VOCs and Odor Episodes near the German–Czech Border: Social Participation, Chemical Analyses and Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Volunteer Participants and Their Role in the Project
2.2. Monitoring Sites in the Study Area
2.3. Sampling and Analysis of VOCs
Measurement of Odors
2.4. Odor Data Analysis
3. Results of the Sampling Program
3.1. Odor Monitoring by Volunteer Participants
3.2. Canister Hydrocarbon Sampling
3.3. Passive Hydrocarbon Sampling
3.4. Passive Carbonyl Sampling
3.5. Odorous Emission from Cooking Oil Processing
4. Health Risk Assessment
- Hazard identification and data evaluation;
- Exposure assessment;
- Dose-response assessment;
- Risk characterization.
4.1. Risk Assessment
4.2. Carcinogenic Risk Assessment
4.3. Hazard Indexes and Cancer Risk near an Oil Processing Plant in Ústí nad Labem
4.4. Uncertainty Discussion
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicell, J.A. Expressions to relate population responses to odor concentration. Atmos. Environ. 2003, 37, 4955–4964. [Google Scholar] [CrossRef]
- Douša, J. Comparison access to odor problems in selected European countries. Inżynieria Miner. 2019, 21, 83–87. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, Y.; Mo, Z.; Zhang, Z.; Wang, X.; Yin, S.; Peng, K.; Yang, Y.; Feng, X.; Cai, H. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China. Sci. Total Environ. 2013, 456, 127–136. [Google Scholar] [CrossRef]
- Partridge, P.A.; Shala, F.J.; Cernansky, N.P.; Suffet, H.I. Characterization and analysis of diesel exhaust odor. Environ. Sci. Technol. 1987, 21, 403–408. [Google Scholar] [CrossRef]
- Corrêa, S.M.; Arbilla, G. Carbonyl emissions in diesel and biodiesel exhaust. Atmos. Environ. 2008, 42, 769–775. [Google Scholar] [CrossRef]
- Dincer, F.; Muezzinoglu, A.A. Chemical characterization of odors due to some industrial and urban facilities in Izmir, Turkey. Atmos. Environ. 2006, 40, 4210–4219. [Google Scholar] [CrossRef]
- Seo, Y.; Suvarapu, L.N.; Baek, S. Characterization of odorous compounds (VOC and carbonyl compounds) in the ambient air of Yeosu and Gwangyang, large industrial areas of South Korea. Sci. World J. 2014, 2014, 824301. [Google Scholar] [CrossRef] [PubMed]
- Heaney, C.D.; Wing, S.; Campbell, R.L.; Caldwell, D.; Hopkins, B.; Richardson, D.; Yeatts, K. Relation between malodor, ambient hydrogen sulphide, and health in a community bordering a landfill. Environ. Res. 2011, 111, 847–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Héroux, M.; Pagé, T.; Gélinas, C.; Guy, C. Evaluating odour impacts from a landfilling and composting site: Involving citizens in the monitoring. Water Sci Technol. 2004, 50, 131–137. [Google Scholar] [CrossRef]
- Dincer, F.; Odabasi, M.; Muezzinoglu, A. Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry. J. Chromatogr. A 2006, 1122, 222–229. [Google Scholar] [CrossRef]
- Dincer, F.; Muezzinoglu, A. Qdor determination at wastewater collection systems: Olfactometry versus H2S analyses. Clean 2007, 35, 565–570. [Google Scholar]
- Leach, J.; Blanch, A.; Bianchi, A.C. Volatile organic compounds in an urban airborne environment adjacent to a municipal incinerator, waste collection center and sewage treatment plant. Atmos. Environ. 1999, 33, 4309–4325. [Google Scholar] [CrossRef]
- Wing, S.; Horton, R.A.; Marshall, S.W.; Thu, K.; Tajik, M.; Schinasi, L.; Schiffman, S.S. Air pollution and odor in communities near industrial swine operations. Environ. Health Perspect. 2008, 116, 1362–1368. [Google Scholar] [CrossRef]
- Schinasi, L.; Horton, R.A.; Guidry, V.T.; Wing, S.; Marshall, S.W.; Morland, K.B. Air pollution, lung function, and physical symptoms in communities near concentrated swine feeding operations. Epidemiology 2011, 22, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Trabue, S.; Scoggin, K.; Mc Connell, L.; Maghirang, R.; Razote, E.; Hatfield, J. Identifying and cracking key odorants from cattle feedlots. Atmos. Environ. 2011, 4, 4243–4251. [Google Scholar] [CrossRef]
- Government Order No. 9/2013 Coll. Government Order Amending Order No. 361/2007 Coll. Which Lays Down the Conditions for Health Protection at Work as Amended. Available online: https://www.zakonyprolidi.cz/cs/2007-361 (accessed on 5 December 2021).
