther. 2020, 100, 1717–1729. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary behavior, exercise, and cardiovascular health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Caputo, E.L.; Reichert, F.F. Studies of physical activity and COVID-19 during the pandemic: A scoping review. J. Phys. Act. Health 2020, 17, 1275–1284. [Google Scholar] [CrossRef]
- Townsend, L.; Dowds, J.; O’Brien, K.; Sheill, G.; Dyer, A.H.; O’Kelly, B.; Hynes, J.P.; Mooney, A.; Dunne, J.; Cheallaigh, C.N.; et al. Persistent poor health after COVID-19 is not associated with respiratory complications or initial disease severity. Ann. Am. Thorac. Soc. 2021, 18, 997–1003. [Google Scholar] [CrossRef]
- Casanova, C.; Celli, B.R.; Barria, P.; Casas, A.; Cote, C.; de Torres, J.P.; Jardim, J.; Lopez, M.V.; Marin, J.M.; de Oca, M.M.; et al. The 6-min walk distance in healthy subjects: Reference standards from seven countries. Eur. Respir. J. 2011, 37, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Blanco, J.-R.; Cobos-Ceballos, M.-J.; Navarro, F.; Sanjoaquin, I.; de Las Revillas, F.A.; Bernal, E.; Buzon-Martin, L.; Viribay, M.; Romero, L.; Espejo-Perez, S.; et al. Pulmonary long-term consequences of COVID-19 infections after hospital discharge. Clin. Microbiol. Infect. 2021, 27, 892–896. [Google Scholar] [CrossRef]
- Baranauskas, M.N.; Carter, S.J. Evidence for impaired chronotropic responses to and recovery from 6-minute walk test in women with post-acute COVID-19 syndrome. Exp. Physiol. 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Suhail, S.; Zajac, J.; Fossum, C.; Lowater, H.; McCracken, C.; Severson, N.; Laatsch, B.; Narkiewicz-Jodko, A.; Johnson, B.; Liebau, J.; et al. Role of oxidative stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) infection: A Review. Protein J. 2020, 39, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Filler, K.; Lyon, D.; Bennett, J.; McCain, N.; Elswick, R.; Lukkahatai, N.; Saligan, L.N. Association of mitochondrial dysfunction and fatigue: A review of the literature. BBA Clin. 2014, 1, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Calbet, J.A.L.; Martín-Rodríguez, S.; Martin-Rincon, M.; Morales-Alamo, D. An integrative approach to the regulation of mitochondrial respiration during exercise: Focus on high-intensity exercise. Redox Biol. 2020, 35, 101478. [Google Scholar] [CrossRef]
- Gvozdjáková, A.; Kucharská, J.; Kura, B.; Vančová, O.; Rausová, Z.; Sumbalová, Z.; Uličná, O.; Slezák, J. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats. Can. J. Physiol. Pharmacol. 2020, 98, 29–34. [Google Scholar] [CrossRef]
- Murakami, Y.; Ito, M.; Ohsawa, I. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PLoS ONE 2017, 12, e0176992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, K.; Rosch, M.; Langguth, P. Molecular hydrogen (H2) as a potential treatment for acute and chronic fatigue. Arch. Pharm. 2021, 354, 2000378. [Google Scholar] [CrossRef]
