Surveillance Web System and Mouthwash-Saliva qPCR for Labor Ambulatory SARS-CoV-2 Detection and Prevention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ambulatory Patients
2.2. Self-Collected Specimen and SARS-CoV-2 Biological Inactivation
2.3. Web and Mobile Technology for Real-Time Surveillance
2.4. Validation of SARS-CoV-2 Detection Protocol and Web–Mobile Application Platform
3. Results
3.1. Self-Collected Specimens in Ambulatory Cohorts
3.2. Validation of SARS-CoV-2 MWS Base Detection Protocol
3.3. Web and Mobile Technology for Real-Time Surveillance
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, J.; Lee, S.; Park, M.; Kim, T.Y.; Park, M.G.; Choi, B.Y.; Kim, D.; Chang, H.; Kim, V.N.; Lee, C.J. Development of a Laboratory-safe and Low-cost Detection Protocol for SARS-CoV-2 of the Coronavirus Disease 2019 (COVID-19). Exp. Neurobiol. 2020, 29, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.W.; Pan, Y.; Cheng, S.M.S.; Hui, K.P.Y.; Krishnan, P.; Liu, Y.; Ng, D.Y.M.; Wan, C.K.C.; Yang, P.; Wang, Q.; et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin. Chem. 2020, 66, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Won, J.; Choi, B.Y.; Lee, C.J. Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-time PCR. Exp. Mol. Med. 2020, 52, 963–977. [Google Scholar] [CrossRef]
- Suo, T.; Liu, X.; Feng, J.; Guo, M.; Hu, W.; Guo, D.; Ullah, H.; Yang, Y.; Zhang, Q.; Wang, X.; et al. ddPCR: A more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg. Microbes Infect. 2020, 9, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [Green Version]
- Wolff, B.J.; Bramley, A.M.; Thurman, K.A.; Whitney, C.G.; Whitaker, B.; Self, W.H.; Arnold, S.R.; Trabue, C.; Wunderink, R.G.; McCullers, J.; et al. Improved Detection of Respiratory Pathogens by Use of High-Quality Sputum with TaqMan Array Card Technology. J. Clin. Microbiol. 2017, 55, 110–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakheran, O.; Dehghannejad, M.; Khademi, A. Saliva as a diagnostic specimen for detection of SARS-CoV-2 in suspected patients: A scoping review. Infect. Dis. Poverty 2020, 9, 100. [Google Scholar] [CrossRef]
- Shu, Y.; McCauley, J. GISAID: Global initiative on sharing all influenza data—from vision to reality. Eurosurveillance 2017, 22, 30494. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Maya, I.; Mora-Aguilera, G.; Acevedo-Sánchez, G. Analysis of chronic diseases associated to SARS-CoV-2 infection in children and young people in Mexico. Mex. J. Phytopathol. 2021, 39, 1–12. [Google Scholar] [CrossRef]
- Mora-Aguilera, G.; Acevedo-Sánchez, G. A retrospective analysis of plant and human epidemics for COVID-19 comprehension. Mex. J. Phytopathol. 2021, 39, 62–154. [Google Scholar] [CrossRef]
- InDRE. Laboratorios Con Reconocimiento Por Parte del InDRE, Para Realizar el Diagnóstico de COVID-19, Con Fines de Vigilancia Epidemiológica. Available online: https://www.gob.mx/cms/uploads/attachment/file/619541/listado_de_laboratorios_que_realizan_el_diagn_stico_de_covid-19_03032021.pdf (accessed on 3 March 2021).