- Schladitz, A.; Leníček, J.; Beneš, I.; Kováč, M.; Skorkovský, J.; Soukup, A.; Jandlová, J.; Poulain, L.; Plachá, H.; Löschau, G.; et al. Air quality in the German-Czech border region: A focus on harmful fractions of PM and ultrafine particles. Atmos. Environ. 2015, 122, 236–249. [Google Scholar] [CrossRef]
- Web Portal of CHMI (Czech Hydrometeorological Institute). Available online: http://portal.chmi.cz/files/portal/docs/uoco/web_generator/locality/pollution_locality/loc_ULOM_GB.html (accessed on 16 January 2020).
- Web Portal of CHMI (Czech Hydrometeorological Institute). Available online: http://portal.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2018_enh/index_GB.html (accessed on 25 January 2020).
- Web Portal of CHMI (Czech Hydrometeorological Institute). Available online: http://portal.chmi.cz/files/portal/docs/uoco/web_generator/locality/pollution_locality/loc_DSCH_GB.html (accessed on 27 January 2020).
- Web Portal Umwelt Sachsen. Available online: https://www.umwelt.sachsen.de/umwelt/infosysteme/luftonline/Recherche_XML.aspx (accessed on 5 December 2021). (In German).
- Web Portal of CHMI (Czech Hydrometeorological Institute). Available online: http://portal.chmi.cz/files/portal/docs/uoco/web_generator/locality/pollution_locality/loc_UULM_GB.html (accessed on 27 January 2020).
- Web Portal of CHMI (Czech Hydrometeorological Institute). Available online: http://portal.chmi.cz/files/portal/docs/uoco/web_generator/tab_reports/automated/index_GB.html (accessed on 27 January 2020).
- Merck: Radiello® Diffusive Air Sampling Application—Volatile Organic Compounds (VOCs) Thermally Desorbed. Available online: https://www.sigmaaldrich.com/technical-documents/articles/analytical/radiello-air-sampler/vocs-thermally-desorbed-applications.html (accessed on 14 March 2020).
- EPA On-Line Tools for Site Assessment Calculation. Available online: https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/estdiffusion-ext.html (accessed on 2 February 2021).
- Merck: Radiello® Diffusive Air Sampling Applications—Aldehydes. Available online: https://www.sigmaaldrich.com/technical-documents/articles/analytical/radiello-air-sampler/aldehydes-applications.html (accessed on 14 March 2020).
- Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Marta, S.; Brachetti, A.; Vitullo, M.; Tirone, G.; Valentini, R. Relaxed eddy accumulation, a new technique for measuring emission and deposition fluxes of volatile organic compounds by capillary gas chromatography and mass spectrometry. J. Chromatogr. A 2003, 9, 283–296. [Google Scholar] [CrossRef]
- Gallego, E.; Roca, F.J.; Peral, J.F.; Guardino, X. Comparative study of the adsorption performance of an active multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) and a Radiello® diffusive sampler for the analysis of VOCs. Talanta 2011, 85, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Haerens, K.; Segers, P.; van Elst, T. Sampling and stability of mercaptans: Comparison between bags, canisters and sorbent tubes. Chem. Eng. Transact. 2016, 54, 31–36. [Google Scholar]
- Maceira, A.; Vallecillos, L.; Borrull, F.; Marc, R.M. New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC-MS. Sci. Total Environ. 2017, 599, 1718–1727. [Google Scholar] [CrossRef]
- Woolfenden, E. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2: Sorbent selection and other aspects of optimizing air monitoring methods. J. Chromatogr. A 2010, 1217, 2685–2694. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; del Rosso, R.; Guillot, J. Measuring odors in the environment vs. dispersion modelling: A review. Atmos. Environ. 2013, 79, 731–743. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; del Rosso, R.; Céntola, P.; il Grande, M. A comparative and critical evaluation of odor assessment methods on a landfill site. Atmos. Environ. 2008, 42, 7050–7058. [Google Scholar] [CrossRef]
- Schmidt, R.; Cain, W. Making scents: Dynamic olfactometry for threshold measurements. Chem. Senses 2010, 35, 109–120. [Google Scholar] [CrossRef]
- Nagata, Y. Measurement of Odor Threshold by Triangular Odor Bag Method-Odor Measurements Review. Japan Ministry of the Environment. 2003. Available online: https://www.env.go.jp/en/air/odor/measure/02_3_2.pdf (accessed on 14 March 2020).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Husson, F.; Lê, S.; Pagès, J. Exploratory Multivariate Analysis by Example Using R, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2011; pp. 59–126. [Google Scholar]
- STHDA Statistical Tools for High-Throughput Data Analysis. Articles—Principal Component Methods in R: Practical Guide: CA—Correspondence Analysis in R: Essentials. Available online: http://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/113-ca-correspondence-analysis-in-r-essentials/ (accessed on 6 November 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org/ (accessed on 3 June 2019).
- Wenjing, J.; Zhenhan, D.; Dong, L.; Jimenes, L.M.C.; Yanjun, L.; Hanwen, G.; Hontago, W. Characterization of odor emission on the working face of landfill and establishing of odorous compounds index. Waste Manag. 2015, 42, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.G.; Chow, J.C.; Fujita, E.M. Review of organic compound source apportionment by chemical mass balance. Atmos. Environ. 2001, 35, 1567–1584. [Google Scholar] [CrossRef]
- Seila, R.L.; Main, H.H.; Arriaga, J.L.; Martinez, G.V.; Ramadan, A.B. Atmospheric volatile organic compound measurements during the 1996 Paso del Norte Ozone Study. Sci. Total Environ. 2001, 276, 153–169. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Steven, S.; Han, H.; Kin, F.H.; Shun, C.L.; Jian, Z.Y.; Louie, K.K.P. Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. J. Hazard. Mater. 2011, 186, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Feilberg, A.; Bildsoe, P.; Nyord, T. Applications of PTR-MS for measuring odorant emissions from soil application of manure slurry. Sensors 2015, 15, 1148. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, D.H.; Phillips, V.R. A review of the control of odorous nuisance from livestock buildings: Part 3, properties of the odorous substances which have been identified in livestock wastes or in the air around them. J. Agric. Eng. Res. 1992, 53, 23–50. [Google Scholar] [CrossRef]
