Effect of Physical Training on Body Composition in Brazilian Military
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Sample
2.2. Military Physical Training
2.3. Measurements
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jamro, D.; Zurek, G.; Lachowicz, M.; Lenart, D. Influence of Physical Fitness and Attention Level on Academic Achievements of Female and Male Military Academy Cadets in Poland. Healthcare 2021, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Ebbeling, C.B.; Zheng, J.; Pietrobelli, A.; Strauss, B.J.; Silva, A.; Ludwig, D. Multi-component molecular-level body composition reference methods: Evolving concepts and future directions. Obes. Rev. 2015, 16, 282–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leu, J.R.; Friedl, K.E. Body Fat Standards and Individual Physical Readiness in a Randomized Army Sample: Screening Weights, Methods of Fat Assessment, and Linkage to Physical Fitness. Mil. Med. 2002, 167, 994–1000. [Google Scholar] [CrossRef] [Green Version]
- Friedl, K.E. Body Composition and Military Performance—Many Things to Many People. J. Strength Cond. Res. 2012, 26, S87–S100. [Google Scholar] [CrossRef]
- Mitchell, K.M.; Pritchett, R.C.; Gee, D.L.; Pritchett, K.L. Comparison of Circumference Measures and Height–Weight Tables with Dual-Energy X-Ray Absorptiometry Assessment of Body Composition in R.O.T.C. Cadets. J. Strength Cond. Res. 2017, 31, 2552–2556. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Deurenberg, P.; Pietrantuono, M.; Di Daniele, N.; Cervelli, V.; Andreoli, A. How fat is obese? Acta Diabetol. 2003, 40, 254–257. [Google Scholar] [CrossRef]
- Ode, J.J.; Pivarnik, J.M.; Reeves, M.J.; Knous, J.L. Body Mass Index as a Predictor of Percent Fat in College Athletes and Nonathletes. Med. Sci. Sports Exerc. 2007, 39, 403–409. [Google Scholar] [CrossRef]
- Buffa, R.; Mereu, E.; Succa, V.; Latini, V.; Marini, E. Specific BIVA recognizes variation of body mass and body composition: Two related but different facets of nutritional status. Nutrition 2017, 35, 1–5. [Google Scholar] [CrossRef]
- Malavolti, M.; Battistini, N.C.; Dugoni, M.; Bagni, B.; Bagni, I.; Pietrobelli, A. Effect of Intense Military Training on Body Composition. J. Strength Cond. Res. 2008, 22, 503–508. [Google Scholar] [CrossRef]
- Pierce, J.R.; DeGroot, D.W.; Grier, T.L.; Hauret, K.G.; Nindl, B.C.; East, W.B.; McGurk, M.S.; Jones, B.H. Body mass index predicts selected physical fitness attributes but is not associated with performance on military relevant tasks in U.S. Army Soldiers. J. Sci. Med. Sport 2017, 20, S79–S84. [Google Scholar] [CrossRef]
- Lee, W.-S. Body fatness charts based on BMI and waist circumference. Obesity 2015, 24, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Ulijaszek, S.J.; Kerr, D.A. Anthropometric measurement error and the assessment of nutritional status. Br. J. Nutr. 1999, 82, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combest, T.M.; Howard, R.S.; Andrews, L.A.M. Comparison of Circumference Body Composition Measurements and Eight-Point Bioelectrical Impedance Analysis to Dual Energy X-Ray Absorptiometry to Measure Body Fat Percentage. Mil. Med. 2017, 182, e1908–e1912. [Google Scholar] [CrossRef] [Green Version]
- NIH. Bioelectrical Impedance Analysis in Body Composition Measurement: National Institutes of Health Technology Assessment Conference Statement; National Institutes of Health: Washington, DC, USA, 1996. [Google Scholar]
