Observations of Delayed Changes in Respiratory Function among Allergy Clinic Patients Exposed to Wildfire Smoke
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014. Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Working Group II Contribution to the Fifth Assessment Report; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Jolly, W.M.; Cochrane, M.; Freeborn, P.; Holden, Z.; Brown, T.; Williamson, G.; Bowman, D. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Westerling, A.L.; Hidalgo, H.; Cayan, D.; Swetnam, T. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Phil. Trans. R. Soc. B 2016, 371, 20150178. [Google Scholar] [CrossRef] [PubMed]
- Holden, Z.; Swanson, A.; Luce, C.; Jolly, W.M.; Maneta, M.; Oyler, J.; Warren, D.; Parsons, R.; Affleck, D. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc. Natl. Acad. Sci. USA 2018, 115, E8349–E8357. [Google Scholar] [CrossRef] [Green Version]
- Rappold, A.G.; Stone, S.; Cascio, W.; Neas, L.; Kilaru, V.; Carraway, M.; Szykman, J.; Ising, A.; Cleve, W.; Meredith, J.; et al. Peat Bog Wildfire Smoke Exposure in Rural North Carolina Is Associated with Cardiopulmonary Emergency Department Visits Assessed through Syndromic Surveillance. Environ. Health Perspect. 2011, 119, 1415–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fann, N.; Alman, B.; Broome, R.A.; Morgan, G.G.; Johnston, F.H.; Pouliot, G.; Rappold, A.G. The health impacts and economic value of wildland fire episodes in the US: 2008–2012. Sci. Total Environ. 2018, 610, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Brummel, S.; Wu, J.; Stern, H.; Ostro, B.; Lipsett, M.; Winer, A.; Street, D.H.; Zhang, L.; Tjoa, T.; et al. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup. Environ. Med. 2009, 66, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Arriagada, N.B.; Horsley, J.A.; Palmer, A.J.; Morgan, G.G.; Tham, R.; Johnston, F.H. Association between fire smoke fine particulate matter and asthma-related outcomes: Systematic review and meta-analysis. Environ. Res. 2019, 179, 108777. [Google Scholar] [CrossRef]
- Reid, C.E.; Considine, E.M.; Watson, G.L.; Telesca, D.; Pfister, G.G.; Jerrett, M. Associations between respiratory health and ozone and fine particulate matter during a wildfire event. Environ. Int. 2019, 129, 291–298. [Google Scholar] [CrossRef]
- Haikerwal, A.; Akram, M.; Del Monaco, A.; Smith, K.; Sim, M.; Meyer, M.; Tonkin, A.; Abramson, M.; Dennekamp, M. Impact of fine particulate matter (PM 2.5) exposure during wildfires on cardiovascular health outcomes. J. Am. Heart Assoc. 2015, 4, e001653. [Google Scholar] [CrossRef] [Green Version]
- Cascio, W. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Holm, S.M.; Miller, M.D.; Balmes, J.R. Health effects of wildfire smoke in children and public health tools: A narrative review. J. Expo. Sci. Environ. Epidemiol. 2020, 20, 1–20. [Google Scholar] [CrossRef]
- Leibel, S.; Nguyen, M.; Brick, W.; Parker, J.; Ilango, S.; Aguilera, R.; Gershunov, A.; Benmarhnia, T. Increase in Pediatric Respiratory Visits Associated with Santa Ana Wind-Driven Wildfire Smoke and PM (2.5) Levels in San Diego County. Ann. Am. Thorac. Soc. 2020, 17, 313–320. [Google Scholar] [CrossRef]
- Kiser, D.; Metcalf, W.J.; Elhanan, G.; Schnieder, B.; Schlauch, K.; Joros, A.; Petersen, C.; Grzymski, J. Particulate matter and emergency visits for asthma: A time-series study of their association in the presence and absence of wildfire smoke in Reno, Nevada, 2013–2018. Environ. Health 2020, 19, 92. [Google Scholar] [CrossRef]
- Yao, J.; Brauer, M.; Wei, J.; McGrail, K.M.; Johnston, F.H.; Henderson, S.B. Sub-Daily Exposure to Fine Particulate Matter and Ambulance Dispatches during Wildfire Seasons: A Case-Crossover Study in British Columbia, Canada. Environ. Health Perspect. 2020, 128, 67006. [Google Scholar] [CrossRef]
- Orr, A.; Migliaccio, A.L.C.; Buford, M.; Ballou, S.; Migliaccio, C.T. Sustained Effects on Lung Function in Community Members Following Exposure to Hazardous PM (2.5) Levels from Wildfire Smoke. Toxics 2020, 8, 53. [Google Scholar] [CrossRef]
- Tinling, M.A.; West, J.J.; Cascio, W.E.; Kilaru, V.; Rappold, A.G. Repeating cardiopulmonary health effects in rural North Carolina population during a second large peat wildfire. Environ. Health 2016, 15, 12. [Google Scholar] [CrossRef] [Green Version]
- CDC (Centers for Disease Control and Prevention). Health Weight and BMI, Atlanta, GA. Available online: https://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html#Interpreted (accessed on 2 April 2020).