- Allen, M.R.; Braithwaite, A.; Hills, C.C. Trace organic compounds in landfill gas at seven U. K. waste disposal sites. Environ. Sci. Technol. 1997, 31, 1054–1061. [Google Scholar] [CrossRef]
- Jenkins, F.E.; Tynan, D.G. Continuous Process for Preparing Particulate Microporous, Open-Celled Polymer Structures in a Screw-Type Extruder. U.S. Patent 4,041,115, 9 August 1975. [Google Scholar]
- Pinto, J.P.; Stevens, R.K.; Willis, R.D.; Mamane, Y.; Ramadan, Z.; Hopke, P.K. Source-Receptor Relations in Teplice and Prachatice. In Teplice Program: Impact of Air Pollution on Humn Health; Sram, R.J., Ed.; Academia Prague: Prague, Czech Republic, 2001; pp. 71–80. [Google Scholar]
- Barletta, B.; Meinardi, S.; Simpson, I.J.; Zou, S.; Rowland, S.F.; Blake, D.R. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan. Atmos. Environ. 2008, 42, 4393–4408. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.P.; Beyne-Mascel, S.; Mouvier, G.; Mascele, P. Emission of volatile organic compounds by coal-fired power stations. Atmos. Environ. 1992, 26, 1589–1597. [Google Scholar] [CrossRef]
- Sekyra, M.; Leníček, J.; Skybová, M.; Vrubel, J.; Heppner, P. Emise volatilních uhlovodíků-prekurzorů ozonu ze stacionárních a mobilních zdrojů. Projekt MŽP-ČR 1999, VaV-740-2-01. Available Only in Person at the Ministry of the Environment of the Czech Republic. The Report Is Also Included in the Dissertation of M.Skybová: Study of Transport and Transformation of Tropospheric Pollutants Brno, Masaryk University, Czechia, 2007. Available online: https://is.muni.cz/th/avk3s/Dizertacni_prace_Skybova.pdf (accessed on 5 December 2021). (In Czech).
- Schauer, J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of emissions from air pollution sources. 3. C1-C30 organic compounds from fireplace combustion of wood. Environ. Sci. Technol. 2001, 35, 1716–1728. [Google Scholar] [CrossRef]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ. Sci. Technol. 2002, 36, 1169–1180. [Google Scholar] [CrossRef]
- Hellén, H.; Hakola, H.; Reissell, A.; Ruuskanen, T.M. Carbonyl compounds in boreal coniferous forest air in Hyytiälä, Southern Finland. Atmos. Chem. Phys. 2004, 4, 1771–1780. [Google Scholar] [CrossRef] [Green Version]
- Jurvelin, J.; Vartiainen, M.; Jantunen, M.; Pasanen, P. Personal exposure levels and microenvironmental concentrations of formaldehyde and acetaldehyde in the Helsinki metropolitan area, Finland. J. Air Waste Manag. Assoc. 1995, 51, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Skybová, M.; Leníček, J.; Rychtecká, A.; Sýkorová, P.; Balasová, V.; Bílek, J.; Kohoutek, J.; Holoubek, I. Determination of volatile organic compounds in the atmosphere and their influence on ozone formation. Fresenius Environ. Bull. 2006, 15, 1616–1623. [Google Scholar]
- Feng, Y.; Wen, S.; Chen, Y.; Wang, X.; Lu, H.; Bi, X.; Sheng, G.; Fu, J. Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmos. Environ. 2005, 39, 1789–1800. [Google Scholar] [CrossRef]
- Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Cecinato, A.; Brachetti, A. Ubiquitous occurrence of semi-volatile carbonyl compounds in tropospheric samples and their possible sources. Atmos. Environ. 1993, 27, 1891–1901. [Google Scholar] [CrossRef]
- Forss, D.A. Odor and flavor compounds from lipids. Progr. Chem. Fats Other Lipids 1972, 13, 181–258. [Google Scholar] [CrossRef]
- Ranau, R.; Kleeberg, K.K.; Schlegelmilch, M.; Streese, J.; Steinhart, H. Analytical determination of the suitability of different processes for the treatment of odorous waste gas. Waste Manag. 2005, 25, 908–916. [Google Scholar] [CrossRef] [PubMed]
- US EPA/600/R-06/013F; 2007 Concepts, Methods, and Data Sources for Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document (Final Report, 2008). US EPA: Washington, DC, USA. 2008. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCEA&dirEntryId=190187 (accessed on 2 February 2021).