- Azzi, L.; Carcano, G.; Gasperina, D.D.; Sessa, F.; Maurino, V.; Baj, A. Two cases of COVID-19 with positive salivary and negative pharyngeal or respiratory swabs at hospital discharge: A rising concern. Oral Dis. 2021, 27, 707–709. [Google Scholar] [CrossRef]
- Wyllie, A.L.; Fournier, J.; Casanovas-Massana, A.; Campbell, M.; Tokuyama, M.; Vijayakumar, P.; Geng, B.; Muenker, M.C.; Moore, A.J.; Vogels, C.B.F.; et al. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. medRxiv 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- To, K.K.-W.; Tsang, O.T.-Y.; Yip, C.C.-Y.; Chan, K.-H.; Wu, T.-C.; Chan, J.M.-C.; Leung, W.-S.; Chik, T.S.-H.; Choi, C.Y.-C.; Kandamby, D.H.; et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin. Infect. Dis. 2020, 71, 841–843. [Google Scholar] [CrossRef] [Green Version]
- Marroquín, S.R.; Flores, P.M.; Castelán, M.O.D. Manual de Laboratorio de Inmunología Clínica. Universidad Autónoma de México. 2017. Available online: https://www.zaragoza.unam.mx/wp-content/Portal2015/Licenciaturas/qfb/manuales/14_Manual_Inmunologia_Clinica_2020.pdf (accessed on 18 February 2020).
- Pastorino, B.; Touret, F.; Gilles, M.; Luciani, L.; de Lamballerie, X.; Charrel, R.N. Evaluation of Chemical Protocols for Inactivating SARS-CoV-2 Infectious Samples. Viruses 2020, 12, 624. [Google Scholar] [CrossRef]
- Rabenau, H.F.; Cinatl, J.; Morgenstern, B.; Bauer, G.; Preiser, W.; Doerr, H.W. Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol. 2004, 194, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- InDRE. Listado de Pruebas Moleculares Útiles Para el Diagnóstico de SARS-CoV.2 Durante la Contingencia de COVID-19 en México. Available online: https://www.gob.mx/cms/uploads/attachment/file/616481/Listado_de_pruebas_moleculares__tiles_por_RT-PCR_evaluadas_para_el_diagn_stico_de_SARS-CoV-2.pdf (accessed on 10 February 2020).
- World Health Organization. Laboratory Biosafety Manual, 3rd ed.; WHO/CDS/CSR/LYO/2004.11; WHO: Geneva, Switzerland, 2004; p. 181. [Google Scholar]
- Green, M.R.; Sambrook, J. Molecular Cloning a Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012; Volume 1, p. 34. [Google Scholar]
- To, K.K.-W.; Tsang, O.T.-Y.; Leung, W.-S.; Tam, A.R.; Wu, T.-C.; Lung, D.C.; Yip, C.C.-Y.; Cai, J.-P.; Chan, J.M.-C.; Chik, T.S.-H.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Corman, V.M.; Eckerle, I.; Bleicker, T.; Zaki, A.; Landt, O.; Eschbach-Bludau, M.; van Boheemen, S.; Gopal, R.; Ballhause, M.; Bestebroer, T.M.; et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Eurosurveillance 2012, 17, 20285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, J.; Zhi, S.; Chen, M.; Su, X.; Kang, L.; Li, C.; Su, X.; Zhang, S.; Ge, S.; Li, W. Heat inactivation decreases the qualitative real-time RT-PCR detection rates of clinical samples with high cycle threshold values in COVID-19. Diagn. Microbiol. Infect. Dis. 2020, 98, 115109. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Wang, Y.; Tong, Z.; Liu, X. Retest positive for SARS-CoV-2 RNA of “recovered” patients with COVID-19: Persistence, sampling issues, or re-infection? J. Med. Virol. 2020, 92, 2263–2265. [Google Scholar] [CrossRef] [PubMed]