- Choi, I.; Koh, Y.; Lim, H. Peak expiratory flow rate underestimates severity of airflow obstruction in acute asthma. Korean J. Intern. Med. 2002, 17, 174–179. [Google Scholar] [CrossRef]
- Leiner, G.C.; Abramowitz, S.O.L.; Small, M.J.; Stenby, V.B.; Lewis, W.A. Expiratory peak flow rate. Standard values for normal subjects. Use as a clinical test of ventilatory function. Am. Respir. Dis. 1963, 88, 644. [Google Scholar]
- Hehua, Z.; Qing, C.; Shanyan, G.; Qijun, W.; Yuhong, Z. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. Environ. Res. 2017, 159, 519–530. [Google Scholar] [CrossRef]
- Deng, Q.; Lu, L.; Li, Y.; Sundell, J.; Norbäck, D. Exposure to outdoor air pollution during trimesters of pregnancy and childhood asthma, allergic rhinitis, and eczema. Environ. Res. 2016, 150, 119–127. [Google Scholar] [CrossRef]
- Sbihi, H.; Tamburic, L.; Koehoorn, M.; Brauer, M. Perinatal air pollution exposure and development of asthma from birth to age 10 years. Eur. Respir. J. 2016, 47, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.; Chiu, Y.; Coull, B.; Kloog, I.; Schwartz, J.; Lee, A.; Wright, R.O.; Wright, R.J. Prenatal Particulate Air Pollution and Asthma Onset in Urban Children Identifying Sensitive Windows and Sex Differences. Am. J. Respir. Crit. Care Med. 2015, 192, 1052–1059. [Google Scholar]
- Korten, I.; Ramsey, K.; Latzin, P. Air pollution during pregnancy and lung development in the child. Pediatr. Respir. Rev. 2017, 21, 38–46. [Google Scholar] [CrossRef]
- Veras, M.; Alves, N.; Fajersztajn, L.; Saldiva, P. Before the first breath: Prenatal exposures to air pollution and lung development. Cell Tissue Res. 2017, 367, 445–455. [Google Scholar] [CrossRef]
- Thurston, G.; Balmes, J.; Garcia, E.; Gilliland, F.; Rice, M.; Schikowski, T.; Van Winkle, L.S.; Annesi-Maesano, I.; Burchard, E.G.; Carlsten, C.; et al. Outdoor Air Pollution and New-Onset Airway Disease: An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2020, 17, 387–398. [Google Scholar] [CrossRef]
- Ilmarinen, P.; Tuomisto, L.; Kankaanranta, H. Phenotypes, Risk Factors, and Mechanisms of Adult-Onset Asthma. Mediat. Inflamm. 2015, 2015, 514868. [Google Scholar] [CrossRef] [Green Version]
- Gianniou, N.; Katsaounou, P.; Dima, E.; Giannakopoulou, C.; Kardara, M.; Saltagianni, V.; Trigidou, R.; Kokkini, A.; Bakakos, P.; Markozannes, E.; et al. Prolonged occupational exposure leads to allergic airway sensitization and chronic airway and systemic inflammation in professional firefighters. Respir. Med. 2016, 118, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Gianniou, N.; Giannakopoulou, C.; Dima, E.; Kardara, M.; Katsaounou, P.; Tsakatikas, A.; Roussos, C.; Koulouris, N.; Rovina, N. Acute effects of smoke exposure on airway and systemic inflammation in forest firefighters. J. Asthma Allergy 2018, 11, 81–88. [Google Scholar] [CrossRef] [Green Version]
Fire #1 Patient Demographics (%) | Fire #2 Patient Demographics (%) | |
---|---|---|
Age Distribution | ||
<13 years old | 30 | 40 |
13–17 years old | 15 | 16 |
18–30 years old | 8 | 6 |
31–49 years old | 18 | 15 |
50–70 years old | 21 | 17 |