- Timón, R.; Olcina, G.; González-Custodio, A.; Camacho-Cardenosa, M.; Camacho-Cardenosa, A.; Martínez Guardado, I. Effects of 7-day intake of hydrogen-rich water on physical performance of trained and untrained subjects. Biol. Sport 2021, 38, 269–275. [Google Scholar] [CrossRef]
- Borg, G.; Ljunggren, G.; Ceci, R. The increase of perceived exertion, aches and pain in the legs, heart rate and blood lactate during exercise on a bicycle ergometer. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 54, 343–349. [Google Scholar] [CrossRef]
- Botek, M.; Krejčí, J.; McKune, A.J.; Sládečková, B.; Naumovski, N. Hydrogen rich water improved ventilatory, perceptual and lactate responses to exercise. Int. J. Sports Med. 2019, 40, 879–885. [Google Scholar] [CrossRef]
- Zhou, Z.-Q.; Zhong, C.-H.; Su, Z.-Q.; Li, X.-Y.; Chen, Y.; Chen, X.-B.; Tang, C.-L.; Zhou, L.-Q.; Li, S.-Y. Breathing hydrogen-oxygen mixture decreases inspiratory effort in patients with tracheal stenosis. Respiration 2019, 97, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.M.-C.; Ng, G.Y.-F.; Jones, A.Y.-M.; Lee, E.W.-C.; Siu, E.H.-K.; Hui, D.S.-C. A randomised controlled trial of the effectiveness of an exercise training program in patients recovering from severe acute respiratory syndrome. Aust. J. Physiother. 2005, 51, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Ouyang, T.; Qiu, Y.; Cui, D. Literature review of the implications of exercise rehabilitation strategies for SARS patients on the recovery of COVID-19 patients. Healthcare 2021, 9, 590. [Google Scholar] [CrossRef] [PubMed]
- Ostojic, S.M. Molecular hydrogen in sports medicine: New therapeutic perspectives. Int. J. Sports Med. 2015, 36, 273–279. [Google Scholar] [CrossRef] [Green Version]
Male | Male | Female | Female | ANOVA/ANCOVA | |||
---|---|---|---|---|---|---|---|
H2 | Placebo | H2 | Placebo | Int. | Sex | Age | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p | p | p | |
n = 50 | 16 | 13 | 10 | 11 | |||
Age (years) | 45 ± 19 | 39 ± 11 | 41 ± 13 | 37 ± 12 | 0.22 | 0.48 | - |
Body mass (kg) | 82.7 ± 9.2 | 76.7 ± 9.3 | 69.1 ± 12.1 | 62.5 ± 7.1 | 0.056 | <0.001 | 0.007 |
Body height (cm) | 179.3 ± 6.6 | 181.3 ± 8.1 | 167.6 ± 7.2 | 169.1 ± 7.2 | 0.44 | <0.001 | 0.63 |
BMI (kg/m2) | 25.7 ± 2.4 | 23.4 ± 2.5 | 24.5 ± 3.0 | 21.8 ± 2.0 | 0.002 | 0.078 | <0.001 |
Body fat (%) | 18.2 ± 6.7 | 14.3 ± 4.8 | 30.5 ± 7.3 | 22.5 ± 6.4 | 0.006 | <0.001 | <0.001 |
Days after PCR | 26.6 ± 4.1 | 24.7 ± 4.1 | 26.4 ± 3.7 | 26.1 ± 4.3 | 0.28 | 0.65 | 0.82 |
Symptom | Frequency | Relative Frequency |
---|---|---|
Anxiety | 1 | 2% |
Cognitive impairment | 2 | 4% |
Cough | 8 | 16% |
Diarrhea | 1 | 2% |
Dyspnea | 38 | 76% |
Fatigue | 40 | 80% |
Fever | 28 | 56% |
Headache | 19 | 38% |
Insomnia | 15 | 30% |
