The Mediation Role of Fatness in Associations between Cardiorespiratory Fitness and Blood Pressure after High-Intensity Interval Training in Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants in This Study
2.2. Procedures
2.3. Anthropometric and Body Fat Measurements
2.4. Cardiovascular Fitness
2.5. Blood Pressure Measurements
2.6. Identifying Individuals with Hypertension—Exclusion Criteria
2.7. Intervention
2.8. Statistical Analysis
3. Results
3.1. CRF and BP Associations Analysis
3.2. Sex Moderation Analysis
3.3. Mediation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Falkner, B. Hypertension in children and adolescents: Epidemiology and natural history. Pediatr. Nephrol. 2010, 25, 1219–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011, 128 (Suppl. S5), S213–S256. [CrossRef] [Green Version]
- Halbert, J.A.; Silagy, C.A.; Finucane, P.; Withers, R.T.; Hamdorf, P.A.; Andrews, G.R. The effectiveness of exercise training in lowering blood pressure: A meta-analysis of randomised controlled trials of 4 weeks or longer. J. Hum. Hypertens. 1997, 11, 641–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U.; Lancet Physical Activity Series Working Group. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Högström, G.; Nordström, A.; Nordström, P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: A nationwide cohort study in men. Eur. Heart J. 2014, 35, 3133–3140. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [CrossRef] [Green Version]
- Agostinis-Sobrinho, C.; Ruiz, J.R.; Moreira, C.; Abreu, S.; Lopes, L.; Oliveira-Santos, J.; Mota, J.; Santos, R. Cardiorespiratory Fitness and Blood Pressure: A Longitudinal Analysis. J. Pediatr. 2018, 192, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Kvaavik, E.; Klepp, K.I.; Tell, G.S.; Meyer, H.E.; Batty, G.D. Physical fitness and physical activity at age 13 years as predictors of cardiovascular disease risk factors at ages 15, 25, 33, and 40 years: Extended follow-up of the Oslo Youth Study. Pediatrics 2009, 123, e80–e86. [Google Scholar] [CrossRef]
- Mintjens, S.; Menting, M.D.; Daams, J.G.; van Poppel, M.; Roseboom, T.J.; Gemke, R. Cardiorespiratory Fitness in Childhood and Adolescence Affects Future Cardiovascular Risk Factors: A Systematic Review of Longitudinal Studies. Sports Med. 2018, 48, 2577–2605. [Google Scholar] [CrossRef] [Green Version]
- Heydari, M.; Freund, J.; Boutcher, S.H. The effect of high-intensity intermittent exercise on body composition of overweight young males. J. Obes. 2012, 2012, 480467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khammassi, M.; Ouerghi, N.; Hadj-Taieb, S.; Feki, M.; Thivel, D.; Bouassida, A. Impact of a 12-week high-intensity interval training without caloric restriction on body composition and lipid profile in sedentary healthy overweight/obese youth. J. Exerc. Rehabil. 2018, 14, 118–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costigan, S.A.; Eather, N.; Plotnikoff, R.C.; Taaffe, D.R.; Lubans, D.R. High-intensity interval training for improving health-related fitness in adolescents: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Foster, C.; Farland, C.V.; Guidotti, F.; Harbin, M.; Roberts, B.; Schuette, J.; Tuuri, A.; Doberstein, S.T.; Porcari, J.P. The Effects of High Intensity Interval Training vs. Steady State Training on Aerobic and Anaerobic Capacity. J. Sports Sci. Med. 2015, 14, 747–755. [Google Scholar] [PubMed]