- Williams, A.G. Effects of Basic Training in the British Army on Regular and Reserve Army Personnel. J. Strength Cond. Res. 2005, 19, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Mikkola, I.; Jokelainen, J.J.; Timonen, M.J.; Härkönen, P.K.; Saastamoinen, E.; Laakso, M.A.; Peitso, A.J.; Juuti, A.-K.; Keinänen-Kiukaanniemi, S.M.; Mäkinen, T.M. Physical Activity and Body Composition Changes during Military Service. Med. Sci. Sports Exerc. 2009, 41, 1735–1742. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Barbosa-Silva, T.G.; Bielemann, R.M.; Gallagher, D.; Heymsfield, S.B. Phase angle and its determinants in healthy subjects: Influence of body composition. Am. J. Clin. Nutr. 2016, 103, 712–716. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.S.; Avelar, A.; Dos Santos, L.; Silva, A.M.; Gobbo, L.A.; Schoenfeld, B.J.; Sardinha, L.B.; Cyrino, E. Hypertrophy-type Resistance Training Improves Phase Angle in Young Adult Men and Women. Int. J. Sports Med. 2016, 38, 35–40. [Google Scholar] [CrossRef]
- Mereu, E.; Buffa, R.; Lussu, P.; Marini, E. Phase angle, vector length, and body composition. Am. J. Clin. Nutr. 2016, 104, 845–847. [Google Scholar] [CrossRef] [Green Version]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buffa, R.; Saragat, B.; Cabras, S.; Rinaldi, A.C.; Marini, E. Accuracy of Specific BIVA for the Assessment of Body Composition in the United States Population. PLoS ONE 2013, 8, e58533. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Sergi, G.; Succa, V.; Saragat, B.; Sarti, S.; Coin, A.; Manzato, E.; Buffa, R. Efficacy of specific bioelectrical impedance vector analysis (BIVA) for assessing body composition in the elderly. J. Nutr. Health Aging 2012, 17, 515–521. [Google Scholar] [CrossRef]
- Buffa, R.; Mereu, E.; Comandini, O.; Ibanez, E.M.; Marini, E. Bioelectrical impedance vector analysis (BIVA) for the assessment of two-compartment body composition. Eur. J. Clin. Nutr. 2014, 68, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Buffa, R.; Saragat, B.; Coin, A.; Berton, L.; Manzato, E.; Sergi, G.; Toffanello, E.D. The potential of classic and specific bioelectrical impedance vector analysis for the assessment of sarcopenia and sarcopenic obesity. Clin. Interv. Aging 2012, 7, 585–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saragat, B.; Buffa, R.; Mereu, E.; De Rui, M.; Coin, A.; Sergi, G.; Marini, E. Specific bioelectrical impedance vector reference values for assessing body composition in the Italian elderly. Exp. Gerontol. 2014, 50, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, M.E.; Mereu, E.; Buffa, R.; Gualdi-Russo, E.; Zaccagni, L.; Cossu, S.; Rebato, E.; Marini, E. Newspecificbioelectrical impedance vector reference values for assessing body composition in the Italian-Spanish young adult population. Am. J. Hum. Biol. 2015, 27, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Castizo-Olier, J.; Irurtia, A.; Jemni, M.; Carrasco-Marginet, M.; Fernández-García, R.; Rodríguez, F.A. Bioelectrical impedance vector analysis (BIVA) in sport and exercise: Systematic review and future perspectives. PLoS ONE 2018, 13, e0197957. [Google Scholar] [CrossRef]
- Antoni, G.; Marini, E.; Curreli, N.; Tuveri, V.; Comandini, O.; Cabras, S.; Gabba, S.; Madeddu, C.; Crisafulli, A.; Rinaldi, A.C. Energy expenditure in caving. PLoS ONE 2017, 12, e0170853. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, D.H.; Stout, J.R.; Moon, J.R.; Smith-Ryan, A.E.; Kendall, K.L.; Hoffman, J.R. Effects of resistance training on classic and specific bioelectrical impedance vector analysis in elderly women. Exp. Gerontol. 2016, 74, 9–12. [Google Scholar] [CrossRef]