>70 years old | 8 | 6 |
BMI (kg/m2) | ||
<18.5 (underweight) | 19 | 23 |
18.5–24.9 (normal) | 28 | 30 |
25–29.9 (overweight) | 26 | 23 |
30 or greater (obese) | 27 | 24 |
Sex | ||
Male | 44 | 49 |
Female | 56 | 51 |
Race | ||
Black | 26 | 30 |
White | 73 | 66 |
Other | 1 | 4 |
Ethnicity | ||
Hispanic | 1 | 1 |
Non-Hispanic | 99 | 99 |
Pre-Fire Period | During-Fire Period | Post-Fire Period | |
---|---|---|---|
Average Delta_PF (n) | Average Delta_PF (n) | Average Delta_PF (n) | |
All patients | −44.67 (231) | −35.19 (498) | −60.43 (223) |
Women only | −55.68 (132) | −53.45 (286) | −75.65 (125) |
Men only | −29.97 (99) | −10.55 (212) | −41.03 (98) |
Black only | −57.53 (52) | −37.5 (126) | −73.36 (55) |
White only | −40.82 (177) | −36.34 (362) | −57.46 (162) |
Least Squares Mean Delta_PF (Liters per Minute) | p-Value for Comparisons of Delta_PF by Time Periods | |
---|---|---|
Fire #1 (n = 378) | ||
Pre-fire | −35.00 | |
During fire | −23.84 | |
Post-Fire | −63.79 | |
Pre-fire vs. During fire | 0.11 | |
Pre-fire vs. Post-fire | <0.001 | |
During fire vs. Post-fire | <0.001 | |
Fire #2 (n = 162) | ||
Pre-fire | −45.42 | |
During fire | −37.00 | |
Post-Fire | −55.33 | |
Pre-fire vs. During fire | 0.40 | |
Pre-fire vs. Post-fire | 0.32 | |
During fire vs. Post-fire | 0.07 |
Fire #1 Delta_Best (n = 264) | Fire #2 Delta_Best (n = 120) | |||
---|---|---|---|---|
Meteorological Metric 3-Day Period before Clinic Visit When Town was Downwind of Fire | p-Value | Parameter Estimate (β) | p-Value | Parameter Estimate (β) |
Any wind | 0.032 * | −2.21 | 0.46 | −0.58 |
No_wind | 0.77 | 0.097 | 0.37 | 0.46 |
Light_wind | 0.0010 * | −7.13 | 0.58 | 3.05 |
Moderate_wind | 0.52 | −0.87 | 0.64 | −0.50 |
Strong_wind | 0.0060 * | −13.90 | 0.10 | −4.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blando, J.; Allen, M.; Galadima, H.; Tolson, T.; Akpinar-Elci, M.; Szklo-Coxe, M. Observations of Delayed Changes in Respiratory Function among Allergy Clinic Patients Exposed to Wildfire Smoke. Int. J. Environ. Res. Public Health 2022, 19, 1241. https://doi.org/10.3390/ijerph19031241
Blando J, Allen M, Galadima H, Tolson T, Akpinar-Elci M, Szklo-Coxe M. Observations of Delayed Changes in Respiratory Function among Allergy Clinic Patients Exposed to Wildfire Smoke. International Journal of Environmental Research and Public Health. 2022; 19(3):1241. https://doi.org/10.3390/ijerph19031241
Chicago/Turabian StyleBlando, James, Michael Allen, Hadiza Galadima, Timothy Tolson, Muge Akpinar-Elci, and Mariana Szklo-Coxe. 2022. "Observations of Delayed Changes in Respiratory Function among Allergy Clinic Patients Exposed to Wildfire Smoke" International Journal of Environmental Research and Public Health 19, no. 3: 1241. https://doi.org/10.3390/ijerph19031241
APA StyleBlando, J., Allen, M., Galadima, H., Tolson, T., Akpinar-Elci, M., & Szklo-Coxe, M. (2022). Observations of Delayed Changes in Respiratory Function among Allergy Clinic Patients Exposed to Wildfire Smoke. International Journal of Environmental Research and Public Health, 19(3), 1241. https://doi.org/10.3390/ijerph19031241