- Eddolls, W.; McNarry, M.A.; Stratton, G.; Winn, C.; Mackintosh, K.A. High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review. Sports Med. 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [Green Version]
- Cvetković, N.; Stojanović, E.; Stojiljković, N.; Nikolić, D.; Scanlan, A.T.; Milanović, Z. Exercise training in overweight and obese children: Recreational football and high-intensity interval training provide similar benefits to physical fitness. Scand. J. Med. Sci. Sports 2018, 28 (Suppl. S1), 18–32. [Google Scholar] [CrossRef]
- Martin-Smith, R.; Cox, A.; Buchan, D.S.; Baker, J.S.; Grace, F.; Sculthorpe, N. High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies. Int. J. Environ. Res. Public Health 2020, 17, 2955. [Google Scholar] [CrossRef]
- Domaradzki, J.; Cichy, I.; Rokita, A.; Popowczak, M. Effects of Tabata Training During Physical Education Classes on Body Composition, Aerobic Capacity, and Anaerobic Performance of Under-, Normal- and Overweight Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 876. [Google Scholar] [CrossRef] [Green Version]
- Buchan, D.S.; Ollis, S.; Young, J.D.; Cooper, S.M.; Shield, J.P.; Baker, J.S. High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents. BMC Public Health 2013, 13, 498. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Floody, P.; Latorre-Román, P.; Jerez-Mayorga, D.; Caamaño-Navarrete, F.; García-Pinillos, F. Feasibility of incorporating high-intensity interval training into physical education programs to improve body composition and cardiorespiratory capacity of overweight and obese children: A systematic review. J. Exerc. Sci. Fit. 2019, 17, 35–40. [Google Scholar] [CrossRef]
- Pozuelo-Carrascosa, D.P.; Sánchez-López, M.; Cavero-Redondo, I.; Torres-Costoso, A.; Bermejo-Cantarero, A.; Martínez-Vizcaíno, V. Obesity as a Mediator between Cardiorespiratory Fitness and Blood Pressure in Preschoolers. J. Pediatr. 2017, 182, 114–119. [Google Scholar] [CrossRef]
- Stratton, G.; Canoy, D.; Boddy, L.M.; Taylor, S.R.; Hackett, A.F.; Buchan, I.E. Cardiorespiratory fitness and body mass index of 9–11-year-old English children: A serial cross-sectional study from 1998 to 2004. Int. J. Obes. 2007, 31, 1172–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Bey, A.; Segura-Jiménez, V.; Fernández-Santos, J.; Esteban-Cornejo, I.; Gómez-Martínez, S.; Veiga, O.L.; Marcos, A.; Ortega, F.B.; Castro-Piñero, J. The influence of cardiorespiratory fitness on clustered cardiovascular disease risk factors and the mediator role of body mass index in youth: The UP&DOWN Study. Pediatr. Diabetes 2019, 20, 32–40. [Google Scholar] [CrossRef]
- Beltran-Valls, M.R.; Santos, R.; Mota, J.; Moreira, C.; Lopes, L.; Agostinis-Sobrinho, C. The mediating role of adiposity in the longitudinal association between cardiorespiratory fitness and blood pressure in adolescents: LabMed cohort study. Eur. J. Clin. Investig. 2021, 51, e13430. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Domaradzki, J.; Rokita, A.; Koźlenia, D.; Popowczak, M. Optimal Values of Body Composition for the Lowest Risk of Failure in Tabata Training’s Effects in Adolescents: A Pilot Study. BioMed Res. Int. 2021, 2021, 6675416. [Google Scholar] [CrossRef] [PubMed]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, A.; Appadoo, S.; Bector, C.; Chandra, S. Measuring physical fitness and cardiovascular efficiency using harvard step test approach under fuzzy environment. In Proceedings of the Annual Conference of the Administrative Sciences Association of Canada Management Science Division, Halifax, NS, Canada, 24–27 May 2008; pp. 129–140. [Google Scholar]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004, 114 (Suppl. S2), 555–576. [Google Scholar] [CrossRef]
