User Experience and Sustainability of 3D Printing in Dentistry
Abstract
:1. Introduction
2. Method
2.1. Online Survey
2.2. Data Collection and Outcome Measures
2.3. Statistical Analysis and Visualization
3. Results
- Semmelweis University Summer School 2020;
- Semmelweis University Congress for Ph.D. Students 2020;
- Semmelweis University Postgraduate Course—Faculty of Dentistry 2021;
- Semmelweis University Career Day 2021.
- ExoCad (exocad GmbH, Darmstadt, Germany) (n = 41);
- MeshMixer (AutoDesk Inc., San Rafael, CA, USA) (n = 29);
- 3Shape (3Shape A/S, Copenhagen, Denmark) (n = 21);
- Rayware (SprintRay Inc., Los Angeles, CA, USA) (n = 11);
- Chitubox (Shenzhen CBD Technology Co., Ltd., Shenzhen, China) (n = 8);
- Blue Sky Plan (Blue Sky Bio, LLC, Libertyville, IL, USA) (n = 7);
- Blender (The Blender Foundation, Amsterdam, The Netherlands) (n = 1);
- Dental Wings (Dental Wings Inc., Montréal, QC, Canada) (n = 1);
- SolidWorks (Dassault Systèmes SolidWorks Corp., Waltham, MA, USA) (n = 1) software.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | 3 Dimensional |
3DP | 3-Dimensional Printing |
ABS | Acrylonitrile Butadiene Styrene |
AM | Additive Manufacturing |
CAD/CAM | Computer-Aided Design/Computer-Aided Manufacturing |
DiCOM | Digital Imaging and Communications in Medicine |
DLP | Digital Light Processing |
FDM | Fused Deposition Modeling |
HEPA | High-Efficiency Particulate Air |
IPA | Isopropyl Alcohol |
LFS | Low Force Stereolithography |
PBF | Powder Bed Fusion |
SLA | Stereolithography Apparatus |
STL | Standard Triangle Language |
UFP | Ultra Fine Particles |
VOC | Volatile Organic Compounds |
References
- Liaw, C.-Y.; Guvendiren, M. Current and emerging applications of 3D printing in medicine. Biofabrication 2017, 9, 024102. [Google Scholar] [CrossRef] [PubMed]
- Methani, M.M.; Revilla-Leon, M.; Zandinejad, A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: A review. J. Esthet. Restor. Dent. 2020, 32, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Tack, P.; Victor, J.; Gemmel, P.; Annemans, L. 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online 2016, 15, 115. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dang, W.; Ma, B.; Li, B.; Huan, Z.; Ma, N.; Zhu, H.; Chang, J.; Xiao, Y.; Wu, C. 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. Biofabrication 2020, 12, 025005. [Google Scholar] [CrossRef]
- Jiang, Y.; Pan, X.; Yao, M.; Han, L.; Zhang, X.; Jia, Z.; Weng, J.; Chen, W.; Fang, L.; Wang, X.; et al. Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 2021, 39, 101182. [Google Scholar] [CrossRef]
- Wang, X.; Xue, J.; Ma, B.; Wu, J.; Chang, J.; Gelinsky, M.; Wu, C. Black Bioceramics: Combining Regeneration with Therapy. Adv. Mater. 2020, 32, e2005140. [Google Scholar] [CrossRef]
- Dawood, A.; Marti, B.M.; Sauret-Jackson, V.; Darwood, A. 3D printing in dentistry. Br. Dent. J. 2015, 219, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J. Oral Biol. Craniofac. Res. 2019, 9, 179–185. [Google Scholar] [CrossRef]
- Anadioti, E.; Musharbash, L.; Blatz, M.B.; Papavasiliou, G.; Kamposiora, P. 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health 2020, 20, 343. [Google Scholar] [CrossRef]
- Revilla-Leon, M.; Ozcan, M. Additive manufacturing technologies used for processing polymers: Current status and potential application in prosthetic dentistry. J. Prosthodont. 2019, 28, 146–158. [Google Scholar] [CrossRef][Green Version]
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassoni, L.E. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Cousley, R.R. Introducing 3D printing in your orthodontic practice. J. Orthod. 2020, 47, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Etajuri, E.A.; Suliman, E.; Mahmood, W.A.A.; Ibrahim, N.; Buzayan, M.; Mohd, N.R. Deviation of dental implants placed using a novel 3D-printed surgical guide: An in vitro study. Dent. Med. Probl. 2020, 57, 359–362. [Google Scholar] [CrossRef]
- Maroulakos, M.; Kamperos, G.; Tayebi, L.; Halazonetis, D.; Ren, Y. Applications of 3D printing on craniofacial bone repair: A systematic review. J. Dent. 2019, 80, 1–14. [Google Scholar] [CrossRef]