- Borges, J.H.; Hunter, G.R.; Silva, A.M.; Cirolini, V.X.; Langer, R.D.; Páscoa, M.A.; Guerra-Júnior, G.; Gonçalves, E.M. Adaptive thermogenesis and changes in body composition and physical fitness in army cadets. J. Sports Med. Phys. Fit. 2019, 59, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.D.; Silva, A.M.; Borges, J.; Cirolini, V.X.; Páscoa, M.A.; Guerra-Júnior, G.; Gonçalves, E.M. Physical training over 6 months is associated with improved changes in phase angle, body composition, and blood glucose in healthy young males. Am. J. Hum. Biol. 2019, 31, e23275. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.J.; Roache, A.F.; Martorell, R. Anthropometric Standardization Reference Manual. Med. Sci. Sports Exerc. 1992, 24, 952. [Google Scholar] [CrossRef] [Green Version]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Orlandi, S.P.; Santos, L.P.; Barros, A.J. Body composition using bioelectrical impedance: Development and validation of a predictive equation for fat-free mass in a middle-income country. Clin. Nutr. 2018, 38, 2175–2179. [Google Scholar] [CrossRef] [PubMed]
- WHO Consultation Report. Obesity: Preventing and Managing the Global Epidemic. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Westerterp, K.R. Exercise, energy balance and body composition. Eur. J. Clin. Nutr. 2018, 72, 1246–1250. [Google Scholar] [CrossRef]
- Harty, P.S.; Friedl, K.E.; Nindl, B.C.; Harry, J.R.; Vellers, H.L.; Tinsley, G.M. Military Body Composition Standards and Physical Performance: Historical Perspectives and Future Directions. J. Strength Cond. Res. 2021; In print. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K.; American College of Sports Medicine. American College of Sports Medicine Position Stand. Appropriate Physical Activity Intervention Strategies for Weight Loss and Prevention of Weight Regain for Adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef]
- Campos, L.C.B.; Campos, F.A.D.; Bezerra, T.A.R.; Pellegrinotti, L. Effects of 12 Weeks of Physical Training on Body Composition and Physical Fitness in Military Recruits. Int. J. Exerc. Sci. 2017, 10, 560–567. [Google Scholar]
- Crombie, A.P.; Liu, P.-Y.; Ormsbee, M.J.; Ilich, J.Z. Weight and Body-Composition Change during the College Freshman Year in Male General-Population Students and Army Reserve Officer Training Corps (ROTC) Cadets. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.S.; Krüger, P.E.; Grant, C.C. DEXA-assessed regional body composition changes in young female military soldiers following 12-weeks of periodised training. Ergonomics 2010, 53, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Margolis, L.M.; Rood, J.; Champagne, C.; Young, A.J.; Castellani, J. Energy balance and body composition during US Army special forces training. Appl. Physiol. Nutr. Metab. 2013, 38, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Mourier, A.; Gautier, J.-F.; De Kerviler, E.; Bigard, A.X.; Villette, J.-M.; Garnier, J.-P.; Duvallet, A.; Guezennec, C.Y.; Cathelineau, G. Mobilization of Visceral Adipose Tissue Related to the Improvement in Insulin Sensitivity in Response to Physical Training in NIDDM: Effects of branched-chain amino acid supplements. Diabetes Care 1997, 20, 385–391. [Google Scholar] [CrossRef]
- Campa, F.; Silva, A.M.; Matias, C.N.; Monteiro, C.P.; Paoli, A.; Nunes, J.P.; Talluri, J.; Lukaski, H.; Toselli, S. Body Water Content and Morphological Characteristics Modify Bioimpedance Vector Patterns in Volleyball, Soccer, and Rugby Players. Int. J. Environ. Res. Public Health 2020, 17, 6604. [Google Scholar] [CrossRef]