- Krzyżaniak, A.; Krzywińska-Wiewiorowska, M.; Stawińska-Witoszyńska, B.; Kaczmarek, M.; Krzych, L.; Kowalska, M.; Szilágyi-Pągowska, I.; Palczewska, I.; Karch, A.; Jośko, J.; et al. Blood pressure references for Polish children and adolescents. Eur. J. Pediatr. 2009, 168, 1335–1342. [Google Scholar] [CrossRef]
- MacKinnon, D.P.; Lockwood, C.M.; Williams, J. Confidence Limits for the Indirect Effect: Distribution of the Product and Resampling Methods. Multivar. Behav. Res. 2004, 39, 99–128. [Google Scholar] [CrossRef] [Green Version]
- Shrout, P.E.; Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychol. Methods 2002, 7, 422–445. [Google Scholar] [CrossRef] [PubMed]
- Kokkinos, P.F.; Andreas, P.E.; Coutoulakis, E.; Colleran, J.A.; Narayan, P.; Dotson, C.O.; Choucair, W.; Farmer, C.; Fernhall, B. Determinants of exercise blood pressure response in normotensive and hypertensive women: Role of cardiorespiratory fitness. J. Cardiopulm. Rehabil. Prev. 2002, 22, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.D.; Magnussen, C.G.; Rees, E.; Dwyer, T.; Venn, A.J. Childhood fitness reduces the long-term cardiometabolic risks associated with childhood obesity. Int. J. Obes. 2016, 40, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Valls, M.R.; Adelantado-Renau, M.; Moliner-Urdiales, D. Reallocating time spent in physical activity intensities: Longitudinal associations with physical fitness (DADOS study). J. Sci. Med. Sport 2020, 23, 968–972. [Google Scholar] [CrossRef]
- Díez-Fernández, A.; Sánchez-López, M.; Nieto, J.A.; González-García, A.; Miota-Ibarra, J.; Ortiz-Galeano, I.; Martínez-Vizcaíno, V. Relationship between cardiorespiratory fitness and blood pressure in young adults: A mediation analysis of body composition. Hypertens. Res. 2017, 40, 511–515. [Google Scholar] [CrossRef]
- Martín-Espinosa, N.; Díez-Fernández, A.; Sánchez-López, M.; Rivero-Merino, I.; Lucas-De La Cruz, L.; Solera-Martínez, M.; Martínez-Vizcaíno, V.; Movi-Kids Group. Prevalence of high blood pressure and association with obesity in Spanish schoolchildren aged 4–6 years old. PLoS ONE 2017, 12, e0170926. [Google Scholar] [CrossRef] [Green Version]
- Wheelock, K.M.; Fufaa, G.D.; Nelson, R.G.; Hanson, R.L.; Knowler, W.C.; Sinha, M. Cardiometabolic risk profile based on body mass index in American Indian children and adolescents. Pediatr. Obes. 2017, 12, 295–303. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; Patil, H.R.; Lavie, C.J.; Magalski, A.; Vogel, R.A.; McCullough, P.A. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin. Proc. 2012, 87, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Tinken, T.M.; Thijssen, D.H.; Hopkins, N.; Dawson, E.A.; Cable, N.T.; Green, D.J. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension 2010, 55, 312–318. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, J.H.; Schnohr, P.; Lavie, C.J. The dose of running that best confers longevity. Heart 2013, 99, 588–590. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans; US Department of Health and Human Services: Washington, DC, USA, 2008. Available online: http://www.health.gov/paguidelines/guidelines/chapter2.aspx (accessed on 15 March 2016).
- Levy, B.I.; Ambrosio, G.; Pries, A.R.; Struijker-Boudier, H.A. Microcirculation in hypertension: A new target for treatment? Circulation 2001, 104, 735–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dishman, R.K.; Heath, G.W.; Lee, I.-M. Physical activity and hypertension. In Physical Activity Epidemiology, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2013; pp. 145–166. [Google Scholar]