- Babady, N.E.; McMillen, T.; Jani, K.; Viale, A.; Robilotti, E.V.; Aslam, A.; Diver, M.; Sokoli, D.; Mason, G.; Shah, M.K.; et al. Performance of Severe Acute Respiratory Syndrome Coronavirus 2 Real-Time RT-PCR Tests on Oral Rinses and Saliva Samples. J. Mol. Diagn. 2020, 23, 3–9. [Google Scholar] [CrossRef]
- Biber, A.; Lev, D.; Mandelboim, M.; Lustig, Y.; Harmelin, G.; Shaham, A.; Erster, O.; Schwartz, E. The role of mouthwash sampling in SARS-CoV-2 diagnosis. Eur. J. Clin. Microbiol. 2021, 40, 2199–2206. [Google Scholar] [CrossRef]
- Xu, R.; Cui, B.; Duan, X.; Zhang, P.; Zhou, X.; Yuan, Q. Saliva: Potential diagnostic value and transmission of 2019-nCoV. Int. J. Oral Sci. 2020, 12, 11. [Google Scholar] [CrossRef]
- Wang, W.-K.; Chen, S.-Y.; Liu, I.-J.; Chen, Y.-C.; Chen, H.-L.; Yang, C.-F.; Chen, P.-J.; Yeh, S.-H.; Kao, C.-L.; Huang, L.-M.; et al. Detection of SARS-associated Coronavirus in Throat Wash and Saliva in Early Diagnosis. Emerg. Infect. Dis. 2004, 10, 1213–1219. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Gan, F.; Du, Y.; Yao, Y. Salivary Glands: Potential Reservoirs for COVID-19 Asymptomatic Infection. J. Dent. Res. 2020, 99, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güçlü, E.; Koroglu, M.; Yürümez, Y.; Toptan, H.; Kose, E.; Güneysu, F.; Karabay, O. Comparison of saliva and oro-nasopharyngeal swab sample in the molecular diagnosis of COVID-19. Rev. Assoc. Med. Bras. 2020, 66, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Dogan, O.A.; Kose, B.; Agaoglu, N.B.; Yildiz, J.; Alkurt, G.; Demirkol, Y.K.; Irvem, A.; Doganay, G.D.; Doganay, L. Does sampling saliva increase detection of SARS-CoV-2 by RT-PCR? Comparing saliva with oro-nasopharyngeal swabs. J. Virol. Methods 2021, 290, 114049. [Google Scholar] [CrossRef] [PubMed]
- Uwamino, Y.; Nagata, M.; Aoki, W.; Fujimori, Y.; Nakagawa, T.; Yokota, H.; Sakai-Tagawa, Y.; Iwatsuki-Horimoto, K.; Shiraki, T.; Uchida, S.; et al. Accuracy and stability of saliva as a sample for reverse transcription PCR detection of SARS-CoV-2. J. Clin. Pathol. 2021, 74, 67–68. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.; Bond, K.; Zhang, B.; Putland, M.; Williamson, D.A. Saliva as a Noninvasive Specimen for Detection of SARS-CoV-2. J. Clin. Microbiol. 2020, 58, e00776-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.G.; Yoon, J.; Song, J.Y.; Yoon, S.-Y.; Lim, C.S.; Seong, H.; Noh, J.Y.; Cheong, H.J.; Kim, W.J. Clinical Significance of a High SARS-CoV-2 Viral Load in the Saliva. J. Korean Med. Sci. 2020, 35, e195. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Thomas, D.; Stanton, R.; Maillard, J.-Y.; Murphy, R.C.; Jones, S.A.; Humphreys, I.; Wakelam, M.J.; Fegan, C.; Wise, M.P.; et al. Potential Role of Oral Rinses Targeting the Viral Lipid Envelope in SARS-CoV-2 Infection. Function 2020, 1, zqaa002. [Google Scholar] [CrossRef]
- Kampf, G.; Voss, A.; Scheithauer, S. Inactivation of coronaviruses by heat. J. Hosp. Infect. 2020, 105, 348–349. [Google Scholar] [CrossRef]
- Arena, F.; Pollini, S.; Rossolini, G.; Margaglione, M. Summary of the Available Molecular Methods for Detection of SARS-CoV-2 during the Ongoing Pandemic. Int. J. Mol. Sci. 2021, 22, 1298. [Google Scholar] [CrossRef] [PubMed]
- Nextstrain. Genomic Epidemiology of Novel Coronavirus-Global Subsampling. Available online: https://nextstrain.org/ncov/global?dmax=2020-04-08 (accessed on 8 April 2020).