- Risk Assessment Guidance for Superfund (RAGS) Vol. I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Evaluation Risk Assessment). US EPA: Washington, DC, USA. 2009. Available online: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-f (accessed on 19 April 2020).
- EPA/690/R-09/012F; Provisional Peer-Reviewed Toxicity Values for Complex Mixtures of Aliphatic and Aromatic Hydrocarbons. US EPA: Washington, DC, USA. 2009. Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=339011 (accessed on 25 October 2021).
- US EPA. Iris Assessments. List A to Z. Available online: https://iris.epa.gov/AtoZ/?list_type=alpha (accessed on 19 January 2021).
- Lüllmann, H.; Mohr, K.; Wehling, M. Pharmacology and Toxicology; Grada: Prague, Czech Republic, 2004. [Google Scholar]
- PEL TWA Published OSHA and NIOSH (NIOSH OSHA Pocket Guide to Chemical Hazards, Department of Health and Human Services, CDC, NIOSH, DHHS Publication No 2005—149, September 2007. Available online: https://www.cdc.gov/niosh/ (accessed on 5 December 2021).
- Agency for Toxic Substances and Disease Registry, Toxic Substances Portal, Minimal Risk Levels (MRLs) for Hazardous Substances, MRL List October 2020. Available online: https://wwwn.cdc.gov/TSP/MRLS/mrlsListing.aspx (accessed on 5 December 2021).
- Rfc Issued by the SZÚ, Based Mainly on WHO Publications—According to § 27, Paragraph 6b, of Czech Act No. 201/2012 Coll., Revised 2018. Available online: https://www.zakonyprolidi.cz/cs/2012-201 (accessed on 5 December 2021).
- IARC. Monographs on the Identification of Carcinogenic Hazards to Humans, WHO. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 12 March 2021).
- OEHHA. California Office for Environmental Hazard Assessment. Available online: https:oehha.ca.gov/chemicals/ethylbenzene (accessed on 21 April 2021).
- OEHHA. California Office for Environmental Hazard Assessment. Available online: https://oehha.ca.gov/chemicals/naphthalene (accessed on 21 April 2021).
Monitoring Sites | Station Notes | Measurements | Data Availability |
---|---|---|---|
Deutschneudorf (DND)-Saxony 50°36′11.75″ N, 13°27′55.68″ E, 767 m a.s.l. | SE of Kurort Seiffen, located right on German–Czech border. Mobile sampling container of Leipzig TROPOS Institute | UFP, BC, and meteorological parameters were measured. Passive sampling of VOCs | |
Lom u Mostu (LOM) 50°35′8.757″ N, 13°40′24.305″ E, 257 m a.s.l. | Located on site of demolished village, Libkovice. Sampling container of Czech Hydrometeorological Institute (CHMI) | O3, NO, NO2, SO2, PM2.5, PM10 (incl. heavy metals in), BC (PM1), UFP. Passive sampling of VOCs | Czech Hydrometeorological Institute web portal [18,19] |