- Ostrow, V.; Wu, S.; Aguilar, A.; Bonner, R.; Suarez, E.; De Luca, F. Association between oxidative stress and masked hypertension in a multi-ethnic population of obese children and adolescents. J. Pediatr. 2011, 158, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.; Barros, H.; Ramos, E.; Li, L. Trajectories of total and central adiposity throughout adolescence and cardiometabolic factors in early adulthood. Int. J. Obes. 2016, 40, 1899–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero, D.; Walther, G.; Perez-Martin, A.; Roche, E.; Vinet, A. Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: Markers and effect of lifestyle intervention. Obes. Rev. 2012, 13, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Herouvi, D.; Karanasios, E.; Karayianni, C.; Karavanaki, K. Cardiovascular disease in childhood: The role of obesity. Eur. J. Pediatr. 2013, 172, 721–732. [Google Scholar] [CrossRef]
- Brunner, E.J.; Shipley, M.J.; Ahmadi-Abhari, S.; Tabak, A.G.; McEniery, C.M.; Wilkinson, I.B.; Marmot, M.G.; Singh-Manoux, A.; Kivimaki, M. Adiposity, obesity, and arterial aging: Longitudinal study of aortic stiffness in the Whitehall II cohort. Hypertension 2015, 66, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Harriss, D.J.; Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2016 Update. Int. J. Sports Med. 2015, 36, 1121–1124. [Google Scholar] [CrossRef] [Green Version]
Boys | Girls | |||
---|---|---|---|---|
Variable | Mean (±SD) 95%CI | Mean (±SD) 95%CI | ||
pre | Post | pre | Post | |
Cardiorespiratory fitness [FI pts] | 43.94 (4.67) 42.13–45.75 | 47.48 (4.64) 45.68–49.28 | 44.48 (5.05) 42.77–46.19 | 45.09 (3.58) 43.88–46.31 |
body fat mass (BFM) [kg] | 11.74 (8.42) 8.47–15.00 | 9.02 (5.57) 6.86–11.18 | 14.98 (4.07) 13.60–16.35 | 14.98 (4.42) 13.48–16.48 |
fat mass index (FMI) [kg/m2] | 3.75 (2.63) 2.73–4.77 | 2.87 (1.63) 2.23–3.50 | 5.45 (1.49) 4.94–5.95 | 5.45(1.48) 4.95–5.96 |
body mass index (BMI) [kg/m2] | 20.71 (3.55) 19.33–22.09 | 20.63 (3.26) 19.36–21.89 | 20.51 (1.97) 19.85–21.18 | 20.55 (2.07) 19.85–21.26 |
systolic blood pressure (SBP) [mmHg] | 123.78 (13.73) 118.46–129.11 | 114.21 (7.11) 111.46–116.97 | 116.83 (7.46) 114.30–119.35 | 121.33 (5.35) 119.52–123.14 |
diastolic blood pressure (DBP) [mmHg] | 70.96–76.75 73.85 (7.46) | 72.04 (5.61) 69.86–74.21 | 71.66 (7.04) 69.28–74.05 | 67.53 (6.73) 65.25–69.81 |
Direct Effect | Components | |||
---|---|---|---|---|
Mediator | BP Parameter | (1) CRF⇨BP | (2) CRF⇨FAT | (3) FAT⇨BP |
BFM | SBP | 0.972 | 0.062 | 0.045 |
DBP | 0.638 | 0.062 | 0.913 | |
FMI | SBP | 0.880 | 0.044 | 0.341 |
DBP | 0.051 | 0.094 | 0.624 | |
BMI | SBP | < 0.001 | 0.153 | 0.602 |
DBP | < 0.001 | 0.153 | 0.858 |
BP Parameter | Effect | Boys | Girls | ||||||
---|---|---|---|---|---|---|---|---|---|
B | 95% CI | p | B | 95% | CI | p | |||
SBP | Total (c) | −0.60 | −1.06 | −0.15 | 0.010 | −0.39 | −0.77 | −0.02 | 0.037 |
Direct (c’) | −0.41 | −0.87 | 0.04 | 0.076 | −0.4 | −0.76 | −0.05 | 0.025 | |
Indirect (ab) | −0.19 | −0.39 | 0.01 | 0.065 | 0.01 | −0.05 | 0.07 | 0.802 | |
component CRF⇒BFM (a) | −0.64 | −1.12 | −0.16 | 0.009 | −0.05 | −0.44 | 0.34 | 0.799 | |
BFM⇒SBP (b) | 0.30 | 0.07 | 0.52 | 0.009 | −0.16 | −0.38 | 0.06 | 0.163 | |
DBP | Total (c) | −0.06 | −0.55 | 0.44 | 0.829 | −0.18 | −0.59 | 0.22 | 0.373 |