- Micheli, M.L.; Pagani, L.; Marella, M.; Gulisano, M.; Piccoli, A.; Angelini, F.; Burtscher, M.; Gatterer, H. Bioimpedance and Impedance Vector Patterns as Predictors of League Level in Male Soccer Players. Int. J. Sports Physiol. Perform. 2014, 9, 532–539. [Google Scholar] [CrossRef]
- Campa, F.; Toselli, S. Bioimpedance Vector Analysis of Elite, Subelite, and Low-Level Male Volleyball Players. Int. J. Sports Physiol. Perform. 2018, 13, 1250–1253. [Google Scholar] [CrossRef]
Variables | Mean | SD | 95% IC (Lower–Upper Limits) |
---|---|---|---|
Weight, kg | 69.9 | 8.9 | 68.9–71.0 |
Height, cm | 175.7 | 6.4 | 174.9–176.4 |
BMI, kg·m−2 | 22.6 | 2.4 | 22.4–22.9 |
Waist crf, cm | 76.2 | 4.8 | 75.7–76.8 |
LSTI, kg·m−2 | 17.9 | 1.6 | 17.7–18.0 |
FM, kg | 12.2 | 3.7 | 11.7–12.6 |
LST, kg | 55.2 | 6.4 | 54.4–55.9 |
BMC, kg | 3.0 | 0.4 | 2.9–3.0 |
FM% | 17.1 | 3.8 | 16.6–17.5 |
Rsp, ohm·cm | 313.0 | 28.8 | 309.8–316.8 |
Xcsp, ohm·cm | 40.9 | 5.7 | 40.2–41.6 |
Phase Angle, degrees | 7.4 | 0.8 | 7.3–7.5 |
Rsp | Xcsp | PA | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
FM, kg | 0.582 | 0.000 | 0.406 | 0.000 | 0.030 | 0.627 |
FM% | 0.556 | 0.000 | 0.326 | 0.000 | −0.049 | 0.418 |
LST, kg | 0.229 | 0.000 | 0.300 | 0.000 | 0.189 | 0.002 |
LSTI, kg·m−2 | 0.292 | 0.000 | 0.497 | 0.000 | 0.400 | 0.000 |
SMT (N = 115) | MT (N = 155) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | ||||||||
Mean | Sd | Mean | Sd | Mean | Sd | Mean | Sd | Fg | Ft | Fgxt | |
Weight, kg | 71.0 | 8.7 | 73.0 | 8.7 | 69.1 | 9.0 | 70.8 | 8.2 | 0.006 | 0.018 | 0.826 |
Height, cm | 176.4 | 6.3 | 176.7 | 6.2 | 175.1 | 6.5 | 175.3 | 6.5 | 0.023 | 0.521 | 0.979 |
BMI, kg·m−2 | 22.8 | 2.1 | 23.3 | 2.1 | 22.5 | 2.5 | 23.0 | 2.2 | 0.147 | 0.014 | 0.868 |
Waist crf, cm | 77.2 | 4.9 | 78.5 | 5.1 | 75.5 | 4.6 | 77.2 | 4.3 | 0.000 | 0.000 | 0.581 |
FM, kg | 11.5 | 3.2 | 12.2 | 3.1 | 12.6 | 4.0 | 12.7 | 3.3 | 0.011 | 0.253 | 0.305 |
LST, kg | 56.9 | 6.6 | 58.1 | 6.6 | 53.9 | 5.9 | 55.5 | 5.8 | 0.000 | 0.009 | 0.671 |
LSTI, kg·m−2 | 18.3 | 1.6 | 18.6 | 1.5 | 17.6 | 1.5 | 18.0 | 1.4 | 0.000 | 0.004 | 0.541 |
BMC, kg | 3.1 | 0.4 | 3.1 | 0.4 | 2.9 | 0.4 | 3.0 | 0.4 | 0.000 | 0.118 | 0.991 |
FM%, % | 16.0 | 3.3 | 16.5 | 3.1 | 17.9 | 3.9 | 17.6 | 3.3 | 0.000 | 0.720 | 0.199 |
Rsp, ohm | 314.8 | 27.6 | 312.7 | 26.5 | 311.7 | 29.6 | 310.8 | 28.3 | 0.316 | 0.544 | 0.816 |
Xcsp, ohm | 41.9 | 5.5 | 45.7 | 6.5 | 40.1 | 5.7 | 44.0 | 6.1 | 0.001 | 0.000 | 0.911 |
PA, degree | 7.6 | 0.8 | 8.3 | 0.9 | 7.3 | 0.7 | 8.1 | 0.8 | 0.001 | 0.000 | 0.966 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gobbo, L.A.; Langer, R.D.; Marini, E.; Buffa, R.; Borges, J.H.; Pascoa, M.A.; Cirolini, V.X.; Guerra-Júnior, G.; Gonçalves, E.M. Effect of Physical Training on Body Composition in Brazilian Military. Int. J. Environ. Res. Public Health 2022, 19, 1732. https://doi.org/10.3390/ijerph19031732
Gobbo LA, Langer RD, Marini E, Buffa R, Borges JH, Pascoa MA, Cirolini VX, Guerra-Júnior G, Gonçalves EM. Effect of Physical Training on Body Composition in Brazilian Military. International Journal of Environmental Research and Public Health. 2022; 19(3):1732. https://doi.org/10.3390/ijerph19031732
Chicago/Turabian StyleGobbo, Luis Alberto, Raquel David Langer, Elisabetta Marini, Roberto Buffa, Juliano Henrique Borges, Mauro A. Pascoa, Vagner X. Cirolini, Gil Guerra-Júnior, and Ezequiel Moreira Gonçalves. 2022. "Effect of Physical Training on Body Composition in Brazilian Military" International Journal of Environmental Research and Public Health 19, no. 3: 1732. https://doi.org/10.3390/ijerph19031732