Joint/muscle aches | 20 | 40% |
Loss of taste/smell | 17 | 34% |
Shiver | 1 | 2% |
Sore throat | 3 | 6% |
Male | Male | Female | Female | ANCOVA | K-W | |||
---|---|---|---|---|---|---|---|---|
H2 | Placebo | H2 | Placebo | Int. | Sex | Age | ||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p | p | p | p | |
FVC (L) | 4.92 ± 1.01 | 5.22 ± 0.68 | 3.61 ± 0.72 | 3.85 ± 0.61 | 0.51 | <0.001 | <0.001 | |
FVC (%) | 96.7 ± 14.6 | 99.8 ± 12.0 | 106.5 ± 11.3 | 108.5 ± 11.3 | 0.55 | 0.017 | 0.55 | |
FEV1 (L) | 4.11 ± 1.01 | 4.45 ± 0.54 | 2.94 ± 0.70 | 3.18 ± 0.46 | 0.42 | <0.001 | <0.001 | |
FEV1 (%) | 103.9 ± 17.9 | 107.5 ± 14.1 | 100.9 ± 18.5 | 104.1 ± 10.5 | 0.55 | 0.43 | 0.38 | |
FEV1/VC | 0.831 ± 0.075 | 0.856 ± 0.064 | 0.813 ± 0.094 | 0.830 ± 0.063 | 0.54 | 0.19 | 0.017 | |
SpO2rest (%) | 97.5 ± 0.8 | 98.0 ± 0.7 | 98.3 ± 0.7 | 98.0 ± 1.0 | 0.089 | |||
Dyspnea (points) | 1.3 ± 0.6 | 1.3 ± 0.6 | 1.2 ± 0.6 | 1.5 ± 0.5 | 0.61 | |||
6 MWT (m) | 671 ± 80 | 689 ± 27 | 654 ± 62 | 676 ± 36 | 0.60 | 0.095 | <0.001 | |
6 MWT (%) | 106.6 ± 8.9 | 107.2 ± 5.1 | 113.3 ± 10.1 | 114.7 ± 8.3 | 0.69 | 0.004 | 0.89 | |
SpO2walk (%) | 94.1 ± 2.3 | 94.6 ± 3.0 | 94.6 ± 2.6 | 94.7 ± 4.1 | 0.71 | |||
RPE (points) | 12.2 ± 1.8 | 11.7 ± 1.8 | 11.4 ± 1.4 | 12.2 ± 1.8 | 0.65 |
Male | Male | Female | Female | ANCOVA | K-W | |||
---|---|---|---|---|---|---|---|---|
H2 | Placebo | H2 | Placebo | Int. | Sex | Age | ||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p | p | p | p | |
Fatigue | 1.9 ± 0.6 | 1.9 ± 0.6 | 2.1 ± 0.7 | 2.1 ± 0.5 | 0.81 | 0.20 | 0.18 | |
Sleep quality | 1.6 ± 0.9 | 1.6 ± 0.8 | 1.6 ± 0.6 | 1.6 ± 0.9 | 0.49 | 0.63 | 0.002 | |
Muscle soreness | 1.5 ± 0.5 | 1.5 ± 0.5 | 1.4 ± 0.5 | 1.5 ± 0.4 | 0.80 | 0.99 | 0.80 | |
Dyspnea | 0.6 ± 0.5 | 0.5 ± 0.5 | 0.5 ± 0.5 | 0.6 ± 0.6 | 0.85 |
Male | Male | Female | Female | ANCOVA | K-W | |||
---|---|---|---|---|---|---|---|---|
H2 | Placebo | H2 | Placebo | Int. | Sex | Age | ||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p | p | p | p | |
FVC (L) | 0.19 ± 0.29 | 0.00 ± 0.22 | 0.19 ± 0.15 | −0.02 ± 0.23 | 0.003 | 0.78 | 0.18 | |
FVC (%) | 3.6 ± 6.4 | −0.1 ± 4.4 | 5.4 ± 4.2 | −0.4 ± 6.3 | 0.003 | 0.73 | 0.19 | |
FEV1 (L) | 0.08 ± 0.33 | −0.09 ± 0.27 | 0.15 ± 0.19 | −0.05 ± 0.28 | 0.021 | 0.54 | 0.58 | |
FEV1 (%) | 1.5 ± 8.9 | −2.5 ± 6.7 | 5.0 ± 6.7 | −1.8 ± 8.6 | 0.020 | 0.41 | 0.43 | |
FEV1/VC | −0.015 ± 0.048 | −0.017 ± 0.036 | −0.002 ± 0.041 | −0.011 ± 0.038 | 0.71 | 0.40 | 0.74 | |
SpO2rest (%) | 0.3 ± 0.8 | 0.2 ± 0.4 | 0.1 ± 0.6 | 0.2 ± 1.0 | 0.70 | |||
Dyspnea (points) | −0.9 ± 0.8 | −0.8 ± 0.4 | −0.7 ± 0.9 | −0.6 ± 0.7 | 0.64 | |||
6 MWT (m) | 65 ± 44 | 20 ± 28 | 62 ± 33 | −5 ± 26 | <0.001 | 0.18 | 0.86 | |
6 MWT (%) | 10.5 ± 7.2 | 3.2 ± 4.4 | 10.6 ± 5.4 | −0.9 ± 4.7 | <0.001 | 0.27 | 0.53 | |
SpO2walk (%) | 1.4 ± 2.2 | 0.8 ± 2.6 | 1.8 ± 3.5 | 1.6 ± 2.8 | 0.75 | |||