- World Health Organization. Public Health Surveillance for COVID-19: Interim Guidance. Available online: https://apps.who.int/iris/handle/10665/337897 (accessed on 16 December 2020). License: CCBY-NC-SA 3.0 IGO.
- European Centre for Disease Prevention and Control (ECDC). COVID-19 Testing Strategies and Objectives. ECDC, STOCK-HOLM, 2020. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/TestingStrategy_Objective-Sept-2020.pdf (accessed on 15 September 2020).
- World Health Organization. Maintaining Surveillance of Influenza and Monitoring SARS-CoV-2: Adapting Global Influenza Surveillance and Response System (GISRS) and Sentinel Systems during the COVID-19 Pandemic: Interim Guidance. Available online: https://apps.who.int/iris/handle/10665/336689 (accessed on 8 November 2020).
- Cacciapaglia, G.; Cot, C.; Sannino, F. Second wave COVID-19 pandemics in Europe: A temporal playbook. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Farsalinos, K.; Poulas, K.; Kouretas, D.; Vantarakis, A.; Leotsinidis, M.; Kouvelas, D.; Docea, A.O.; Kostoff, R.; Gerotziafas, G.T.; Antoniou, M.N.; et al. Improved strategies to counter the COVID-19 pandemic: Lockdowns vs. primary and community healthcare. Toxicol. Rep. 2021, 8, 1–9. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Drew, D.A.; Nguyen, L.H.; Steves, C.J.; Menni, C.; Freydin, M.; Varsavsky, T.; Sudre, C.H.; Cardoso, M.J.; Ourselin, S.; Wolf, J.; et al. Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science 2020, 368, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- The COVID-19 Health System Response Monitor (HSRM). Available online: https://www.covid19healthsystem.org (accessed on 15 October 2020).
- John Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/us-map (accessed on 15 March 2021).
- Collado-Borrell, R.; Escudero-Vilaplana, V.; Villanueva-Bueno, C.; Herranz-Alonso, A.; Sanjurjo-Saez, M. Features and Functionalities of Smartphone Apps Related to COVID-19: Systematic Search in App Stores and Content Analysis. J. Med. Internet Res. 2020, 22, e20334. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.J.L.; Couch, D.; Yap, K. Mobile Health Apps That Help With COVID-19 Management: Scoping Review. JMIR Nurs. 2020, 3, e20596. [Google Scholar] [CrossRef]
- Kondylakis, H.; Katehakis, D.G.; Kouroubali, A.; Logothetidis, F.; Triantafyllidis, A.; Kalamaras, I.; Votis, K.; Tzovaras, D. COVID-19 Mobile Apps: A Systematic Review of the Literature. JMIR 2020, 22, e23170. [Google Scholar] [CrossRef]
- Adam, D.C.; Wu, P.; Wong, J.Y.; Lau, E.H.Y.; Tsang, T.K.; Cauchemez, S.; Leung, G.M.; Cowling, B.J. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 2020, 26, 1714–1719. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, Y.; Ye, C.; Zhang, G.; Zhang, F.; Song, C. The spatial transmission of SARS-CoV-2 in China under the prevention and control measures at the early outbreak. Arch. Public Health 2021, 79, 8. [Google Scholar] [CrossRef] [PubMed]