Schwartenberg (SCH) 50°39′33.994″ N 13°28′0.002″ E, 787 m a.s.l. | Located on hill near Kurort Seiffen. Sampling container of Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft of Saxony | O3, NO, NO2, SO2, benzene, PM10 (incl. heavy metals in), PAH’s and meteorological parameters | Czech Hydrometeorological Institute web portal [20,21] |
Ústí nad Labem (UL) 50°39′39.941″ N, 14°2′35.027″ E, 147 m a.s.l. | Located in the central district of the city UL. Sampling container of Czech Hydrometeorological Institute (CHMI). | O3, NO, NO2, SO2, PM10, BC (PM1), UFP, benzene, Hg0. Passive sampling of VOCs | Czech Hydrometeorological Institute web portal [22,23] |
Jeřabina (JER) 50°61′27.167″ N, 13°52′10.558″ E, 777 m a.s.l. | Located in mountain pass between Litvínov region (CR) and Seiffen (DE). Site lacks electrical power | Passive sampling of VOCs | This article |
(a) Odor Descriptor | % | % CZ | % DE |
---|---|---|---|
petrol, mineral oil | 24.8 | 10.7 | 89.3 |
hydrogen sulfide (H2S) | 21.1 | 26 | 74 |
coal burning | 14.2 | 64.3 | 35.7 |
indeterminate character | 14.0 | 2.9 | 97.1 |
wood burning | 12.8 | 93.7 | 6.3 |
tar, asphalt | 12.4 | 18 | 82 |
Katzendreck | 9.2 | 37.8 | 62.2 |
natural gas | 8.9 | 36.4 | 63.6 |
agricultural odor | 8.7 | 7 | 93 |
plastic burning | 6.5 | 65.6 | 34.4 |
other odor descriptors and associations with odors | 29.5 | 55.9 | 44.1 |
(b) Subject Physical Symptoms | % | ||
headache | 16.5 | ||
cough | 16.1 | ||
shortness of breath | 12.6 | ||
nausea | 7.1 | ||
smarting eyes, lacrimation | 6.5 | ||
faintness, weariness | 4.9 | ||
tachycardia | 3.3 | ||
vomiting | 1.4 | ||
without symptoms | 56.4 |
DND (ppb) | LOM (ppb) | |
---|---|---|
Benzene | 0.137 | 0.222 |
Toluene | 0.066 | 0.201 |
Ethylbenzene | 0.017 | 0.031 |
m + p Xylene | 0.033 | 0.057 |
Pentane | 0.059 | 0.076 |
Methylcyclopentane | 0.009 | 0.021 |
Heptane | 0.005 | 0.016 |
Methylcyclohexane | 0.006 | 0.014 |
Tetrachloroethene | 0.016 | 0.017 |
2-methylbutane | 0.031 | 0.069 |
Styrene | 0.008 | 0.021 |
Sampling Site | Benzene | Tetrachloro- ethylene | 2-Methylbutane | Methyl- cyclopentane | Methyl- cyclohexane |
---|---|---|---|---|---|
DND | 2.08 | 0.28 | 0.47 | 0.14 | 0.09 |
LOM | 1.10 | 0.09 | 0.34 | 0.11 | 0.06 |
Carbonyl Compound | LOM | DND | JER | Botanic Garden 1 | Residential Area 1,2 | Remote Area 1,3 | Urban Area 1,3 |
---|---|---|---|---|---|---|---|
formaldehyde | 0.68 (0.42–1.07) | 0.68 (0.42–1.56) | 0.64 (0.34–1.10) | 12.38 | 11.26 | 0.38 | 0.24 |