Direct (c’) | −0.02 | −0.54 | 0.50 | 0.947 | −0.18 | −0.58 | 0.22 | 0.380 | |
Indirect (ab) | −0.04 | −0.20 | 0.13 | 0.653 | 0.00 | −0.04 | 0.03 | 0.812 | |
component CRF⇒BFM (a) | −0.64 | −1.12 | −0.16 | 0.009 | −0.05 | −0.44 | 0.34 | 0.799 | |
BFM⇒DBP (b) | 0.06 | −0.19 | 0.31 | 0.648 | 0.09 | −0.17 | 0.34 | 0.500 |
BP Parameter | Effect | Boys | Girls | ||||||
---|---|---|---|---|---|---|---|---|---|
B | 95% CI | p | B | 95% | CI | p | |||
SBP | Total (c) | −0.60 | −1.06 | −0.15 | 0.010 | −0.39 | −0.77 | −0.02 | 0.037 |
Direct (c’) | −0.44 | −0.89 | 0.01 | 0.057 | −0.39 | −0.75 | −0.04 | 0.029 | |
Indirect (ab) | −0.16 | −0.35 | 0.03 | 0.090 | 0.00 | −0.04 | 0.03 | 0.980 | |
component CRF⇒FMI (a) | −0.18 | −0.33 | −0.02 | 0.029 | 0.00 | −0.13 | 0.13 | 0.980 | |
FMI⇒SBP (b) | 0.93 | 0.25 | 0.32 | 0.007 | 0.27 | −0.40 | 0.94 | 0.431 | |
DBP | Total (c) | −0.06 | −0.55 | 0.44 | 0.829 | −0.18 | −0.59 | 0.22 | 0.373 |
Direct (c’) | −0.02 | −0.52 | 0.47 | 0.922 | −0.19 | −0.58 | 0.20 | 0.349 | |
Indirect (ab) | −0.03 | −0.16 | 0.10 | 0.659 | 0.00 | −0.17 | 0.17 | 0.980 | |
component CRF⇒FMI (a) | −0.18 | −0.33 | −0.02 | 0.029 | 0.00 | −0.13 | 0.13 | 0.980 | |
FMI⇒DBP (b) | 0.17 | −0.57 | 0.91 | 0.653 | −1.31 | −2.05 | −0.56 | <0.001 |
BP Parameter | Effect | Boys | Girls | ||||||
---|---|---|---|---|---|---|---|---|---|
B | 95% CI | p | B | 95% | CI | p | |||
SBP | Total (c) | −0.60 | −1.06 | −0.15 | 0.010 | −0.39 | −0.77 | −0.02 | 0.037 |
Direct (c’) | −0.55 | −1.01 | −0.09 | 0.019 | −0.39 | −0.76 | −0.03 | 0.036 | |
Indirect (ab) | −0.05 | −0.17 | 0.07 | 0.379 | 0.00 | −1.07 | 1.06 | 0.994 | |
component CRF⇒BMI (a) | −0.17 | −0.35 | 0.01 | 0.065 | 0.00 | −0.15 | 0.15 | 0.994 | |
BMI⇒BP (b) | 0.31 | −0.30 | 0.92 | 0.317 | 7.23 | 6.62 | 7.84 | <0.001 | |
DBP | Total (c) | −0.06 | −0.55 | 0.44 | 0.829 | −0.18 | −0.59 | 0.22 | 0.373 |
Direct (c’) | −0.11 | −0.60 | 0.39 | 0.672 | −0.17 | −0.56 | 0.23 | 0.408 | |
Indirect (ab) | 0.05 | −0.07 | 0.18 | 0.412 | −0.02 | −4.74 | 4.70 | 0.994 | |
component CRF⇒BMI (a) | −0.17 | −0.35 | 0.01 | 0.065 | 0.00 | −0.15 | 0.15 | 0.994 | |
BMI⇒BP (b) | −0.31 | −0.96 | 0.35 | 0.360 | 31.97 | 31.32 | 32.63 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaradzki, J.; Koźlenia, D.; Popowczak, M. The Mediation Role of Fatness in Associations between Cardiorespiratory Fitness and Blood Pressure after High-Intensity Interval Training in Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 1698. https://doi.org/10.3390/ijerph19031698
Domaradzki J, Koźlenia D, Popowczak M. The Mediation Role of Fatness in Associations between Cardiorespiratory Fitness and Blood Pressure after High-Intensity Interval Training in Adolescents. International Journal of Environmental Research and Public Health. 2022; 19(3):1698. https://doi.org/10.3390/ijerph19031698
Chicago/Turabian StyleDomaradzki, Jarosław, Dawid Koźlenia, and Marek Popowczak. 2022. "The Mediation Role of Fatness in Associations between Cardiorespiratory Fitness and Blood Pressure after High-Intensity Interval Training in Adolescents" International Journal of Environmental Research and Public Health 19, no. 3: 1698. https://doi.org/10.3390/ijerph19031698
APA StyleDomaradzki, J., Koźlenia, D., & Popowczak, M. (2022). The Mediation Role of Fatness in Associations between Cardiorespiratory Fitness and Blood Pressure after High-Intensity Interval Training in Adolescents. International Journal of Environmental Research and Public Health, 19(3), 1698. https://doi.org/10.3390/ijerph19031698