- Tu, C.C.; Tsai, P.-I.; Chen, S.-Y.; Kuo, M.Y.-P.; Sun, J.-S.; Chang, J.Z.-C. 3D laser-printed porous Ti6Al4V dental implants for compromised bone support. J. Formos. Med Assoc. 2020, 119, 420–429. [Google Scholar]
- Herber, V.; Okutan, B.; Antonoglou, G.; Sommer, N.; Payer, M. Bioresorbable Magnesium-Based Alloys as Novel Biomaterials in Oral Bone Regeneration: General Review and Clinical Perspectives. J. Clin. Med. 2021, 10, 1842. [Google Scholar] [CrossRef] [PubMed]
- Thayer, P.; Martinez, H.; Gatenholm, E. History and trends of 3D bioprinting. Methods Mol. Biol. 2020, 2140, 3–18. [Google Scholar]
- Smith, P.B.; Perry, J.; Elza, W. Economic and clinical impact of digitally produced dentures. J. Prosthodont. 2021, 30 (Suppl. 2), 108–112. [Google Scholar] [CrossRef]
- Kamio, T.; Suzuki, M.; Asaumi, R.; Kawai, T. Dicom segmentation and stl creation for 3D printing: A process and software package comparison for osseous anatomy. 3D Print Med. 2020, 6, 17. [Google Scholar] [CrossRef]
- Kessler, A.; Hickel, R.; Reymus, M. 3D printing in dentistry-state of the art. Oper. Dent. 2020, 45, 30–40. [Google Scholar] [CrossRef]
- Topolovec-Vranic, J.; Natarajan, K. The use of social media in recruitment for medical research studies: A scoping review. J. Med. Internet Res. 2016, 18, e286. [Google Scholar] [CrossRef]
- Rolls, K.; Hansen, M.; Jackson, D.; Elliott, D. How health care professionals use social media to create virtual communities: An integrative review. J. Med. Internet Res. 2016, 18, e166. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Regenberg, A. Science and social media. Stem Cells Transl. Med. 2019, 8, 1226–1229. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Powell, R.A.; Single, H.M.; Lloyd, K.R. Focus groups in mental health research: Enhancing the validity of user and provider questionnaires. Int. J. Soc. Psychiatry 1996, 42, 193–206. [Google Scholar] [CrossRef]
- Zohrabi, M. Mixed Method Research: Instruments, Validity, Reliability and Reporting Findings. Theory Pr. Lang. Stud. 2013, 3, 254–262. [Google Scholar] [CrossRef]
- Gao, H.; Yang, Z.; Lin, W.S.; Tan, J.; Chen, L. The effect of build orientation on the dimensional accuracy of 3D-printed mandibular complete dentures manufactured with a multijet 3D printer. J. Prosthodont. 2021, 30, 684–689. [Google Scholar] [CrossRef]
- Rungrojwittayakul, O.; Kan, J.Y.; Shiozaki, K.; Swamidass, R.S.; Goodacre, B.J.; Goodacre, C.J.; Lozada, J.L. Accuracy of 3D printed models created by two technologies of printers with different designs of model base. J. Prosthodont. 2020, 29, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Unkovskiy, A.; Schmidt, F.; Beuer, F.; Li, P.; Spintzyk, S.; Kraemer Fernandez, P. Stereolithography vs. Direct light processing for rapid manufacturing of complete denture bases: An in vitro accuracy analysis. J. Clin. Med. 2021, 10, 1070. [Google Scholar] [CrossRef]
- Yoo, S.Y.; Kim, S.K.; Heo, S.J.; Koak, J.Y.; Kim, J.G. Dimensional accuracy of dental models for three-unit prostheses fabricated by various 3D printing technologies. Materials 2021, 14, 1550. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Ronsivalle, V.; Rustico, L.; Aboulazm, K.; Isola, G.; Palazzo, G. Evaluation of the accuracy of orthodontic models prototyped with entry-level lcd-based 3D printers: A study using surface-based superimposition and deviation analysis. Clin. Oral Investig. 2021, 26, 303–312. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Reinicke, T. On the environmental impacts of 3D printing technology. Appl. Mater. Today 2020, 20, 100689. [Google Scholar] [CrossRef]
- Shuaib, M.; Haleem, A.; Kumar, S.; Javaid, M. Impact of 3D printing on the environment: A literature-based study. Sustain. Oper. Comput. 2021, 2, 57–63. [Google Scholar] [CrossRef]
- How Sustainable is Industrial 3D Printing? 2020. Available online: https://amfg.ai/2020/03/10/how-sustainable-is-industrial-3D-printing/ (accessed on 15 December 2021).