acetaldehyde | 0.24 (0.15–0.57) | 0.22 (0.10–0.67) | 0.18 (0.07–0.31) | 4.25 | 6.03 | 0.19 | 0.07 |
acetone | 0.14 (bd 4–0.47) | 0.16 (bd–0.43) | 0.16 (bd–0.43) | 6.72 | 7.68 | 0.55 | 0.36 |
acrolein | 0.23 (bd–0.32) | 0.29 (bd–0.38) | 0.25 (bd–0.38) | bd | bd | ||
propion– aldehyde | 0.16 (bd–0.29) | 0.16 (bd–0.28) | 0.17 (bd–0.24) | 1.15 | 1.15 | 0.03 | 0.03 |
methacrolein | 0.21 (bd–0.3) | 0.33 (bd–0.41) | 0.16 (bd–0.21} | bd | 0.01 | ||
butyraldehyde | 0.57 (bd–1.32) | 0.54 (bd–0.85) | 0.49 (bd–0.68) | 0.44 | 0.68 | 0.02 | 0.02 |
valeraldehyde | 0.19 (bd–0.44) | 0.22 (bd–0.38) | 0.27 (bd–0.39) | 0.22 | 0.26 | 0.02 | 0.01 |
benzaldehyde | 0.02 (bd–0.03) | 0.03 (bd–0.05) | 0.03 (bd–0.04) | 0.36 | 1.07 | 5 × 10–3 | 0.02 |
nonanal | 0.19 (bd–0.53) | 0.14 (bd–0.18) | 0.16 (bd–0.22) | 0.53 | 0.44 | bd | 0.02 |
decanal | 0.24 (bd–0.28) | 0.19 (bd–0.22) | 0.27 (bd–0.27) | 0.13 | 0.06 | 0.01 | 0.02 |
C1–C3 | 1.45 | 1.51 | 1.40 | 24.57 | 26.12 | 1.15 | 0.7 |
C4–C10 | 1.52 | 1.55 | 1.48 | 2.47 | 3.06 | 0.05 | 0.09 |
Total | 2.97 | 3.06 | 2.88 | 27.04 | 29.18 | 1.20 | 0.79 |
Ratio C1/C2 | 2.83 | 3.09 | 3.56 | 2.91 | 1.87 | 2.0 | 2.18 |
Ratio C2/C3 | 1.50 | 1.38 | 1.06 | 3.69 | 5.23 | 0.33 | 0.18 |
Analyte/Sample (ppb) | 1 | 2 | 3 | 4 | OT [35] (ppb.ou −1) |
---|---|---|---|---|---|
formaldehyde | 1.27 | 2.07 | 1.75 | 1.86 | 500 |
acetaldehyde | 0.76 | 1.03 | 0.84 | 0.89 | 1.5 |
acetone | 0.70 | 1.05 | 0.77 | 0.96 | 42,000 |
propionaldehyde | 0.44 | 0.55 | 0.40 | 0.44 | 3.6 |
crotonaldehyde | 0.11 | 0.13 | 0.13 | 0.14 | 1.0 |
methacrolein | 0.20 | 0.33 | 0.21 | 0.29 | 8.5 |
2-butanone | 0.11 | 0.11 | 0.11 | <0.02 | 28 |
butyraldehyde | 1.12 | 1.46 | 1.04 | 1.93 | 0.67 |
benzaldehyde | 0.09 | 0.11 | 0.10 | 0.04 | 0.18 |
isovaleraldehyde | 0.06 | 0.06 | <0.02 | <0.02 | 0.10 |
valeraldehyde | 0.68 | 0.81 | 0.82 | 0.80 | 0.41 |
hexanal | 0.39 | 0.55 | 0.39 | 0.46 | 0.28 |
heptanal | 0.60 | 0.68 | 0.33 | 0.66 | 0.18 |
octanal | 0.61 | 0.49 | 0.48 | 0.73 | 0.01 |
nonanal | 0.41 | 0.89 | 0.61 | 0.98 | 0.34 |
decanal | 0.47 | 0.84 | 0.82 | 0.90 | 0.40 |
OAV (ou) | 73.7 | 66.5 | 60.3 | 89.4 | |
W | 2.21 | 2.0 | 1.38 | 2.75s |
HC | C3–C4 | HAL HC | ALD | ALCO | OA | ESTERS | TERP | 2-PRCN | ||
---|---|---|---|---|---|---|---|---|---|---|
DE | mean | 0.153 | 0.041 | 0.148 | 0.541 | 0.028 | 0.135 | 0.171 | 0.001 | 0.645 |
max | 3.960 | 0.158 | 1.142 | 1.081 | 0.190 | 0.208 | 0.557 | 0.006 | 1.205 | |
min | 0.000 | 0.002 | 0.000 | 0.000 | 0.001 | 0.075 | 0.000 | 0.000 | 0.332 | |
CZ | mean | 0.022 | 0.001 | 0.004 | bd | 0.002 | 0.478 | 0.002 | 0.003 | bd |
max | 0.227 | 0.001 | 0.023 | bd | 0.007 | 0.908 | 0.003 | 0.007 | bd | |