RPE (points) | −0.8 ± 3.1 | −0.8 ± 2.0 | −0.4 ± 1.6 | −1.0 ± 2.1 | 0.89 |
H2 | Placebo | |||||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | 95% CI | Mean ± SD | 95% CI | d | p | p1 | p2 | |
FVC (L) | 0.19 ± 0.24 | 0.09 to 0.29 | −0.01 ± 0.22 | −0.10 to 0.08 | 0.85 | 0.004 | 0.001 | 0.83 |
FVC (%) | 4.3 ± 5.7 | 2.0 to 6.6 | −0.2 ± 5.2 | −2.4 to 2.0 | 0.83 | 0.005 | 0.001 | 0.85 |
FEV1 (L) | 0.11 ± 0.28 | −0.01 to 0.22 | −0.08 ± 0.27 | −0.19 to 0.04 | 0.66 | 0.025 | 0.070 | 0.18 |
FEV1 (%) | 2.8 ± 8.2 | −0.5 to 6.1 | −2.2 ± 7.5 | −5.3 to 1.0 | 0.64 | 0.028 | 0.088 | 0.17 |
FEV1/VC | −0.010 ± 0.045 | −0.028 to 0.008 | −0.015 ± 0.036 | −0.030 to 0.001 | 0.11 | 0.70 | 0.26 | 0.060 |
SpO2rest (%) * | 0.2 ± 0.7 | −0.1 to 0.5 | 0.2 ± 0.7 | −0.1 to 0.5 | −0.02 | 0.63 | 0.27 | 0.25 |
Dyspnea (points) * | −0.8 ± 0.8 | −1.2 to −0.5 | −0.8 ± 0.5 | −1.0 to −0.5 | −0.08 | 0.83 | 0.001 | <0.001 |
6 MWT (m) | 64 ± 39 | 48 to 80 | 9 ± 29 | −4 to 21 | 1.58 | <0.001 | <0.001 | 0.15 |
6 MWT (%) | 10.5 ± 6.4 | 7.9 to 13.1 | 1.3 ± 4.9 | −0.8 to 3.4 | 1.61 | <0.001 | <0.001 | 0.21 |
SpO2walk (%) * | 1.5 ± 2.7 | 0.5 to 2.6 | 1.2 ± 2.7 | 0.1 to 2.3 | 0.12 | 0.42 | 0.003 | 0.047 |
RPE (points) * | −0.7 ± 2.6 | −1.7 to 0.4 | −0.9 ± 2.0 | −1.8 to −0.1 | 0.11 | 0.88 | 0.11 | 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botek, M.; Krejčí, J.; Valenta, M.; McKune, A.; Sládečková, B.; Konečný, P.; Klimešová, I.; Pastucha, D. Molecular Hydrogen Positively Affects Physical and Respiratory Function in Acute Post-COVID-19 Patients: A New Perspective in Rehabilitation. Int. J. Environ. Res. Public Health 2022, 19, 1992. https://doi.org/10.3390/ijerph19041992
Botek M, Krejčí J, Valenta M, McKune A, Sládečková B, Konečný P, Klimešová I, Pastucha D. Molecular Hydrogen Positively Affects Physical and Respiratory Function in Acute Post-COVID-19 Patients: A New Perspective in Rehabilitation. International Journal of Environmental Research and Public Health. 2022; 19(4):1992. https://doi.org/10.3390/ijerph19041992
Chicago/Turabian StyleBotek, Michal, Jakub Krejčí, Michal Valenta, Andrew McKune, Barbora Sládečková, Petr Konečný, Iva Klimešová, and Dalibor Pastucha. 2022. "Molecular Hydrogen Positively Affects Physical and Respiratory Function in Acute Post-COVID-19 Patients: A New Perspective in Rehabilitation" International Journal of Environmental Research and Public Health 19, no. 4: 1992. https://doi.org/10.3390/ijerph19041992
APA StyleBotek, M., Krejčí, J., Valenta, M., McKune, A., Sládečková, B., Konečný, P., Klimešová, I., & Pastucha, D. (2022). Molecular Hydrogen Positively Affects Physical and Respiratory Function in Acute Post-COVID-19 Patients: A New Perspective in Rehabilitation. International Journal of Environmental Research and Public Health, 19(4), 1992. https://doi.org/10.3390/ijerph19041992