Cohort 1 | Volunteers /Sex | Age (Years) | Clinical Condition | Days with Sym | Contact Num. with Patients | Ct Value | Viral Copy Number (VCN) Per Reaction | Test Result | Official Result | Agreement Tests | Nucleic Acid Conc. (ng/μL) | Purity RNA 260/230 nm |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 12/F | 21–55 | As | - | 0–1 | NA | - | N | - | - | 50–1835.4 | 1.8–2.4 |
(25) 2 | 13/M | 3–59 | As | - | 0–1 | NA | - | N | - | - | 30–255.3 | 1.7–2.5 |
2/F | 19, 26 | As | - | 0–3 | 36.7, 36.6 | 9.5,10.2 | P | P | 29.1–66.9 | 1.7–2.1 | ||
3/F | 29–41 | As | - | 0 | NA | - | N | N | 28.9–82.2 | 1.6–2.2 | ||
1/F | 33 | As | - | 0 | NA | - | N | P | AI = 90% | 110.1 | 2.2 | |
1/F | 45 | SyAp | 1–3 | 2 | 36.4 | 11.6 | P | P | ρ = 0.76 | 32 | 2.01 | |
2 | 1/F | 47 | SySt,Tp | 1–3 | 2 | NA | - | N | N | K = 0.77 | 224 | 2.2 |
(23) | 5/M | 36–54 | As | - | 0–1 | NA | - | N | N | 67.2–154.4 | 2.0–2.2 | |
2/M | 26, 40 | As | - | 0 | 32.8, 31.3 | 134.5, 386.4 | P | P | 39.8–301.7 | 2.0–2.3 | ||
1/M | 81 | SyAn, Ag | 1–3 | 0 | 25.8 | 15,407.8 | P | P | 288 | 1.9 | ||
1/M | 32 | SyFe,He,St | 1–3 | 1 | 27.8 | 4709.7 | P | P | 285 | 2.3 | ||
1/M | 24 | SySt | 1–3 | 0 | 37.1 | 7.2 | P | N | 52.4 | 2 | ||
5/M | 24–47 | SySt,Tp | 1–10 | 0–1 | NA | - | N | N | 86.1–337.2 | 2.0–2.3 | ||
12/M | 22–67 | As | - | 0 | NA | - | N | N | 20.7–312.7 | 1.8–2.3 | ||
3 | 6/F | 23–55 | As | - | 0 | NA | - | N | N | AI = 95% | 16.4–258.2 | 1.5–2.2 |
(22) | 1/F | 27 | SyHe | 1–3 | 5 | 32.5 | 130.3 | P | P | ρ = 0.84 | 157.4 | 2.2 |
1/M | 55 | As | - | 0 | 37.6 | 3.6 | P | N | K = 0.83 | 105.5 | 2.2 | |
2/M | 38, 48 | SyFe,He,Ap | 1–3 | 0–1 | 32.4, 26.9 | 138.5, 5750 | P | P | 66.8–340.7 | 1.8–2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Aguilera, G.; Martínez-Bustamante, V.; Acevedo-Sánchez, G.; Coria-Contreras, J.J.; Guzmán-Hernández, E.; Flores-Colorado, O.E.; Mendoza-Ramos, C.; Hernández-Nava, G.; Álvarez-Maya, I.; Gutiérrez-Espinosa, M.A.; et al. Surveillance Web System and Mouthwash-Saliva qPCR for Labor Ambulatory SARS-CoV-2 Detection and Prevention. Int. J. Environ. Res. Public Health 2022, 19, 1271. https://doi.org/10.3390/ijerph19031271
Mora-Aguilera G, Martínez-Bustamante V, Acevedo-Sánchez G, Coria-Contreras JJ, Guzmán-Hernández E, Flores-Colorado OE, Mendoza-Ramos C, Hernández-Nava G, Álvarez-Maya I, Gutiérrez-Espinosa MA, et al. Surveillance Web System and Mouthwash-Saliva qPCR for Labor Ambulatory SARS-CoV-2 Detection and Prevention. International Journal of Environmental Research and Public Health. 2022; 19(3):1271. https://doi.org/10.3390/ijerph19031271
Chicago/Turabian StyleMora-Aguilera, Gustavo, Verónica Martínez-Bustamante, Gerardo Acevedo-Sánchez, Juan J. Coria-Contreras, Eduardo Guzmán-Hernández, Oscar E. Flores-Colorado, Coral Mendoza-Ramos, Gabriel Hernández-Nava, Ikuri Álvarez-Maya, M. Alejandra Gutiérrez-Espinosa, and et al. 2022. "Surveillance Web System and Mouthwash-Saliva qPCR for Labor Ambulatory SARS-CoV-2 Detection and Prevention" International Journal of Environmental Research and Public Health 19, no. 3: 1271. https://doi.org/10.3390/ijerph19031271