min | 0.001 | 0.000 | 0.000 | bd | 0.001 | 0.049 | 0.002 | 0.000 | bd |
AL HC | AR HC | ALCO | OA | ESTERS | HAL HC | TERP | CN | Total | |
---|---|---|---|---|---|---|---|---|---|
Median * | 0.017 | 0.056 | 0.086 | 0.726 | 0.840 | 0.090 | 0.004 | 3.608 | 1.840 |
Max | 0.325 | 0.562 | 1.484 | 1.434 | 3.632 | 0.588 | 0.005 | 8.325 | 9.486 |
Min | 0.001 | 0.002 | 0.011 | 0.017 | 0.006 | 0.007 | 0.004 | 2.290 | 0.002 |
Isoprene | Benzene | Ethyl benzene | Naphthalene | 1,4-Dioxane | Trichloro- methane | Tetrachloro-ethylene | Methylenechloride | 2-Propene- nitrile | ||
---|---|---|---|---|---|---|---|---|---|---|
DE | mean | 0.00612 | 14.9 | 7.38 | 6.32 | 0.135 | 0.0978 | 0.171 | 50.2 | |
max | 61.8 | 34.4 | 0.505 | 93.7 | ||||||
min | 1.33 | 0.288 | 0.0155 | 25.8 | ||||||
CZ | mean | 6.74 | 3.26 | 0.161 | 15.7 | 0.0437 | ||||
max | 0.191 | 0.185 | ||||||||
min | 0.131 | 0.00559 |
Isoprene | Benzene | Ethyl benzene | Naphtha- lene | Tetrachloro- ethylene | Methylene chloride | 2-Propene- nitrile | Total | |
---|---|---|---|---|---|---|---|---|
Median* | 0.0061 | 1.9 | 1.0 | 6.3 | 0.10 | 0.17 | 41 | 50 |
Max | 7.3 | 1.3 | 0.51 | 94 | ||||
Min | 1.3 | 0.73 | 0.077 | 26 |
Location | FORM | ACET | Acetone | PROP | CROTON | 2-Butanone | Total |
---|---|---|---|---|---|---|---|
Purkyňova | 0.213 | 0.182 | 0.006 | 0.15 | 0.35 | 0.525 | 1.426 |
Železničářská | 0.23 | 0.177 | 0.006 | 0.126 | 0.405 | 0.55 | 1.493 |
Purkyňova | Železničářská | |
---|---|---|
Formaldehyde | 27 | 29 |
Acetaldehyde | 3.6 | 3.5 |
Total ILCR | 31 | 33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leníček, J.; Beneš, I.; Rychlíková, E.; Šubrt, D.; Řezníček, O.; Roubal, T.; Pinto, J.P. VOCs and Odor Episodes near the German–Czech Border: Social Participation, Chemical Analyses and Health Risk Assessment. Int. J. Environ. Res. Public Health 2022, 19, 1296. https://doi.org/10.3390/ijerph19031296
Leníček J, Beneš I, Rychlíková E, Šubrt D, Řezníček O, Roubal T, Pinto JP. VOCs and Odor Episodes near the German–Czech Border: Social Participation, Chemical Analyses and Health Risk Assessment. International Journal of Environmental Research and Public Health. 2022; 19(3):1296. https://doi.org/10.3390/ijerph19031296
Chicago/Turabian StyleLeníček, Jan, Ivan Beneš, Eva Rychlíková, David Šubrt, Ondřej Řezníček, Tomáš Roubal, and Joseph P. Pinto. 2022. "VOCs and Odor Episodes near the German–Czech Border: Social Participation, Chemical Analyses and Health Risk Assessment" International Journal of Environmental Research and Public Health 19, no. 3: 1296. https://doi.org/10.3390/ijerph19031296