- Rejeski, D.; Zhao, F.; Huang, Y. Research needs and recommendations on environmental implications of additive manufacturing. Addit. Manuf. 2018, 19, 21–28. [Google Scholar] [CrossRef][Green Version]
- The Environmental Impact of 3D Printing. 2017. Available online: https://3Dinsider.com/environmental-impact-3D-printing/ (accessed on 15 December 2021).
- Xu, Y.; Xepapadeas, A.B.; Koos, B.; Geis-Gerstorfer, J.; Li, P.; Spintzyk, S. Effect of post-rinsing time on the mechanical strength and cytotoxicity of a 3D printed orthodontic splint material. Dent. Mater. 2021, 37, e314–e327. [Google Scholar] [CrossRef] [PubMed]
- Recycling IPA for 3D Printing. 2020. Available online: https://formlabs.com/blog/recycling-ipa/ (accessed on 15 December 2021).
- Della Bona, A.; Cantelli, V.; Britto, V.T.; Collares, K.F.; Stansbury, J.W. 3D printing restorative materials using a stereolithographic technique: A systematic review. Dent. Mater. 2021, 37, 336–350. [Google Scholar] [CrossRef] [PubMed]
Company | Satisfaction | Price | Material Price | Speed | Support | Overall |
---|---|---|---|---|---|---|
Asiga | 5.0 (n = 24) | 3.9 (n = 24) | 3.7 (n = 24) | 4.4 (n = 24) | 4.7 (n = 24) | 4.3 (n = 24) |
Nextdent | 4.9 (n = 25) | 4.4 (n = 25) | 4.4 (n = 25) | 5.0 (n = 25) | 4.6 (n = 25) | 4.7 (n = 25) |
Formlabs | 4.4 (n = 35) | 4.4(n = 35) | 4.3 (n = 35) | 2.6 (n = 35) | 4.2 (n = 35) | 4.0 (n = 35) |
Anycubic | 4.5 (n = 15) | 4.8 (n = 15) | 4.5 (n = 15) | 4.0 (n = 15) | 4.3 (n = 15) | 4.4 (n = 15) |
Sprintray | 4.3 (n = 10) | 4.3 (n = 10) | 4.3 (n = 10) | 4.0 (n = 10) | 4.0 (n = 10) | 4.2 (n = 10) |
Phrozen | 3.7 (n = 11) | 5.0 (n = 11) | 4.0 (n = 11) | 4.0 (n = 11) | 3.0 (n = 11) | 3.9 (n = 11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegedus, T.; Kreuter, P.; Kismarczi-Antalffy, A.A.; Demeter, T.; Banyai, D.; Vegh, A.; Geczi, Z.; Hermann, P.; Payer, M.; Zsembery, A.; Al-Hassiny, A.; Mukaddam, K.; Herber, V.; Jakse, N.; Vegh, D. User Experience and Sustainability of 3D Printing in Dentistry. Int. J. Environ. Res. Public Health 2022, 19, 1921. https://doi.org/10.3390/ijerph19041921
Hegedus T, Kreuter P, Kismarczi-Antalffy AA, Demeter T, Banyai D, Vegh A, Geczi Z, Hermann P, Payer M, Zsembery A, Al-Hassiny A, Mukaddam K, Herber V, Jakse N, Vegh D. User Experience and Sustainability of 3D Printing in Dentistry. International Journal of Environmental Research and Public Health. 2022; 19(4):1921. https://doi.org/10.3390/ijerph19041921
Chicago/Turabian StyleHegedus, Tamas, Patrik Kreuter, Aron Attila Kismarczi-Antalffy, Tamas Demeter, Dorottya Banyai, Adam Vegh, Zoltan Geczi, Peter Hermann, Michael Payer, Akos Zsembery, Ahmad Al-Hassiny, Khaled Mukaddam, Valentin Herber, Norbert Jakse, and Daniel Vegh. 2022. "User Experience and Sustainability of 3D Printing in Dentistry" International Journal of Environmental Research and Public Health 19, no. 4: 1921. https://doi.org/10.3390/ijerph19041921